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On the Dimension of the Locus of
Determinantal Hypersurfaces

Zinovy Reichstein and Angelo Vistoli

Abstract. _echaracteristic polynomial PA(x0 , . . . , xr) of an r-tupleA ∶= (A1 , . . . , Ar) of n×n-ma-
trices is deûned as

PA(x0 , . . . , xr) ∶= det(x0I + x1A1 + ⋅ ⋅ ⋅ + xrAr).
We show that if r ⩾ 3 and A ∶= (A1 , . . . , Ar) is an r-tuple of n × n-matrices in general position,
then up to conjugacy, there are only ûnitely many r-tuples A′ ∶= (A′1 , . . . , A

′

r) such that pA = pA′ .
Equivalently, the locus of determinantal hypersurfaces of degree n in Pr is irreducible of dimension
(r − 1)n2

+ 1.

1 Introduction

Let r, n ⩾ 2 be integers and let k be a base ûeld. Assume that char(k) = 0 or > n.
Given an r-tupleA ∶= (A1 , . . . ,Ar) ∈ Mr

n of n×n-matrices, we deûne the characteristic
polynomial of A as

PA(x0 , . . . , xr) ∶= det(x0I + x1A1 + ⋅ ⋅ ⋅ + xrAr),
where I denotes that n × n identity matrix. _e purpose of this paper is to answer the
following question, due to B. Reichstein.

Question 1.1 For (A1 , . . . ,Ar) in general position in Mr
n , are there ûnitely many or

inûnitely many conjugacy classes of r-tuples A′ ∶= (A′1 , . . . ,A′r) such that pA = pA′?

To restate this question in geometric terms, consider the following diagram:

(1.1) Mr
n

P

''
π
��

Qr ,n = Mr
n �PGLn

P // DHypr ,n
� � // Hypersurf r ,n .

Here
● Hypersurf r ,n ≃ P(

r+n
n )−1 denotes the space of degree n hypersurfaces in Pr ;

● Qr ,n ∶= Mr
n �PGLn = Spec k[Mr

n]PGLn denotes the categorical quotient space for
the conjugation action of PGLn on r-tuples of n × n-matrices;

● π denotes the natural projection induced by the inclusion k[Mr
n]PGLn ↪ k[Mr

n];
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● P takes an r-tuple A = (A1 , . . . ,Ar) of n × n matrices to the hypersurface in Pr cut
out by the homogeneous polynomial PA(x0 , . . . , xr) of degree n. Hypersurfaces of
this form are called determinantal.

● DHypr ,n denotes the closure of the image of P in Hypersurf r ,n ; this is the locus of
determinantal hypersurfaces of degree n in Pr .

Question 1.2 What is the dimension of DHypr ,n?

Questions 1.1 and 1.2 are closely related. Indeed, Question 1.1 asks whether or not
ûbers of P in general position are ûnite, or equivalently, whether or not

dim(DHypr ,n) = dim(Qr ,n),

where
dim(Qr ,n) = dim(Mr

n) − dim(PGLn) = (r − 1)n2 + 1.

Our main result answers Questions 1.1 and 1.2 for r ⩾ 3.

_eorem 1.3 Assume r ⩾ 3. _en the map P is generically ûnite and separable. In
particular, dim(DHypr ,n) = (r − 1)n2 + 1, for any n ⩾ 2.

Several remarks are in order.
(1) A classical theorem of G. Frobenius [F1897, §7.1] asserts that the only linear

transformations T ∶Mn → Mn preserving the determinant function are of the form
X ↦ PXQ or X ↦ PX tQ, where X t denotes the transpose of X, and P and Q are
ûxed n×n matrices such that det(P)det(Q) = 1. (Formodern proofs of this theorem,
further references, and generalizations, see [Dieu49], [MM59, _eorem 2], [Wat87,
_eorem 4.2], [BGL14, Corollary 8.9].) In the case where r = n2 − 1, Frobenius’s
theorem tells us that the ûber of P contains exactly two points corresponding to the
conjugacy classes of (A1 , . . . ,Ar) and (At

1 , . . . ,At
r), where At denotes the transpose

of A; see Lemma 8.4. In Section 8 we will show that the same is true for any r ⩾ n2 − 1.
(2) In the case where n = r = 3, _eorem 1.3 is equivalent to the following asser-

tion: a general hypersurface of degree 3 in P3 is determinantal. Equivalently, the map
P∶M3

3 → Hypersurf 3,3 ≃ P19 is dominant. _is result goes back (at least) to H. Grass-
mann [G1855]; for a modern proof (in arbitrary characteristic), see [Beau00, Corol-
lary 6.4].

(3) In the case where r = 3 and n = 4, _eorem 1.3 is equivalent to the asser-
tion that determinantal quartic hypersurfaces in P3 form a codimension 1 locus in
Hypersurf 3,4 ≃ P34. Over the ûeld of complex numbers this is proved in [Dolg12, Ex-
ample 4.2.23].

(4) We do not know what the degree of P is in general; our proof of _eorem 1.3
sheds no light on this question. As we mentioned above, if r ⩾ n2 − 1, the general
ûber of P consists of exactly two points corresponding to the conjugacy classes of
(A1 , . . . ,Ar) and (At

1 , . . . ,At
r) (see_eorem 8.2) and thus deg(P) = 2. An interesting

(and to the best of our knowledge, open) question is whether or not deg(P) = 2 for
every n ⩾ 2 and r ⩾ 4. Note however, that this fails for r = 3. Indeed, if r = n = 3, then
deg(P) = 72; see [G1855], [Beau00, Corollary 6.4] or [Dolg12, _eorem 9.3.6].
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(5) _eorem 1.3 fails for r = 2, as long as n ⩾ 3. Indeed, in this case,

dim(Q2,n) = n2 + 1 > (n + 2
2

) − 1 = dim(Hypersurf 2,n),

so the ûbers of P cannot be ûnite. In fact, this setting has been much studied, both
from the theoretical point of view and in connection with applications to control the-
ory. In particular, it is well known that the map P∶Q2,n → Hypersurf 2,n is dominant,
and the points of the ûber of P over a general plane curveC of degree n are in a natural
bijective correspondence with line bundles of degree n(n − 1)/2 on C. For details and
further references, see [CT79], [Vin86], [Beau00, Section 3], [Dolg12, Section 4.1],
[Ne11].

