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This work provides evidence that anisotropic drainage in sheared foam is at the origin of
convective instability in very long foam channels. Convective instability occurs in foam
under forced drainage when a critical liquid fraction is exceeded. Liquid spontaneously
accumulates at one side of the channel. The weight imbalance induces convection rolls in
the foam. Experiments in a very long vertical foam channel demonstrate that the critical
liquid fraction is smaller than in previous findings by a factor of five. The critical liquid
fraction depends on both the channel length and the inhomogeneity of the liquid feed. Well
below the critical liquid fraction, a static, elastic shear deformation of the foam structure
occurs. At the critical liquid fraction, initial steady convection rolls are located at the lower
region of the channel and expand as the liquid fraction further increases. Combining the
drainage equation with both the elastic response of the foam and a model for anisotropic
drainage, a critical liquid fraction for the growth of an initial liquid imbalance is derived
analytically, which corresponds very well to experimental findings. Numerical simulations
of the drainage equation and the elastic response of the foam reproduce these experimental
and analytical findings.

Key words: foams, absolute/convective instability, multiphase flow

1. Introduction

Foam drainage is the process of liquid channelling through a foam or froth. Gravity-driven
drainage can extract liquid from a foam, until extremely low liquid fractions are reached.
Such foams are unstable and eventually break. However, when a continuous flow of liquid,
Q, is added to the top of a foam-filled column with cross-section A, an equilibrium between
added and extracted liquid is maintained. The balance is controlled by the permeability α
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of the foam,

α = Q
A

ηf

ρf g
, (1.1)

which in turn depends on the liquid fraction. Parameters ηf , ρf and g in (1.1) denote the
fluid dynamic viscosity, density and gravitational acceleration, respectively. If a small flow
of liquid is added homogeneously to the top cross-section, a static and homogeneous
liquid fraction is established in the foam. However, when the flow of liquid exceeds a
critical value, an inhomogeneous liquid fraction results and convection rolls set in. These
convection rolls bear similarities to Rayleigh–Bénard cells occurring in thermally stratified
liquids when the density gradient, respectively the Rayleigh number, exceeds the critical
value (Chandrasekhar 2013). But in foam drainage, no vertical density gradient is present
when the convection rolls occur. Consequently, the mechanism behind these rolls is still a
matter of debate.

When liquid is added to the top region of an aqueous foam column, it drains downward
through the network of Plateau borders. This effect is described by the drainage equation
(Cantat et al. 2013):

∂φl

∂t
= −∇ · q = −ρf

ηf
∇ · (αg) + γ

2δbRbηf
∇ ·

(
α

φ
3/2
l

∇φl

)
. (1.2)

It links the local liquid fraction φl and the superficial liquid flow rate q with the
properties of the liquid (density ρf , viscosity ηf , surface tension γ ) and those of the foam
(permeability α, bubble radius Rb). The geometric constant δb = 1.74 results from the
relation between the Plateau border cross-section and the liquid fraction. The drainage
equation (1.2) considers two effects: the vertical flow due to gravity g and a diffusion
of the liquid fraction due to capillary pressure gradients. The diffusion term balances
inhomogeneities in the liquid fraction.

Experiments in steady drainage (Hutzler, Weaire & Crawford 1998; Vera, Saint-Jalmes
& Durian 2000; Hutzler et al. 2007) have investigated whether the foam structure remains
static. They have observed that if the liquid fraction exceeds a certain critical value
φcrit, a stable convection roll is formed, known as convective instability (CI). This is
linked to an inhomogeneous liquid distribution over the channel cross-section, which
cannot be explained by the drainage equation. The formation of this convection roll
biases experiments in foam at a high liquid fraction, because it disturbs the assumption
of homogeneous liquid fraction.

Although detailed studies have not been carried out in industrial foam and froth
applications, CI can be anticipated to have a severe impact. To illustrate this, we take
deep-froth flotation as an example, which is an important step in the beneficiation of
valuable mineral particles, e.g. copper-bearing ores. Frequently, wash water is added to
the particle-laden foam (froth) to remove hydrophilic contaminants, such as undesired
entrained gangue particles. It can be presumed that the CI reduces the efficiency of wash
water addition. As a result, the gangue particles are not completely washed out. Thus, the
grade of the particle concentrate in the froth is reduced which has a significant economic
impact.

The critical liquid fraction φcrit for the onset of CI has been determined to depend
on the bubble size (Hutzler et al. 1998) and can be reduced by tilting the channel (Cox
et al. 2006). Convective instability results in increased effective drainage and can cause
bubble sorting (Hutzler, Weaire & Shah 2000). However, the actual onset mechanism is
still a matter of debate. Embley & Grassia (2006) assume that a sudden scarification of
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individual Plateau borders leads to a localization of the drainage flow. Weaire & Hutzler
(2003) demonstrate that dilatancy combined with elastic deformation of the foam can
cause a growing imbalance in the liquid fraction. Neethling (2006) predicts that anisotropic
drainage in sheared foam causes an imbalance in the liquid fraction.

