ON THE EXACTNESS OF THE ECKMANN-HILTON
HOMOTOPY SEQUENCE

A.R. Pears

The theorem that the homotopy sequence is exact splits into
six statements. Scherk ([4]) obviates the use of homotopy
extension in the proof of one of these statements. The purpose
of this note is to show that the method can be adapted to give a
direct proof of the corresponding statement in the theorem that
the Eckmann-Hilton homotopy sequence ([1]) is exact. The note
is based on Eckmann's exposition ([2]). We are concerned with
the proof of b2, pp. 34-35. Eckmann's notation is used; in
particular all—gase-points are denoted by the symbol o, all
constant maps by the symbol 0

Supposé we have a mapping of pairs

where a:A - CA is the natural injection of A into CA.
And suppose that the mapping of pairs

fi
A———13B

1=

CA———> o

1

is homotopic to 0 .

ILet F: AXI - B1 be a homotopy between f1 and 0, and
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let y: AXI—>CA be the identification mapping. We consider
G: AXIXI-»B2 defined by

G(a, s,t) =
BF(a,¢) if $>0

where d=t - s - st.
G is well defined and continuous for

fzy(a,O) = fza(a) = ﬁfi(a) = BF(a,0) .

And

Glo,s,t) = o, G(a,1,t) = fzy(a,i) = f (o) = o.

Hence ([3], Lemma 3.4, p.109) there is a continuous function
H: CAXI —>B2 such that G(a, s,t) = H(y(a, s),t). Let

g : CA - B_ be given by g(c) =H(c,1). (F,H) is a homotopy

2
between (fi'fZ) and (0,g) .

For consider the diagram

F

—_—
AXI B1

| s
CA X ] —m B2
H

where 6(a,t) =(a(a),t) .

If (a,t)e AXI, Hb(a,t)=G(a,0,t) =pF(a,t)
and so the diagram is commutative.

F is a homotopy between f1 and 0 ; and if ce CA ,
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H(c,0) = Gla,s,0) =f,y(a,s) =f,(c) ,  Hlc,1) = g(c)

2

so that H is a homotopy between fz and g .

Finally consider

ga(a) =G(a,0,1) =pF(a, 1) =8(o) =0 .

Thus the homotopy class of (0, g) is an element of Hi(A'BZ)'

Hence the class of (fi’fz) belongs to the image in Hi(A,ﬁ) of
A, b .
Hi( BZ) vy J
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