(6) On the other hand, _eorem 1.3 remains true for r = n = 2. Indeed, in this
case the k-algebra k[Q2,2] = k[M2

2]PGL2 is generated by ûve algebraically independent
elements, Tr(A1), Tr(A2), det(A1), det(A2), and Tr(A1A2); see, [P67, _eorem 2.1],
[H71, p. 20] or [FHL81, Lemma 1(1)]. One easily checks that these ûve elements lie in
the k-algebra generated by the coeõcients of det(x0I + x1A1 + x2A2). We conclude
that for r = n = 2 the map P∶M2

2 �PGL2 → Hypersurf 2,2 ≃ P5 is, in fact, a birational
isomorphism, i.e., deg(P) = 1. If r, n ⩾ 2 but (n, r) /= (2, 2), then (A1 , . . . ,Ar) and
(At

1 , . . . ,At
r) are not conjugate for (A1 , . . . ,Ar) ∈ Mr

n in general position (see, e.g.,
[R93, Remark 1 on p. 73]), and hence, deg(P) ⩾ 2.

(7) _e fact that P∶Mr
n → Hypersurf r ,n is dominant if and only if r = 2 or r =

n = 3 was known to L. E. Dickson; see [Dickson21]. Dickson also noted that the
determinantal form

det(A0x0 + ⋅ ⋅ ⋅ + Arxr) ∑
i0+⋅⋅⋅+ir=n

a i0 , . . . , ir x
i0
0 . . . xarr

“involves no more than (r− 1)n2 +2 parameters”, i.e., the transcendence degree of the
ûeld generated by the coeõcients a i1 , . . . , a ir over k is ⩽ (r− 1)n2 +2; see [Dickson21,
_eorem 6]. Our _eorem 1.3 implies that this bound is, in fact, attained for the
generic determinantal form. 1

Our standing assumption on the base ûeld k is that char(k) = 0 or > n. Among
other things, this allows us to use Newton’s formulas to express the coeõcients of the
characteristic polynomial of an n × n-matrix X in terms of Tr(X), Tr(X2),
. . . , Tr(Xn). Ourmain results are of a geometric nature in the sense that in the course
of proving them we can replace k by a larger ûeld. In particular, we can usually as-
sume without loss of generality that k is algebraically closed. We do not know to what
extent _eorem 1.3 remains valid in the case where 0 < char(k) ⩽ n; our argument
breaks down in this setting.
A modern approach to the study of determinantal hypersurfaces is based on the

fact that a hypersurface X ⊂ Pn is determinantal if and only if X carries an Ulrich
sheaf of rank 1; see [Beau00] in the case where X is smooth, and [ES03] in general.
We have not been able to prove_eorem 1.3 using this approach, even though thismay
well be possible (one complication is that for r > 3 every determinantal hypersurface
is singular). _e proof we give here is entirely elementary.

1_e reason for the discrepancy between (r − 1)n2
+ 2 in Dickson’s _eorem 6 and (r − 1)n2

+ 1 in
our _eorem 1.3 is that we take A0 = I. _e “extra” parameter in Dickson’s setting is det(A0).
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2 A General Strategy for the Proof of Theorem 1.3

_e ûrst step is to reduce _eorem 1.3 to the case where r = 3. We will do this in
Section 3; then assume that r = 3 for the rest of the proof. Clearly,

(2.1) dim(DHyp3,n) ⩽ dim(Q3,n) = 2n2 + 1,

since the morphism P∶Q3,n → DHyp3,n is dominant, by deûnition. _e following
lemma will supply a key ingredient for our proof of _eorem 1.3.

Lemma 2.1 _ere exists a triple of n × n matrices A = (A1 ,A2 ,A3) ∈ M3
n such that

the diòerential dP∣A of P at A has rank 2n2 + 1.

Once Lemma 2.1 is established, we know that rank dP∣B ⩾ 2n2 + 1 for B ∈ M3
n is

general position. Hence, (2.1) is an equality. Moreover, for B ∈ M3
n in general position

rank dP∣π(B) ⩾ rank dP∣B = 2n2 + 1.

Since dim(Q3,n) = dim(DHyp3,n) = 2n2 + 1, we conclude that for B ∈ Mr
3 in gen-

eral position, dP∣π(B) is an isomorphism. In other words, P is generically ûnite and
separable, as desired.

Our proof of Lemma 2.1 will be structured as follows. In Section 4 we will exhibit
a homogeneous system of linear equations cutting out Ker(dP∣A) inside the tangent
space TA(M3

n) (which we identify with M3
n) in Section 4. We will do this for any

triple A = (A1 ,A2 ,A3) ∈ M3
n such that the linear span of A1, A2, and A3 in Mn con-

tains a matrix with distinct eigenvalues; see Lemma 4.1(ii). Our goal will be to prove
Lemma 2.1 by showing that dimKer(dP∣A) = n2−1. _e system of linear equations we
obtain, cutting out Ker(dP∣A) in M3

n , is rather complicated (in particular, it is badly
overdetermined). For this reason we have not been able to compute the dimension of
Ker(dP∣A) for an arbitrary triple A = (A1 ,A2 ,A3) ∈ M3

n whose linear span contains a
matrix with distinct eigenvalues. However, for the particular triple A = (A1 ,A2 ,A3)
deûned in (5.1), the kernel of dP∣A carries a (Z/nZ)2-grading, i.e., remains invariant
under a certain linear action of the ûnite abelian groupG ∶= (Z/nZ)2 on M3

n ; see Sec-
tion 6. _is will allow us to decompose M3

n as a direct sum of n2 three-dimensional
character spaces, and verify that Ker(dP∣A) has the desired dimension, n2− 1, by solv-
ing our linear system in each character space. _is computation, completing the proof
of Lemma 2.1 (and thus of_eorem 1.3), will be carried out in Sections 6 and 7. It relies
on properties of q-binomial and trinomial coeõcients, which are recalled in Section 5.

3 Reduction to the Case Where r = 3

_roughout this section, we will ûx n ⩾ 2 and denote the map

Mr
n �PGLn → DHypr ,n

in diagram (1.1) by P(r, n).

Proposition 3.1 Assume that r ⩾ 3. If the morphism P(r, n) is generically ûnite and
separable, then so is P(r + 1, n).
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Let Kr ,n ∶= k(Mr
n)PGLn be the ûeld of rational functions on Mr

n �PGLn and K′

r ,n
be the subûeld of Kr ,n generated by the coeõcients of the characteristic polynomial

(A1 , . . . ,Ar) z→ det(x0I + x1A1 + ⋅ ⋅ ⋅ + xrAr).

Clearly, K′

r ,n is the ûeld of rational functions on DHypr ,n and the inclusion of func-
tion ûelds P∗∶ k(DHypr ,n) ↪ k(Qr ,n) is the natural inclusion K′

r ,n ↪ Kr ,n . _us,
Proposition 3.1 can be restated, in purely algebraic terms, as follows.

Proposition 3.2 Assume that r ⩾ 3. If the ûeld extension Kr ,n/K′

r ,n is ûnite and
separable, then so is Kr+1,n/K′

r+1,n .

_e key to our proof of Proposition 3.2 is the following lemma, which asserts that
Kr ,n is generated, as a ûeld extension of k, by functions that depend on at most three
of the matrices A1 , . . . ,Ar .