Using a combined experimental, analytical and numerical approach, we revisit the onset
of CI in detail and provide a conclusive explanation of the mechanism underlying CI.
To facilitate understanding, the stages of the instability which are passed in a typical
experimental run are illustrated in figure 1. Starting from a dry state (I), the drainage flow
rate is increased in small steps, leading to a stepwise increase in the liquid fraction, which
causes the foam to expand by the volume of additional liquid content (II). At each drainage
level, a static foam structure is reached. Above a critical liquid fraction of φcrit ≈ 0.65 %
the deformation becomes inhomogeneous (III). However, the foam structure still reaches
a static state for each drainage level. In this static state the shear rate is zero, but the
shear angle with reference to the initial stage I is non-zero. The inhomogeneity and shear
angle increase with increasing drainage flow rate. Above a second critical liquid fraction
of φCI ≈ 1.05 %, the critical yield strain is exceeded near the bottom of the column and
a steady convection roll is formed in the lower region. In the upper region, the foam
maintains its static inhomogeneous deformation (IV). With further increase in drainage
flow rate, the convection roll covers more and more of the channel height but remains
steady for a constant drainage flow rate.

We claim that the primary instability is the transition from homogeneous (II) to
inhomogeneous (III) static deformations of the foam structure, which is linked to an
inhomogeneous liquid distribution. In stage III, the inhomogeneity grows in the vertical
direction. If the column is long enough and the growth rate of the inhomogeneity with
respect to the vertical position is high enough, the yield stress is exceeded at some vertical
position. Below that position the convection roll sets in, corresponding to stage IV. Thus,
the CI appears as a secondary instability following the primary one, the inhomogeneous
drainage.

In this paper we present experimental findings on the static deformation of the foam
structure and the steady velocity field in the case of CI. Our findings are compared
with a linear stability analysis for the growth of inhomogeneities of liquid fraction.
This analysis includes the anisotropic drainage, as predicted by Neethling (2006). The
identified unstable mode marks the transition from stage II to III. Numerical simulations
of the drainage combined with the elastic deformation of the foam and anisotropic
drainage (Neethling 2006) reproduce our experimental findings. Finally, we demonstrate
the dependency of the critical liquid fraction φCI for the onset of CI on the initial liquid
inhomogeneity as well as on the channel length.

2. Materials and methods

Experiments are carried out in a vertical foam channel with an effective length of 990 mm
and a cross-section T × B = 30 mm × 100 mm. Cox et al. (2006) have demonstrated that
a small tilt of the column can lead to CI. Thus, the tilt angle was controlled to be less than
0.05◦. Bubbles are generated at the bottom of the channel by a tube with 20 holes, each
0.5 mm in diameter, submerged in the surfactant solution. The tube is loaded with
pressurized air, generating bubbles with radii of Rb = 2 ± 0.2 mm at a flow rate of
2 l min−1.

The surfactant solution is deionized water with 35 mM sodium dodecylsulphate (SDS),
generating stable foam. When keeping the foam for 6 hours at 0.5 % liquid fraction, the
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Figure 1. (a) Stages for the onset of CI and (b) corresponding liquid fraction and drainage flow rate for a typical
experimental run with stepwise increase of drainage flow rate, covering (I) the initial foam, (II) a homogeneous
expansion, (III) an inhomogeneous expansion above the first critical liquid fraction φcrit and (IV) the formation
of a steady convection roll, the CI, above the second critical liquid fraction φCI .

measured change in bubble size was less than 20 %. Nevertheless, fresh foam is generated
for each run, which take less than 1 hour each.

At the top of the foam column, a steady liquid flow is imposed through four porous
hollow cylinders with outer diameters of 16 mm, yielding a forced drainage configuration
similar to that of Leonard & Lemlich (1965). The volumetric liquid flow rate Q is linked to
the drainage flow rate q = Q/(B T) by the channel cross-section (B T). The drainage flow
rate is also known as the superficial drainage velocity or liquid flux, and equals the volume
of liquid that passes through a certain cross-section of the foam channel within a certain
time.

Each cylinder is connected to one channel of a four-channel peristaltic pump. This
enables each cylinder to be controlled independently. That is, a defined inhomogeneous
distribution can be imposed by pumping liquid only through one, two or three of the four
cylinders. The notation (oxxx) means that only the leftmost cylinder is charged with liquid.
The liquid is taken from the liquid reservoir below the foam. In that way, the total volume
of liquid and gas remains constant and independent of the volumetric liquid flow rate.