Lemma 3.3 (C. Procesi) Assume that r ⩾ 3. _ere are ûnitely many monomials
M1 , . . . ,MN in A1 and A2 such that Kr ,n is generated, as a ûeld extension of k, by the
elements Tr(M i) and Tr(M iA j), where i = 1, . . . ,N, and j = 3, . . . , r.

Proof See [P67, Prop. 2.3, p. 255] or [FGG97, _m. 3.2 and Ex. 3.3(a)].

Proof of Proposition 3.2 First observe that Kr ,n ⊂ Kr+1,n and K′

r ,n ⊂ K′

r+1,n (just set
Ar+1 = 0).
By Lemma 3.3, there exist ûnitelymanymonomials M1 , . . . ,MN in A1 and A2 such

that Kr+1,n is generated, as a ûeld extension of k, by Tr(M i) and Tr(M iA j), where
i = 1, . . . ,N , and j = 3, . . . , r + 1. It thus suõces to show that each of these elements is
algebraic and separable over K′

r+1,n .
Let us start with Tr(M i). By deûnition, Tr(M i) ⊂ K2,n ⊂ Kr ,n . By our assumption

Tr(M i) is thus algebraic and separable over K′

r ,n . Since K′

r ,n ⊂ K′

r+1,n , Tr(M i) is
algebraic and separable over K′

r+1,n , as desired.
Similarly, Tr(M iA3) ⊂ K3,n ⊂ Kr ,n , since r ⩾ 3. By our assumption, Tr(M iA3)

is algebraic and separable over K′

r ,n . Hence, it is algebraic and separable over
K′

r+1,n . By symmetry Tr(M iA j) is also algebraic and separable over K′

r+1,n for every
j = 3, . . . , r + 1, and the proof of Proposition 3.2 is complete.

4 The Kernel of dP

Observe that the image of the map P lies in the aõne subspace A(
r+n
n )−1 of P(

r+n
n )−1 =

Hypersurf r ,n consisting of hypersurfaces of the form

∑
i0+⋅⋅⋅+ir=n

a i1 , . . . , ir x
i0
0 . . . x ir

r = 0,

where an ,0,. . . ,0 /= 0 (or equivalently, an ,0,. . . ,0 = 1, a�er rescaling). _us, we can view P
as a polynomial map between the aõne spaces Mr

n andA(
r+n
n )−1. _e diòerential dP∣A

at a point A ∈ Mr
n is a linear map TA(Mr

n) → TA(A(
r+n
n )−1). We will identify TA(Mr

n)
with Mr

n and TA(A(
r+n
n )−1) with A(

r+n
n )−1 in the obvious way.

https://doi.org/10.4153/CMB-2016-070-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-070-8


618 Z. Reichstein and A. Vistoli

Given an n × n matrix X, we will denote the classical adjoint of X by Xad. Recall
that Xad is, by deûnition, the n×nmatrix whose (i , j)-component is (−1)i+ j det(X ji),
where X ji is the (n−1)×(n−1)matrix obtained from X by deleting row j and column i.
If X is invertible, then Xad = det(X)X−1.

Lemma 4.1 Let A = (A1 , . . . ,Ar) be an r-tuple of n × n-matrices.
(i) _e diòerential dP∣A sends (B1 , . . . , Br) ∈ TA(Mr

n) ≃ Mr
n to

Tr((x0I + x1A1 + ⋅ ⋅ ⋅ + xrAr)ad(x1B1 + ⋅ ⋅ ⋅ + xrBr)) .
(ii) Suppose some matrix in the linear span of A1 , . . . ,Ar has distinct eigenvalues.

_en the kernel of dP∣A is the space of r-tuples (B1 , . . . , Br) ∈ Mr
n satisfying

Tr((x1A1 + ⋅ ⋅ ⋅ + xrAr)d(x1B1 + ⋅ ⋅ ⋅ + xrBr)) = 0
for every d = 0, 1, . . . , n − 1.

In part (ii) we require that for every d = 0, 1, . . . , n − 1, the le�-hand side of the
formula should be identically zero as a polynomial in x1 , . . . , xr . _is gives rise to a
system of linear equations in (B1 , . . . , Br) ∈ Mr

n , whose solution space is Ker(dP∣A).

Proof (i) Let Y = (y i j) and ∆Y = (∆y i j) be n × n matrices. We think of the entries
∆y i j as being “small” and of the entries of Y as being constant. We claim that

(4.1) det(Y + ∆Y) = det(Y) + Tr(Y ad∆Y) + (terms of degree ⩾ 2 in ∆y i j).
In the special case where Y = I, (4.1) readily follows from the usual expansion of the
characteristic polynomial of ∆Y :
(4.2) det(I + ∆Y) = 1 + Tr(∆Y) + (terms of degree ⩾ 2 in ∆y i j).
To prove the claim for arbitrary Y , note that both sides of (4.1) are n × n-matrices,
whose entries are polynomials in y i j and ∆y i j . Hence, in order to establish (4.1) for
an arbitrary n × n matrix Y , we can assume without loss of generality that Y is non-
singular. In this case,

det(Y + ∆Y) = det(Y)det(I + Y−1∆Y).
Expanding the second factor as in (4.2), we arrive at (4.1). _is completes the proof
of the claim.

In order to ûnish the proof of part (i), we will compute the directional derivative
of P in the direction of (B1 , . . . , Br) ∈ Mr

n . Setting Y ∶= x0I + x1A1 + ⋅ ⋅ ⋅ + xrAr and
∆Y ∶= (x1B1 + ⋅ ⋅ ⋅ + xrBr)h, and applying (4.1), we see that
P(A1 + hB1 , . . .Ar + hBr)

= det(Y + ∆Y) = det(Y + ∆Y) = det(Y) + Tr(Y ad∆Y)h + O(h2)
= P(A1 , . . . ,Ar) + Tr((x0I + x1A1 + ⋅ ⋅ ⋅ + xrAr)ad(x1B1 + ⋅ ⋅ ⋅ + xrBr))h + O(h2).

_is shows that the directional derivative of P at A in the direction of B is
Tr((x0I + x1A1 + ⋅ ⋅ ⋅ + xrAr)ad(x1B1 + ⋅ ⋅ ⋅ + xrBr)) ,

and part (i) follows. (Note that in the last computation h → 0, but x0 , x1 , . . . , xn
remain constant throughout.)
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(ii) Let A be an n×n matrix with distinct eigenvalues, over a ûeld K. We claim that
B ∈ Mn satisûes
(a) Tr((x0I + A)adB) = 0 for every x0
if and only if B satisûes
(b) Tr(AdB) = 0 for every d = 0, . . . , n − 1.