The liquid fraction is observed with four pairs of electrodes (5 mm × 45 mm electrode
area) at a horizontal cross-section 20–65 mm below the porous cylinders (see figure 2a,b),
yielding the horizontal profile of the liquid distribution φ( y). From the four measured
values φ1, . . . , φ4, the average liquid fraction φm = 0.25(φ1 + φ2 + φ3 + φ4) and the first
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Figure 2. (a) Set-up including foam channel (1) of variable length, bubble generator (2), four-headed
peristaltic pump (3), four porous cylinders (4), four pairs of conductivity electrodes (5) and a camera
observing the lower part of the channel (6). (b) Close-up of the electrodes (5). (c) Images of the
foam and (d) close-up of the upper, middle and lower section, respectively, at q = 0 μm s−1 (stage I),
q = 101 μm s−1 (stage III) and q = 179 μm s−1 (stage IV). The displacement of distinct elements of
the foam structure under increasing liquid flow rate is marked. The green line serves as guide to the eye.
At q = 179μm s−1, a steady movement sets in at the lower section and the element is lost.

moment of liquid fraction

Mφ = 1
Bφm

∫ B

0

(
y − B

2

)
φ( y)dy = 37.5 mm (φ4 − φ1) + 12.5 mm (φ3 − φ2)

(φ1 + φ2 + φ3 + φ4)
(2.1)

are derived. In our measurements, we never achieved a perfectly homogeneous distribution
of liquid fraction. Even when all four porous cylinders are charged, we find Mφ of the order
of 1 mm. This corresponds to an average horizontal shift of the liquid content by only
1 % of the channel width. We spent a lot of effort to further reduce the inhomogeneity.
For example, we measured the flow rate for each channel from our four-channel peristaltic
pump. Also, we switched the channels. But, even if we maintained everything constant and
only created fresh foam, we found the inhomogeneity changing and sometimes switching
to the other side. So we believe that small initial values of Mφ can be considered as a
random distortion which are always present in a random foam structure.

The foam structure inside the transparent channel is observed with a camera taking
images with 1920 px × 1200 px at 30 frames per second, yielding a spatial resolution of
3.3 px mm. Backlight illumination with a light-emitting diode panel permits exposure
times down to 20 ms. Due to the illumination, the captured foam structure is a
cumulative image in the z direction. Consecutive images are analysed with the particle
image velocimetry (PIV) algorithm implemented in DaVis 8.0 software. Particle image
velocimetry (Adrian, Adrian & Westerweel 2011) compares consecutive images to
measure the shift of the foam structure between them.
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The PIV analysis is employed in this work in two different cases. In case 1 (stage IV)
the network of Plateau borders and vertices moves, while in case 2 (stages I, II and III),
the network is static.

In case 1 the shift of the network structure between consecutive images is multiplied
with the frame rate, yielding the velocity distribution v of the foam in the x–y plane. This
velocity refers to the average velocity of the foam structure, i.e. to the average velocity
by which the network of Plateau borders and vertices moves. In this case convection rolls
are recorded (stage IV). Typically, the network velocity reaches a steady, non-static state
in our experiments. In the case of low velocities, increments of up to 20 frames were
used for the PIV analysis. In addition, averaging over 10 image pairs without outlier
reduction is employed. This algorithm yields the velocity distribution v(x, y) in the x–y
plane with a 5 mm spatial resolution. The velocity of the liquid inside the Plateau borders
is not accessible. Due to the backlight illumination, the velocity is automatically averaged
in the z direction. For spatially resolved three-dimensional measurements of the foam
velocity, other techniques such as ultrasound Doppler velocimetry (Nauber et al. 2018)
or radiographic particle tracking (Lappan et al. 2020) are required.

In case 2, the network is static everywhere in the column. In this case, the PIV analysis
mentioned above yields vanishing velocity v(x, y) = 0. However, even when the network
is static, it has deformed compared with the initial state (stage I) of zero drainage flow. We
increase the liquid flow rate stepwise and find at each step a different static network. When
we then switched off the drainage flow, the network goes back to its initial shape. It is like
a beam balance. For each set of weights (drainage flow) a certain static angle (shear angle)
occurs. In order to analyse this static elastic deformation U(x, y) of the foam (figure 3),
one image is taken from each drainage flow rate level, and these are combined and fed
into the PIV algorithm. By this means, the static elastic shift of the foam network between
consecutive levels of drainage flow rate can be computed (see figure 2d). This only works
if the foam structure does not undergo a flowing movement, because in the case of flowing
foam, the shift between consecutive drainage levels is too large to be tracked.

3. Stages II and III: static elastic deformation

Each experimental run is prepared by creating fresh foam and letting it rest for 3 minutes.
Then, the pump is started, feeding a constant volumetric flow rate Q to the top of the
column, resulting in a constant, downward drainage flow rate q = Q/(B T), which is
identical to the vertical superficial liquid velocity. In this section, only homogeneous
inflow (oooo) is considered. The drainage flow rate q is increased in small steps of 20–50
μm s−1, giving the foam column 3 minutes after each step to achieve a steady state. This
experimental procedure, which avoids undesired drainage fronts, is sketched in figure 1(b).

In stages II and III, the stepwise increase in the drainage flow rate causes a
corresponding stepwise static elastic deformation U of the foam. Figure 3(b) shows the
measured static vertical displacement Ux of the foam at various drainage flow rates. The
corresponding initial liquid fraction distributions are depicted in figure 3(a). Figure 3(c)
shows Ux at selected horizontal lines for different drainage flow rates.When the drainage
flow rate is switched off again, the foam relaxes back into its initial shape at stage I. In
stage II below q = 65 μm s−1, the displacement Ux is fairly constant in the y direction
but increases in the x direction. The relative displacement Ux/x is of the order of 0.5 %.
This homogeneous displacement is due to the change in the liquid volume inside the foam
while the total volume of gas and liquid is kept constant. For example, the column with
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Figure 3. Static vertical displacement Ux in stages II (q = 30–47 μm s−1) and III (q = 65–148 μm s−1),
which are below the critical limit qCI = 160 μm s−1 for the onset of CI. (a) Liquid fraction and (b) resulting
static vertical displacement for five drainage flow rates. (c) Static vertical displacement in six horizontal layers
(dotted lines) for eight stepwise increasing drainage flow rates (oooo).

a height of 1000 mm displaces the foam-liquid level by 5 mm when the liquid fraction is
increased by 0.5 %.

At around q = 65 μm s−1 and φl ≈ 0.6 %, the transition to stage III occurs. A horizontal
gradient is seen in the vertical displacement, which is equivalent to a shear deformation
εxy of the foam. This shear εxy is predicted by Neethling (2006) to generate a horizontal
deflection qy,aniso of the vertical drainage flow rate qx, which, in turn, increases the liquid
imbalance and shear. This mechanism is discussed in § 5. The liquid imbalance grows with
increasing drainage flow rate until, above 160 μm s−1, CI sets in (see figure 4, predicated
on the same run as figure 3).

4. Stage IV: steady convection rolls

4.1. Homogeneous inflow
The onset of CI is recognized as when foam velocities larger than 0.5 μm s−1 are detected
in a steady state at any point of the foam column. Similarly to Hutzler et al. (1998), the
critical liquid fraction and drainage flow rate at the onset of the CI are determined. Figure 4
documents the velocity distribution of the foam in a steady state at certain drainage flow
rates. In this particular run, the critical drainage flow rate for the onset of CI is between
q = 160 and 179 μm s−1, corresponding to φCI = 1.05 %. At q = 160 μm s−1, the foam
structure remains static. At q = 179 μm s−1, the first convection roll is detected at the
bottom region, constituting the onset of CI. This roll is steady. It does not grow in size
or magnitude as long as the drainage flow rate remains constant. As q increases further,
the foam velocity in the convection roll increases, as does the extension of the roll in a
vertical direction. At drainage flow rates above approximately q = 500 μm s−1, the roll
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Figure 4. Convective instability (stage IV): occurrence of convection rolls in the case of homogeneous inflow
of liquid. (a) Steady liquid fraction distribution and (b) corresponding vertical velocity distribution in the
channel for five drainage flow rates q, showing the onset of movement and, thus, the transition from stage III to
stage IV at q = 179 μm s−1. Note the different velocity scales in the contour plots.

covers the entire height of the channel. This relation between the drainage flow rate q and
the roll extension supports our mechanism in figure 1: the inhomogeneity of liquid fraction
in stage III requires a certain vertical length to grow and reach a critical imbalance. With
higher liquid fraction, the inhomogeneity grows faster with respect to the vertical distance.
In the cross-section, where a critical level of inhomogeneity (i.e. the yield strain; see § 6)
is exceeded, the steady movement of foam sets in. The resulting convection roll covers the
channel height from this critical cross-section to the bottom. At higher liquid fraction the
inhomogeneity grows faster and, thus, the convection rolls sets in more close to the top.