Once this claim is established, we can deduce part (ii) from part (i) by setting A ∶=
x1A1+⋅ ⋅ ⋅+xrAr and B ∶= x1B1+⋅ ⋅ ⋅+xrBr andworking over the ûeldK = k(x1 , . . . , xr).

To prove the claim, we can pass to the algebraic closure of K. By our assumption,
A has distinct eigenvalues, and hence, is diagonalizable. We can thus assume without
loss of generality that A is the diagonal matrix diag(λ1 , . . . , λn), where λ1 , . . . , λn are
distinct elements of K. _en

(tI + A)ad = diag( Π(t)
t + λ1

, . . . , Π(t)
t + λn

) ,

where Π(t) = (t+ λ1)(t+ λ2) . . . (t+ λn) = det(tI+A) and each diagonal entry Π(t)
t+λ i

is a polynomial of degree n − 1 in t. Condition (a) now translates to
n

∑
i=1
b i i

Π(t)
t + λ i

= 0,

where b11 , . . . , bnn are the diagonal entries of B. Setting t = −λ i , for i = 1, . . . , n, we
obtain b11 = b22 = ⋅ ⋅ ⋅ = bnn = 0. On the other hand, condition (b) translates to

n

∑
i=1

λdi b i i = 0,

for each d = 0, 1, . . . , n− 1, which we view as a homogeneous system of n linear equa-
tions in n unknowns b11 , . . . , bnn . _e matrix of this system is the Vandermonde ma-
trix

⎛
⎜⎜⎜
⎝

1 1 . . . 1
λ1 λ2 . . . λn
⋮ ⋮ ⋱ ⋮

λn−1
1 λn−1

2 . . . λn−1
n

⎞
⎟⎟⎟
⎠
.

Since λ1 , . . . , λn are distinct, this Vandermondematrix is non-singular, and the above
system has only the trivial solution, b11 = b22 = ⋅ ⋅ ⋅ = bnn = 0.

In summary, for A = diag(λ1 , . . . , λn) both (a) and (b) are equivalent to b11 = b22 =
⋅ ⋅ ⋅ = bnn = 0. Hence, (a) and (b) are equivalent to each other. _is completes the proof
of the claim and thus of Lemma 4.1(ii).

5 Skew-commuting Matrices and q-binomial Coefficients

Recall that we are working over a base ûeld k of characteristic 0 or > n. For the sake of
proving _eorem 1.3, we can assume without loss of generality that k is algebraically
closed. In particular, we can assume that k contains a primitive n-th root of unity,
which we will denote by q. We will also assume that r = 3; see Proposition 3.1(i). For
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the remainder of the proof of _eorem 1.3, we will set
(5.1)

A1 ∶=
⎛
⎜⎜⎜
⎝

1 0 0 . . . 0
0 q 0 . . . 0
. . . . . . . . . . . . . . . . . . . .
0 0 0 . . . qn−1

⎞
⎟⎟⎟
⎠
, A2 ∶=

⎛
⎜⎜⎜
⎝

0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . . . .
1 0 0 . . . 1

⎞
⎟⎟⎟
⎠
, and A3 ∶= A1A2 .

It is easy to see that

A2A1 = qA1A2 and An
1 = An

2 = I,

where, as usual, I denotes that n × n-identity matrix. Hence, conjugation by A1 com-
mutes with conjugation by A2; we will denote these commuting linear operators by
ConjA1

and ConjA2
∶Mn → Mn , respectively. _ey generate a subgroup of GL(Mn)

isomorphic to (Z/nZ)2. One readily checks that

ConjA1
(Ae11 A

e2
2 ) = q−e2Ae11 A

e2
2 and ConjA2

(Ae11 A
e2
2 ) = qe1Ae11 A

e2
2 .

In particular,

(5.2) Tr(Ae11 A
e2
2 ) =

⎧⎪⎪⎨⎪⎪⎩

n if e1 ≡ e2 ≡ 0 (mod n),
0 otherwise.

Letting e1 and e2 range over Z/nZ, we see that each of the n2 one-dimensional sub-
spaces Spank(A

e1
1 A

e2
2 ) is a character space for the abelian group

⟨ConjA1
, ConjA2

⟩ ≃ (Z/nZ)2 .

Since these spaces have distinct associated characters, the matrices Ae11 A
e2
2 form a

k-basis of Mn , as e1 and e2 range over Z/nZ. In the sequel it will o�en be more con-
venient for us to work in this basis than in the standard basis of Mn , consisting of
elementary matrices.

We now recall that the q-factorial [d]q! of an integer d ⩾ 0 is given by

[d]q! ∶= [1]q[2]q ⋅ ⋅ ⋅ [d]q ,

where [a]q ∶= (1 − qa)/(1 − q) = 1+ q+ ⋅ ⋅ ⋅ + qa−1. In particular, [0]q! = 1. (Recall that
we are assuming that n ⩾ 2 throughout, and thus q /= 1.) If a and b are non-negative
integers and a + b = d ⩽ n − 1, then

(5.3) ( d
a, b

)
q
∶=

[d]q!
[a]q![b]q!

is called a q-binomial coeõcient. If a < 0 or b < 0, we set

( d
a, b

)
q
∶= 0.

Similarly, if a + b + c = d ⩽ n − 1, then

(5.4) ( d
a, b, c

)
q
∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[d]q!
[a]q![b]q![c]q!

if a, b, c ⩾ 0,

0 otherwise.
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is called a q-trinomial coeõcient. _is terminology is justiûed by parts (i) and (ii) of
the following lemma. Part (iii) will play an important role in the sequel.

Lemma 5.1 Assume d = 0, . . . , n − 1.
(i) Let X and Y be matrices such that XY = qYX. _en

(X + Y)d = ∑
a+b=d

( d
a, b

)
q
XaY b .

(ii) Let A1 and A2 be as in (5.1). _en

(x1A1 + x2A2 + x3A1A2)d = ∑
a+b+c=d

q
c(c−1)

2 ( d
a, b, c

)
q
xa1 x

b
2 x

c
3A

a+c
1 Ab+c2 .

(iii) For any e1 , e2 ∈ Z/nZ,

Tr((x1A1 + x2A2 + x3A1A2)dAe11 A
e2
2 ) = n ∑

a ,b ,c
qe1(b+c)+

c(c−1)
2 ( d

a, b, c
)
q
xa1 x

b
2 x

c
3 ,

where the sum ranges over triples of non-negative integers (a, b, c), subject to the
following conditions: a + b + c = d, a + c + e1 ≡ 0 (mod n), and b + c + e2 ≡ 0
(mod n).

Proof _ebinomial formula in part (i) was proved byM. P. Schützenberger [Sch53];
for a detailed discussion of this formula and further references, see [HMS04].

(ii)We apply part (i) twice. First we set X = x1A1+x3A1A2 and Y ∶= x2A2 to obtain

(5.5) (x1A1 + x2A2 + x3A1A2)d = ∑
i+ j=d

( d
i , j

)
q
(x1A1 + x3A1A2)ix j

2A
j
2 .