4.2. Inhomogeneous inflow
In order to further investigate the growth of the inhomogeneity in the liquid fraction with
respect to the vertical position, an inhomogeneous liquid fraction is deliberately imposed
by feeding only some of the four porous cylinders. The corresponding liquid moment Mφ

according to (2.1) is derived from the conductivity sensor below the porous cylinders.
Figure 5(a) shows how the drainage flow rate qCI and liquid fraction φCI for the onset

of CI depend on the liquid moment. In the case of high initial inhomogeneity, qCI and φCI
can be as low as 70 μm s−1 and 0.65 %, respectively (dash-dotted line in figure 5a). These
values are close to the transition from stage II to stage III in homogeneous drainage. This
again supports our explanation: if the initial inhomogeneity is very high already, there
is only a small increase in inhomogeneity required to reach an imbalance that exceeds
the yield stress. In the given channel length, this can be achieved by a small growth rate
with respect to the vertical position. As demonstrated in § 5, a liquid fraction just above
the critical liquid fraction φcrit will cause such a slow growth of the inhomogeneity with
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Figure 5. Liquid fraction φCI and corresponding drainage flow rate qCI for the onset of CI obtained for
experiments with homogeneous and inhomogeneous inflow of liquid. The horizontal dash-dotted lines are
guides to the eye and mark the derived values for φcrit from the transition from stage II to stage III. (a) Onset
in a channel of 990 mm in length depending on the initial first moment of the liquid fraction Mφ caused by
the specific combination of porous cylinders charged with liquid (o, on; x, off). Multiple data points for ‘oooo’
correspond to repeat experimental runs. (b) Onset depending on channel length for three different channel
lengths and three different combinations of porous cylinders charged with liquid. Error bars denote the standard
deviation in multiple experimental runs.

respect to the vertical direction, because it is fed by the anisotropic drainage. However,
in the case of a lower initial inhomogeneity (symbol ‘o’ in figure 5a), even drainage flow
rates up to 250 μm s−1 and 1.2 % liquid fraction can result in a static foam structure
(stage III). In this case, the liquid inhomogeneity does not grow fast enough to reach a
critical imbalance in the provided channel length.

Now, the length of the channel is reduced. Figure 5(b) documents the critical drainage
flow rate for different channel lengths and initial inhomogeneities. The error bars denote
the variation between several runs, each with fresh foam. If the initial liquid fraction
exhibits strong inhomogeneity (ooxx), the reduced length has only a small influence
on the critical drainage flow rate. Similar to high initial inhomogeneities in figure 5(a)
the drainage flow rate has to be just high enough to maintain the inhomogeneity. No
large channel length is required to reach a critical imbalance. However, for an initially
homogeneous liquid fraction (oooo), the critical drainage flow rate increases significantly
the shorter is the channel. Similar to small initial inhomogeneities in figure 5(a) the
inhomogeneity requires a sufficient channel length to reach a critical imbalance. If the
channel is shorter, the inhomogeneity has to grow much faster to reach a critical imbalance.
To accomplish that, the liquid drainage flow rate has to be substantially higher.

5. Stability analysis

The transition from stage II to stage III marks the primary instability in foam drainage.
In stage II small inhomogeneities in the inflow of liquid, i.e. small Mφ , are damped and
homogenized. In stage III such inhomogeneities grow in the vertical direction. In order to
analyse whether inhomogeneities of the liquid fraction grow with respect to the vertical
direction, a stability analysis is performed. It is based on the drainage equation (1.2), which
is repeated for the sake of a coherent representation:

∂φl

∂t
= −∇ · q = −ρf

ηf
∇ · (αg) + γ

2δbRbηf
∇ ·

(
α

φ
3/2
l

∇φl

)
. (5.1)
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The foam permeability α also depends on the liquid fraction and the interface mobility. The
surfactant used here, SDS, yields a mobile interface. Thus, in the present investigations the
dependency is α ∝ φ

3/2
l (Lorenceau et al. 2009). Consequently, the term α/φ

3/2
l in (5.2)

becomes a constant and is replaced by Kα:

∂φl

∂t
= −∇ · q = −ρf Kαg

ηf
· ∇(φ

3/2
l ) + γ Kα

2δbRbηf

(
∇2
)

φl, Kα = α

φ
3/2
l

. (5.2)

Surfactants leading to an immobile interface are considered in appendix B.
To account for the above-mentioned effect of anisotropic drainage, Neethling (2006)

suggests using an additional term:

qaniso = 0.5qxεxyey ≈ 0.5
ρf g
ηf

αεxyey. (5.3)

A vertical drainage flow rate qx results in a horizontal drainage flow rate qy, which is
proportional to the local shear deformation εxy. Of course, the same mechanism would
also cause an additional vertical drainage flow when a horizontal drainage flow is present.
However, since gravitationally driven vertical drainage typically exceeds capillary-driven
horizontal drainage, the reverse effect is neglected here. The extended drainage equation
reads

∂φl

∂t
= −∇ · q = −ρf Kαg

ηf
[ex · ∇(φ

3/2
l ) + 0.5ey · ∇(φ

3/2
l εxy)] + γ Kα

2δbRbηf

(
∇2
)

φl.

(5.4)

In order to derive the growth of an initial horizontal inhomogeneity of the liquid fraction,
the normal mode approach is applied to (5.4). For that purpose, the liquid fraction φl(x, y)
is decomposed into a constant value φ0 and small perturbations φk(x) with wavenumbers
k which evolve in the vertical direction (cf. figure 6):

φl(x, y) = φ0 + φk(x) eiky. (5.5)

It is important to note that no temporal dependency is incorporated. This is motivated
by our experimental observations, where the elastic deformation and the liquid fractions
reached a steady state. As already mentioned, even in the case of highly symmetric
liquid inflow, we never succeeded in generating a perfectly homogeneous liquid content
in the conductivity sensor below the porous cylinders. Randomly, we found that the
liquid content was higher at the left or right side of the channel. We assume that the
asymmetry of the static foam structure which is in contact with the cylinders always
generates small inhomogeneities. These slight inhomogeneities then remain steady over
time. Consequently, in our experiments we always had steady but slightly asymmetric
inflow conditions, which is reflected by the ansatz function.

While the average foam weight is compensated for by a vertical pressure gradient, the
perturbations lead to an imbalance in the gravitational force:

f g(x, y) = ρf g[φl(x, y) − φ0]ex = ρf gφk(x) eikyex. (5.6)

For the stability analysis, we assume an infinitely long (high) channel. Consequently,
this imbalance must not accumulate over the channel height. In each horizontal slice,
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B

L

x

y

g

2π/k

φ0 + φkke
iky

Ux
∂Ux
∂y

εxy > 0

φk(X)

Figure 6. Sketch of the considered system for linear stability analysis.

the gravitational imbalance is compensated for by a local shear stress. The vertical force
balance on a foam volume stretching between the left wall and the position y = ỹ yields

τxy(x, y = ỹ) − τxy(x, y = 0) = −
∫ ỹ

0
ex · f g dy = −ρf gφk(x)

1
ik

eikỹ. (5.7)

At the vertical boundaries of the channel, a liquid film results in negligible static friction
between the foam and wall. Consequently, the shear stress has to fulfil the boundary
conditions

τxy(x, y = 0) = 0, τxy(x, y = B) = 0. (5.8)

Hence, the shear stress equals

τxy( y) = −ρf gφk(x)
1
ik

eiky. (5.9)

The shear modulus G of foam depends on the liquid fraction. It can be estimated (Mason,
Bibette & Weitz 1995) by (5.10). In the present case, critical liquid fractions of φ0 ≤ 1 %
are considered. In this small range the influence can be neglected, yielding

G = τxy

εxy
= 1.4(1 − φ0)(0.36 − φ0)

γ

Rb
≈ 0.5

γ

Rb
. (5.10)

Combining (5.10) with (5.9) leads to the shear strain:

εxy = τxy

G
= −K1φk(x)

1
ik

eiky, with K1 = 2.0
Rb

γ
ρf g. (5.11)

Considering a steady liquid distribution, the term ∂φl/∂t in (5.4) equals zero. Feeding
the ansatz (5.5) into (5.4), neglecting the influence of capillary pressure on the vertical
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liquid transport and assuming that only small perturbations φk � φ0 occur leads to

0 = 3
2

ρf g
ηf

√
φ0φ

′
k(x) +

[
0.5

ρf g
ηf

K1φ
3/2
0 − γ k2

2δbRbηf

]
φk(x). (5.12)

For a detailed derivation we refer the reader to appendix A. This ordinary differential
equation is solved by

φk(x) = φk(x = 0) eAx. (5.13)

The exponent A represents the growth rate with respect to the vertical position x and is
given by

A = 2.0
3.0

Rb

γ
ρf gφ0 − γ k2

3δbRbρf gφ
1/2
0

. (5.14)

Equations (5.13) and (5.14) show that small imbalances in φl grow exponentially with
respect to the vertical distance x provided that A > 0. Inspecting (5.14), this is the case
for sufficiently small horizontal wavenumbers k. The smallest possible wavenumber in
a channel that fulfils the boundary conditions (5.8) is kmin = π/B. At the critical point,
A = 0 and the liquid fraction φ0 = φcrit. This yields the stability criterion for drainage in
an infinitely long vertical foam channel of width B:

φ
3/2
crit = γ 2

δbR2
b

0.5
ρ2

f g2

π2

B2 , (5.15)

above which initial inhomogeneities grow exponentially. In the present case, we obtain
φcrit ≈ 0.74 %. This value corresponds well with the experimental data for the transition
from stage II to stage III. The critical liquid fraction for the onset of the shear deformation
of the foam in figure 3(c) is φcrit ≈ 0.6 %.