Next we apply part (i) with X ∶= x1A1 and Y ∶= x3A1A2:

(5.6) (x1A1 + x3A1A2)i = ∑
a+c=i

( i
a, c

)
q
xa1 x

c
3A

a
1 (A1A2)c .

Substituting (5.6) into (5.5), setting i ∶= a + c and b ∶= j, and using the identities

( d
a, b, c

)
q
= ( d

i , b
)
q
( i
a, c

)
q
,(5.7)

(A1A2)c = q
c(c−1)

2 Ac1A
c
2 ,(5.8)

we obtain the formula in part (ii). Note that (5.7) is an immediate consequence of the
deûnitions (5.3) and (5.4), and (5.8) follows from A2A1 = qA1A2.

To deduce part (iii) from part (ii), multiply both sides of (ii) by Ae11 A
e2
2 , rewrite

Ab+c2 Ae11 as qe1(b+c)Ae11 A
b+c
2 , and take the trace on both sides. _e desired equality

now follows from (5.2).

For future reference we record a simple identity involving q-trinomial coeõcients.
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Lemma 5.2 Suppose α, β, and γ are integers, 0 ⩽ α, β, γ ⩽ n−1, and 1 ⩽ α+β+γ ⩽ n.
Set d ∶= α + β + γ − 1. _en

(( d
α − 1, β, γ

)
q
∶ ( d
α, β − 1, γ

)
q
∶ ( d
α, β, γ − 1

)
q
) = (1 − qα ∶ 1 − qβ ∶ 1 − qγ)

as points in the projective plane P2.

Proof If α, β, γ > 0, the lemma is obtained by multiplying each of the numbers

( d
α − 1, β, γ

)
q
, ( d

α, β − 1, γ
)
q
, and ( d

α, β, γ − 1
)
q

by the non-zero scalar (1 − q) [α]q ![β]q ![γ]q !
[d]q !

∈ k. If one of the integers α, β, γ is 0, say,
α = 0, then

( d
α − 1, β, γ

)
q
= 1 − qα = 0,

and the lemma follows.

6 A Grading of Ker(dP∣A)

Let A1, A2 and A3 = A1A2 be as in (5.1). Let V ∶= Ker(dP∣A) ⊂ M3
n , where the map

P∶M3
n → Hypersurf 3,n is deûned in the introduction. Since A1 has distinct eigenval-

ues, Lemma 4.1(ii) tells us that V ⊂ M3
n consists of triples (B1 , B2 , B3) satisfying

Tr((x1A1 + x2A2 + x3A1A2)d(x1B1 + x2B2 + x3B3)) = 0
for d = 0, 1, . . . , n − 1. Here, the le�-hand side is required to be zero as a polynomial
in x1 , x2 , x3, for every d = 0, 1, . . . , n − 1.
Following the strategy outlined in Section 2, in order to complete the proof of_e-

orem 1.3 (or equivalently, of Lemma 2.1), it suõces to show that dim(V) = n2 − 1.

Lemma 6.1 V is invariant under the linear action of the ûnite abelian group
(Z/nZ)2 = ⟨τ, σ⟩ on M3

n given by

σ ∶ (B1 , B2 , B3) z→ (ConjA1
(B1), qConjA1

(B2), qConjA1
(B3)) ,

τ∶ (B1 , B2 , B3) z→ (q−1 ConjA2
(B1), ConjA2

(B2), q−1 ConjA2
(B3)) .

Proof Suppose (B1 , B2 , B3) ∈ V , i.e.,
fB1 ,B2 ,B3 ,d(x1 , x2 , x3) ∶= Tr((x1A1 + x2A2 + x3A1A2)d(x1B1 + x2B2 + x3B3)) = 0

for every d = 0, . . . , n−1. Here, fB1 ,B2 ,B3 ,d is a polynomial in x1 , x2 , x3 with coeõcients
in k, and fB1 ,B2 ,B3 ,d(x1 , x2 , x3) = 0 means that fB1 ,B2 ,B3 ,d is the zero polynomial, i.e.,
every coeõcient vanishes. Let

(C1 ,C2 ,C3) ∶= σ(B1 , B2 , B3) = (ConjA1
(B1), qConjA1

(B2), qConjA1
(B3)) ,

as above. To prove thatV is invariant under σ , we need to show that (C1 ,C2 ,C3) ∈ V ,
i.e., fC1 ,C2 ,C3 ,d is identically 0 for every d = 0, 1, . . . , n − 1. Keeping in mind that

A1 ∶= ConjA1(A1), A2 ∶= qConjA1
(A2), and A1A2 ∶= qConjA1

(A1A2),
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we see that

0 = fB1 ,B2 ,B3 ,d(x1 , x2 , x3)
= Tr(ConjA1

(x1A1 + x2A2 + x3A1A2)d(x1B1 + x2B2 + x3B3))
= Tr((x1A1 + x2q−1A2 + x3q−1A1A2)d(x1C1 + x2q−1C2 + x3q−1C3))
= fC1 ,C2 ,C3 ,d(x1 , q−1x2 , q−1x3).

_is shows that fC1 ,C2 ,C3 ,d(x1 , q−1x2 , q−1x3) is identically zero as a polynomial in x1,
x2, x3. Hence, so is fC1 ,C2 ,C3 ,d(x1 , x2 , x3), as desired.
A similar argument shows that V is invariant under τ. (Here we conjugate by A2,

rather than A1.) _is completes the proof of Lemma 6.1.

Since we are working over an algebraically closed base ûeld k and char(k) = 0 or
char(k) > n, Lemma 6.1 tells us that V is a direct sum of character spaces for the
action of (Z/nZ)2 on M3

n . _ere are n2 character spaces, each of dimension 3 (one
for each character of (Z/nZ)2). _ey are deûned as follows:

We1 ,e2 ∶= {(t1Ae1+1
1 Ae22 , t2A

e1
1 A

e2+1
2 , t3Ae1+1

1 Ae2+1
2 )∣t1 , t2 , t3 ∈ k} ,

where (e1 , e2) ∈ (Z/nZ)2. Here, σ multiplies every vector in We1 ,e2 by q−e2 and τ by
qe1 . In other words, (Z/nZ)2 acts on We1 ,e2 by the character

χ∶ σ aτb z→ q−e2a+e1b .

In summary, V = ⊕n−1
e1 ,e2=0 Ve1 ,e2 , where Ve1 ,e2 ∶= V ∩We1 ,e2 . Recall that our goal is to

show that dim(V) = n2−1. _us, in order to prove_eorem 1.3, it suõces to establish
the following proposition.

Proposition 6.2
(i) V0,0 = (0).
(ii) dim(Ve1 ,e2) = 1 for any (0, 0) /= (e1 , e2) ∈ (Z/nZ)2.

Proposition 6.2 will be proved in the next section.

Remark 6.3 If X and Y are n×n-matrices, then clearly Tr(Xd[X ,Y]) = 0 for every
d ⩾ 0. Setting X = x1A1 + x2A2 + x3A1A2, Y = Ae11 A

e2
2 , and thus

[X ,Y] = x1(1 − qe2)Ae1+1
1 A2 + x2(qe1 − 1)Ae11 A

e2+1
2 + x3(qe1 − qe2)Ae1+1

1 Ae2+1
2 ,

we see that the triple

(B1 , B2 , B3) = ((1 − qe2)Ae1+1
1 Ae22 , (qe1 − 1)Ae11 A

e2+1
2 , (qe1 − qe2)Ae1+1

1 Ae2+1
2 )

lies in Ve1 ,e2 . Here, (B1 , B2 , B3) = (0, 0, 0) if (e1 , e2) = (0, 0) in (Z/nZ)2 and
(B1 , B2 , B3) /= (0, 0, 0) otherwise. Proposition 6.2 tells us that, in fact, (B1 , B2 , B3)
spans Ve1 ,e2 for every (e1 , e2) ∈ (Z/nZ)2.

https://doi.org/10.4153/CMB-2016-070-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-070-8


624 Z. Reichstein and A. Vistoli

7 Conclusion of the Proof of Theorem 1.3

It remains to prove Proposition 6.2. Given t1 , t2 , t3 ∈ k, recall that an element

w ∶= (t1Ae1+1
1 Ae22 , t2A

e1
1 A

e2+1
2 , t3Ae1+1

1 Ae2+1
2 )

ofWe1 ,e2 lies in Ve1 ,e2 if and only if

Tr((x1A1 + x2A2 + x3A1A2)d(t1x1Ae1+1
1 Ae22 + t2x2Ae11 A

e2+1
2 + t3x3Ae1+1

1 Ae2+1
2 ))

is identically 0 as a polynomial in x1 , x2 , x3, for every d = 0, . . . , n − 1. Rewriting this
polynomial as

t1x1 Tr((x1A1 + x2A2 + x3A1A2)dAe1+1
1 Ae22 )

+ t2x2 Tr((x1A1 + x2A2 + x3A1A2)dAe11 A
e2+1
2 )

+ t3x3 Tr((x1A1 + x2A2 + x3A1A2)dAe1+1
1 Ae2+1

2 )

and applying Lemma 5.1(iii) to each term, we obtain

t1 ∑
(a ,b ,c)

nq(e1+1)(b+c)+ c(c−1)
2 ( d

a, b, c
)
q
xa+1
1 xb2 x

c
3

+ t2 ∑
(a′ ,b′ ,c′)

nqe1(b
′
+c′)+ c′(c′−1)

2 ( d
a′ , b′ , c′

)
q
xa

′
+1

1 xb
′

2 x c
′

3

+ t3 ∑
(a′′ ,b′′ ,c′′)

nq(e1+1)(b′′+c′′)+ c′′(c′′−1)
2 ( d

a′′ , b′′ , c′′
)xa

′′
1 xb

′′
2 x c

′′
+1

3 = 0,

(7.1)

where the sums are taken over triples of non-negative integers (a, b, c), (a′ , b′ , c′),
and (a′′ , b′′ , c′′) satisfying

a + b + c = d ,
a + c + e1 + 1 ≡ 0 (mod n),
b + c + e2 ≡ 0 (mod n),

a′ + b′ + c′ = d ,
a′ + c′ + e1 ≡ 0 (mod n),

b′ + c′ + e2 + 1 ≡ 0 (mod n),

a′′ + b′′ + c′′ = d ,
a′′ + c′′ + e1 + 1 ≡ 0 (mod n),
b′′ + c′′ + e2 + 1 ≡ 0 (mod n).

_e expression on the le� hand side of (7.1) is a homogeneous polynomial in x1 , x2 , x3
of degree d + 1. Our element w = (t1Ae+1

1 Ae22 , t2A
e1
1 A

e2+1
2 , t3Ae1+1

1 Ae2+1
2 ) ofWe1 ,e2 lies

in Ve1 ,e2 if and only if this polynomial is identically zero.
Tomake the conditions the vanishing of this polynomial imposes on t1 , t2 , t3 more

explicit, let us examine the coeõcient of xα1 x
β
2 x

γ
3 (with d+1 = α+β+γ). _is coeõcient

is zero unless α, β, and γ are chosen so that

(7.2) α + β + γ ⩽ n, α + γ + e1 ≡ 0 (mod n), β + γ + e2 ≡ 0 (mod n).

On the other hand, if α, β and γ satisfy conditions (7.2), then setting

d ∶= α + β + γ − 1
a = α − 1, b = β, c = γ

a′ = α, b′ = β − 1, c = γ

a′′ = α, b′′ = β, c′′ = γ − 1,
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we see that the coeõcient of xα1 x
β
2 x

γ
3 is

t1nq(e1+1)(β+γ)+ γ(γ−1)
2 ( d

α − 1, β, γ
)
q
+ t2nqe1(β−1+γ)+ γ(γ−1)

2 ( d
α, β − 1, γ

)
q

+ t3nq(e1+1)(β+γ−1)+ (γ−2)(γ−1)
2 ( d

α, β, γ − 1
)
q
.

Equating this coeõcient to 0 and dividing through by nqe1(β+γ)+ γ(γ−1)
2 , we obtain

(7.3) t1qβ+γ( d
α − 1, β, γ

)
q
+ t2q−e1(

d
α, β − 1, γ

)
q
+ t3qβ−e1(

d
α, β, γ − 1

)
q
= 0.

In summary,w = (t1Ae+1
1 Ae22 , t2A

e1
1 A

e2+1
2 , t3Ae1+1

1 Ae2+1
2 ) lies inVe1 ,e2 if and only if (7.3)

holds for every α, β, γ satisfying conditions (7.2).

Proof of Proposition 6.2(i) Our goal is to show that w = (t1A1 , t2A2 , t3A1A2) lies
in V0,0 if and only if t1 = t2 = t3 = 0. Note that here e1 = e2 = 0, and (α, β, γ) =
(n, 0, 0), (0, n, 0), (0, 0, n) satisfy conditions (7.2). Substituting (α, β, γ) = (n, 0, 0)
into (7.3), and remembering that ( d

a ,b ,c)q
= 0 whenever a, b or c is < 0, we obtain

t1(
n − 1

n − 1, 0, 0
)
q
= 0,

or equivalently, t1 = 0. Similarly, setting (α, β, γ) = (0, n, 0) yields t2 = 0, and setting
(α, β, γ) = (0, 0, n) yields t3 = 0. _is proves part (i).