6. Simulations

In order to investigate the interaction of stress, deformation and liquid distribution at
the transition from stage II to stage III, a two-dimensional, phase-averaging numerical
simulation of the experimental set-up is employed. The code computes the unsteady
drainage equation, (5.4), in a finite-volume discretization with Euler-explicit time
integration. In each time step, the simulation solves iteratively for the linear-elastic
deformation U and the stress tensor τ̂ of the foam with zero strain in the third dimension:

εxy = 1
2

(
∂Ux

∂y
+ ∂Uy

∂x

)
, εxx = ∂Ux

∂x
, εyy = ∂Uy

∂y
, (6.1a–c)

τxy = τyx = 2Gεxy, (6.2)

τxx = 3GKν[(1 − ν)εxx + νεyy], Kν = 1
(1 + ν) (1 − 2ν)

, (6.3a,b)

τyy = 3GKν[(1 − ν)εyy + νεxx], (6.4)

∇τ̂ + f g = 0, (6.5)

balancing the gravitational load f g from the liquid fraction contained. The shear modulus
G depends on the local liquid fraction according to (5.10). The Poisson ratio ν for
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Convective instability in foam

φl q U f

Top — qx( y) = q0(1 + q′ cos( yπ/B)) U = 0 —
Bottom 0.2 — ∂Uy/∂x = 0 fx = −ρf gUx
Sidewalls — qy = 0 Uy = 0, ∂Ux/∂y = 0 —

Table 1. Boundary conditions for the elastic simulations.

φl (%) Ux (mm) qy (μm s–1) ε/εy
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φcrit ≈ 0.65

(a) (b)

Figure 7. Numerical simulation. (a) Liquid fraction, vertical displacement, shear strain, horizontal drainage
flow rate and ratio between shear strain and local yield strain for an unstable case, marked in (b), at which
the yield strain is exceeded. (b) Dependence of the liquid fraction φCI and drainage flow rate qCI for the onset
of CI on liquid moment at the introduction for different initial distributions of φl and channel lengths L. The
horizontal dash-dotted line is a guide to the eye and marks φcrit for the transition from stage II to stage III.

incompressible foam would equal 0.5 and the compression module Kν would be infinite.
To avoid numerical problems resulting from an infinite compression module Kν , ν is set
to the artificial value of 0.49. It has been found that small variations of ν have negligible
effects on the results. The resulting local shear strain εxy is fed back into the drainage
equation. The pertinent boundary conditions are given in table 1.

At the sidewalls, zero vertical stress, zero horizontal liquid flux and zero horizontal
strain are imposed. At the top wall, zero strain and a prescribed vertical drainage
flux qx( y) = q0(1 + q′ cos( yπ/B)) with inhomogeneity 0 < q′ < 1 are imposed. At the
bottom, 20 % liquid fraction, zero horizontal stress and a hydrostatic vertical stress as a
function of the displacement Ux are imposed. Figure 7(a) shows the numerical results for
a case of unstable drainage marked by a green star in figure 7(b). The initial distortion of
the liquid fraction φl grows in the downward direction (figure 7a). The corresponding
weight imbalance causes an inhomogeneous downward displacement Ux. Due to the
hydrostatic boundary condition, the inhomogeneity of displacement is reduced close to
the bottom (figure 7a). The horizontal gradient of Ux corresponds to a shear strain εxy
(figure 7a), which is highest in the centre of the channel. The shear drives a horizontal
drainage flow qy = qaniso − qcap (figure 7a), which is the anisotropic flow qaniso according
to (5.3) minus the capillary-driven drainage flow qcap according to the second term on
the right-hand side of (1.2). The horizontal drainage flow qy is positive in regions of high
shear, feeding the imbalance. Close to the top and bottom, the boundary conditions inhibit
the shear deformation, and a negative horizontal drainage flow occurs due to capillary
forces. The ratio of the local strain εxy to the local critical yield strain εy = 0.3(0.36 − φl)
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(Saint-Jalmes & Durian 1999) is highest in the lower part of the channel (figure 7a), where
experimental investigations have found the onset of CI (figure 4).

Now, the initial inhomogeneity and total drainage flow rate are varied. If the local strain
εxy in the converged simulation exceeds the theoretical limit εy at any place, the case is
considered to show yielding and CI (stage IV). Figure 7(b) depicts the limit for the onset
of CI for different channel lengths and initial moments of liquid distribution. It shows very
good agreement with the experimental findings in figure 5. For high moments of the liquid
fraction Mφ , CI occurs at φCI = 0.65 % liquid fraction and qCI = 70 μm s−1 drainage flow
rate, regardless of the channel length. A small moment of 1.5 mm in a long channel causes
CI at approximately φCI = 1.7 % liquid fraction and qCI = 250 μm s−1 drainage flow rate.
For shorter channels, the critical values are increased to φCI = 2.7 % liquid fraction and
qCI = 500 μm s−1 drainage flow rate.