Proof of Proposition 6.2(ii) Here, (e1 , e2) /= (0, 0), and we can use Lemma 5.2 to
simplify formula (7.3) as follows:

t1qβ+γ(1 − qα) + t2q−e1(1 − qβ) + t3qβ−e1(1 − qγ) = 0.
Using (7.2), we can rewrite this in a more symmetric way, as

(7.4) t1(q−e2 − qd+1) + t2(q−e1 − qd+1) + t3(qd+1 − q−e1−e2) = 0,
where d + 1 = α + β + γ, as before.

Claim Suppose e1 , e2 = 0, . . . , n − 1 and (e1 , e2) /= (0, 0). _en there exist triples
of non-negative integers, (α1 , β1 , γ1) and (α2 , β2 , γ2) satisfying conditions (7.2) such
that d1 /≡ d2 (mod n). Here, d1 = α1 + β1 + γ1 − 1 and d2 = α2 + β2 + γ2 − 1.

We will now deduce Proposition 6.2(ii) from this claim. _e proof of the claimwill
be deferred to the end of this section. Assuming the claim is established, formula (7.4)
tells us that if (t1Ae1+1

1 Ae22 , t2A
e1
1 A

e2+1
2 , t3Ae1+1

1 Ae2+1
2 ) lies in Ve1 ,e2 , then t1 , t2, and t3

satisfy the linear equations

t1(q−e2 − qd1+1) + t2(q−e1 − qd1+1) + t3(qd1+1 − q−e1−e2) = 0,

t1(q−e2 − qd2+1) + t2(q−e1 − qd2+1) + t3(qd2+1 − q−e1−e2) = 0.

(7.5)

_e matrix of this system

(qe2 − qd1+1 q−e1 − qd1+1 qd1+1 − q−e1−e2
qe2 − qd2+1 q−e1 − qd2+1 qd2+1 − q−e1−e2

)
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is easily seen to have rank 2. Indeed, the determinants of the 2 × 2 minors are

± (qd1+1 − qd2+1)(q−e2 − q−e1),
± (qd1+1 − qd2+1)(q−e1−e2 − q−e1),
± (qd1+1 − qd2+1)(q−e1−e2 − q−e1).

Since qd1+1 /= qd2+1, all three of these determinants can only be zero if q−e1 = q−e2 =
q−e1−e2 , or equivalently, e1 ≡ e2 ≡ e1 + e2 (mod n), i.e., (e1 , e2) = (0, 0) (mod n),
contradicting our assumption that (e1 , e2) /= (0, 0). We conclude that the solution
space to system (7.5) is of dimension ⩽ 1 and consequently, dim(Ve1 ,e2) ⩽ 1. On the
other hand, by Remark 6.3, dim(Ve1 ,e2) ⩾ 1. _is shows that dim(Ve1 ,e2) = 1, thus
completing the proof of Proposition 6.2(ii).

We now turn to the proof of the claim. _e statement of the claim is clearly sym-
metric with respect to e1 and e2. _at is, if the triples

(α1 , β1 , γ1) and (α2 , β2 , γ2)
satisfy the claim for (e1 , e2), then the triples (β1 , α1 , γ1), (β2 , α2 , γ2) will satisfy the
claim for (e2 , e1). _us, for the purpose of proving this claim, we can assume without
loss of generality that 0 ⩽ e2 ⩽ e1 ⩽ n − 1.
Case 1: e2 ⩾ 1. Here, the triples

(α1 , β1 , γ1) = (0, e1 − e2 , n − e1) and (α, β, γ) = (1, e1 − e2 + 1, n − e1 − 1)
satisfy conditions (7.2) and yield distinct sums d1 + 1 = α1 + β1 + γ1 = n − e2 and
d2 + 1 = α2 + β2 + γ2 = n − e2 + 1. Note that d2 + 1 ⩽ n, because we are assuming that
e2 ⩾ 1.
Case 2: e2 = 0 but 1 ⩽ e1 ⩽ n − 1. Set (α1 , β1 , γ1) = (0, e1 , n − e1) as in Case 1, and
(α2 , β2 , γ2) = (n− e1 , 0, 0). _en d1+ 1 = n and d2+ 1 = n− e1 are, once again, distinct
modulo n. _is completes the proof of the claim, and hence, of Proposition 6.2 and
of _eorem 1.3.

8 The Case Where r ⩾ n2
− 1

Let Kr ,n ∶= k(Mr
n)PGLn be the ûeld of matrix invariants and let K′

r ,n be the subûeld
generated by the coeõcients of the generalized characteristic polynomial

(A1 , . . . ,Ar) z→ det(x0I + x1A1 + ⋅ ⋅ ⋅ + xrAr),
as in Section 3. Recall that Kr ,n is the ûeld of rational functions on Mr

n �PGLn and
K′

r ,n is the ûeld of rational functions on DHypr ,n .
By abuse of notation we will denote by t the transposition map Mn → Mn as well

as the maps it induces on Mr
n (by applying t to each component), Mr

n �PGLn , and
their function ûelds. For example,

t(Tr(A1A2A3)) ∶= Tr(At
1A

t
2A

t
3) = Tr(A3A2A1).

Since det(x0I + x1A1 + ⋅ ⋅ ⋅ + xrAr) = det(x0I + x1At
1 + ⋅ ⋅ ⋅ + xrAt

r), we have
(8.1) K′

r ,n ⊂ K t
r ,n .
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Our standing assumption that the base ûeld k is algebraically closed of characteristic
0 or > n remains in force.

Lemma 8.1 Assume that r ⩾ 2, n ⩾ 2, and (r, n) /= (2, 2). _en the following
assertions are equivalent.
(i) _e general ûber of P∶Mr

n �PGLn → DHypr ,n consists of exactly two points cor-
responding to the conjugacy classes of (A1 , . . . ,Ar) and (At

1 , . . . ,At
r).

(ii) [Kr ,n ∶K′

r ,n] = 2.
(iii) K′

r ,n = K t
r ,n .

Proof (i)⇒ (ii). _eorem 1.3 tells us that Kn ,r/K′

n ,r is a ûnite separable extension.
_us the general ûber of P consists of exactly [Kr ,n ∶K′

r ,n] points.
(ii)⇔ (iii). Under our assumptions on r and n, t is an automorphism of Kr ,n of

order 2. _us [Kr ,n ∶K t
r ,n] = 2. In view of (8.1), [Kr ,n ∶K′

r ,n] ⩾ 2, and equality holds if
and only if K′

r ,n = K t
r ,n .

(iii)⇒ (i). If (iii) holds, then a general ûber of P has exactly two elements. If such
a ûber contains a point representing A, it also contains a point representing At . For
A ∈ Mr

n in general position, these points are distinct (herewe are using the assumption
that (r, n) /= (2, 2)!), so there cannot be any others.

Our goal now is show that in the case where r ⩾ n2−1,_eorem 1.3 can be strength-
ened as follows.

_eorem 8.2 _e equivalent conditions of Lemma 8.1 hold if r ⩾ n2− 1, for any n ⩾ 2.

_e rest of this section will be devoted to proving _eorem 8.2. We proceed in
three steps. (1) Lemma 8.3 settles the case where n = 2; (2) Lemma 8.4 settles the case
where r = n2 − 1; (3) Proposition 8.5 supplies the induction step, showing that if the
equivalent conditions of Lemma 8.1 hold for some parameters r and n, then they also
hold for r + 1 and n, provided that r, n ⩾ 3.

Lemma 8.3 Assume that r ⩾ 2. _en
(i) K′

r ,2 = k(Tr(A i), Tr(A iA j) ∣ i , j = 1, . . . , r) .
(ii) K′

r ,2 = K t
r ,2.

Proof (i) Recall that K′

r ,2 is generated over k by the coeõcients of
det(x0I + x1A1 + ⋅ ⋅ ⋅ + xrAr),

where I is the 2 × 2 identity matrix. Setting
X ∶= x0I + x1A1 + ⋅ ⋅ ⋅ + xrAr

and using the formula det(X) = 1
2 (Tr(X)2 − Tr(X2)), we see that K′

r ,2 is generated
over k(Tr(A i)∣i = 1, . . . , r) by the coeõcients of Tr(X2), and part (i) follows. (ii)
Let V be the 3-dimensional subspace of trace zero 2 × 2 matrices, equipped with
the non-degenerate quadratic form q(A, B) = Tr(AB). _en the representation
PGL2 → GL(V) given by the conjugation action is an isomorphism between PGL2
and SO(V) ≃ SO3. _e transpositionmap t∶V → V also preserves the trace form; the
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subgroupG of GL(V) generated by SO(V) and t is easily seen to be the full orthogo-
nal group O(V). Now observe that by deûnition, K t

r ,2 = k(Mr
2)G . Let us identify M2

with V0 ⊕ V , via the isomorphism

A→ (Tr(A),A− 1
2
Tr(A)) .

Here, V0 denotes the 1-dimensional trivial representation of G. _is identiûes K t
r ,2

with the ûeld of O(V)-invariants of V r
0 ⊕ V r . _e First Fundamental _eorem of

classical invariant theory tells us that this ûeld of invariants is generated by k(V r
0 )

and the functions
(t1 , . . . , tr , v1 , . . . , vr) z→ q(v i , v j),

where t1 , . . . , tr ∈ V0, v1 , . . . , vr ∈ V ; see, e.g., [dCP, _eorem 5.7]. Remembering our
identiûcation between Mn and V0 ⊕ V , we readily translate this into

K t
r ,2 = k(Tr(A i), Tr(A iA j) ∣ i , j = 1, . . . , r) .

_e desired equality, K′

r ,2 = K t
r ,2 now follows from part (i).

Lemma 8.4 Let r = n2−1 and assume that I,A1 , . . . ,Ar spanMn as a k-vector space.
If

det(x0I + x1A1 + ⋅ ⋅ ⋅ + xrAr) = det(x0I + x1B1 + ⋅ ⋅ ⋅ + xrBr)
for some B = (B1 , . . . , Br) ∈ Mr

n , then B is conjugate to A or B is conjugate to At .

Proof Let T ∶Mn → Mn be the linear transformation taking I to I and A i to B i
for every i = 1, . . . , r. By our assumption, T preserves the determinant function.
By a theorem of Frobenius, there exist P,Q ∈ Mn such that det(P)det(Q) = 1 and
T(X) = CXD; see the references in Remark (1) in the introduction. Since T(I) = I,
we have C = D−1, and the lemma follows.

Proposition 8.5 Assume that r, n ⩾ 3. If K′

r = K t
r ,n , then K′

r+1 = K t
r+1,n .

Proof _isproposition is in the same spirit as Proposition 3.2, andwewill use amore
elaborate version of the same argument. Once again, a key ingredient will be supplied
by Lemma 3.3, which asserts that there exist ûnitely many monomials M1 , . . . ,MN
in A1 and A2 such that Kr ,n is generated, as a ûeld extension of k, by the elements
Tr(M i) and Tr(M iA j), where i = 1, . . . ,N , and j = 3, . . . , r. To simplify the notation,
set

s i ∶= Tr(M i) + Tr(M i)t ,
∆ i ∶= Tr(M i) − Tr(M i)t ,
s i , j ∶= Tr(M iA j) + Tr(A jM i)t ,
∆ i , j ∶= Tr(M iA j) − Tr(A jM i)t .

We will also need a non-zero element f ∈ K2,n with the property that t( f ) = − f . Such
an element exists for every n ⩾ 3; for example, we can take

f (A1 ,A2) ∶= Tr(A1A2A2
1A

2
2) − Tr(A2

2A
2
1A2A1).
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For this choice of f , the equality t( f ) = − f is clear; the computation on [R93, p. 72]
shows that f /= 0. (Note that here we are using the assumption that n ⩾ 3. For n = 2,
f cannot exist because t acts trivially on K2,n , and our argument below breaks down.
_is is the reason we handled the case where n = 2 separately, in Lemma 8.3.) Now

K t
r+1,n = k(Tr(M i), Tr(M iA j) ∣ i = 1, . . . ,N , j = 3, . . . , r + 1)

= k(s i , ∆ i , s i j , ∆ i j ∣ i = 1, . . . ,N , j = 3, . . . , r + 1)t

= k(s i , ∆ i f , s i j , ∆ i j f , f ∣ i = 1, . . . ,N , j = 3, . . . , r + 1)t .

_e elements s i , ∆ i f , s i j , ∆ i j f are all ûxed by t, while t( f ) = − f . _us,

(8.2) K t
r+1,n = k(s i , ∆ i f , s i j , ∆ i j f , f 2).

Clearly, K′

r+1,n ⊂ K t
r+1,n . To prove equality, it suõces to show that each of the genera-

tors s i , ∆ i f , s i j , ∆ i j f , and f 2 lie in K′

r+1,n .
Note that s i , ∆ i f , and f 2 lie in K t

2,n , and s i3 and ∆ i3 f lie in K t
3,n . Since r ⩾ 3, these

elements all lie in K t
r ,n . By our assumption, K t

r ,n = K′

r ,n ⊂ K′

r+1,n . Hence, each of
the generators f 2 , s i , ∆ i f , s i3 , ∆ i3 f lie in K′

r+1,n . By symmetry, s i j and ∆ i j f also lie in
K′

r+1,n , for any j = 3, . . . , r + 1. We conclude that f 2 , s i , ∆ i f , s i j , ∆ i j f all lie in K′

r+1,n .
By (8.2), K t

r+1,n = K′

r+1,n , as desired.
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