7. Discussion

In this work, we have proven the mechanism for the onset of CI. Our experimental
and numerical findings support the concept of an instability in forced drainage due to
anisotropic drainage which was initially predicted by Neethling (2006). The dependencies
of the critical liquid fraction φcrit on bubble radius, surface tension, gravity and channel
size are identical to the findings of Neethling (2006) for the assumption that the critical
liquid fraction is negligible compared with the jamming point liquid fraction. However,
the stability criterion that Neethling derived differs significantly from ours. In our case
it would produce a critical liquid fraction of approximately 0.2 %, which is considerably
lower than our experimental findings. We extend his theory by adding the concept of a
growing inhomogeneity with respect to the vertical direction and by describing the CI as
a secondary instability superimposing on that.

Initial inhomogeneities due to the liquid addition cause a horizontal gradient in
the local gravitational force. This gradient is compensated for by a shear deformation
of the foam structure. The shear deformation deflects the vertical drainage flow in
the horizontal direction, increasing the imbalance. At the same time, capillary forces
tend to reduce the liquid imbalance. If a critical liquid fraction is exceeded, the
horizontal deflection exceeds the capillary effect and the initial inhomogeneity grows
with respect to the vertical distance. This proposed mechanism is supported by the
agreement of the critical liquid fraction from experiments, simulations and stability
analysis, by the measurement and simulation of the distribution of inhomogeneous vertical
displacement and by the dependency of the occurrence of CI on channel length and initial
inhomogeneity.

In the experimental results (figure 3) and in the simulation (figure 7), we have observed
the occurrence and vertical growth of such a shear deformation above a critical liquid
fraction. This process does not necessarily involve a steady flow of the foam. Only if
the channel is long and wide enough does the growing imbalance at some point exceed
the yield stress of the foam and CI occurs below that point. However, the onset of CI is
only a secondary instability of the primary instability, consisting of the shear deformation
at φl > φcrit. Our experimental and numerical observations of the CI have demonstrated
that the onset of CI takes place close to the bottom of the channel (figure 4), where the
imbalance is highest. Moreover, the liquid fraction φCI for the onset of CI in the case of an
inhomogeneous introduction of liquid in figure 5(a) is φCI ≈ 0.65 %, which is very close
to φcrit ≈ 0.74 %. In line with the discussion above, a reduced channel height increases the
critical liquid fraction for the onset of CI (figure 5b). Then again, a strong inhomogeneity
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Convective instability in foam

in the liquid introduction reduces the channel height required to reach the onset of CI
(figure 5b).

From our point of view, the presented findings on elastic deformation also rule out other
existing explanations of CI. The idea that dilatancy might cause CI is disproved by the
fact that the strongest shear is found in the centre of the channel (figure 3b). Therefore,
dilatancy would cause the accumulation of liquid in the centre and not close to the channel
side. Also, the idea of a sudden scarification of individual Plateau borders does not explain
why the onset of CI is close to the bottom of the channel and why the size of the CI grows
with increasing drainage flow rate.

The presented experiments on both the CI with strongly inhomogeneous liquid inflow
and on the inhomogeneous elastic deformation together with the elastic simulation all
consistently produce a critical liquid fraction of approximately φcrit = 0.65 %. This critical
liquid fraction marks the transition from stage II to stage III. In stage II, the static foam
stretches homogeneously and initial inhomogeneities in liquid fraction are damped with
respect to the vertical direction. In stage III, the static foam stretches inhomogeneously and
initial inhomogeneities in liquid fraction grow with respect to the vertical direction. Due to
the high scattering between experimental runs there is a certain uncertainty in the critical
value resulting in an interval of φcrit ≈ 0.6 % to 0.65 %. Also, there is an uncertainty in
distinguishing the different stages. In particular, it is difficult to assign the transition from
stage III to stage IV to a fixed value of φCI , because in some cases the foam network starts
to flow and comes to a halt again. In figure 5 in some cases of high initial inhomogeneity,
the CI sets in at liquid fractions φCI even below the theoretical critical liquid fraction φcrit.
This might be due to such uncertainties or due to nonlinear effects under high imbalance
and liquid fraction gradients.

Carrying out a linear stability analysis, we have established a stability criterion above
which initial inhomogeneities in the liquid fraction grow with respect to the vertical
position. The resulting critical liquid fraction of φcrit = 0.74 % is close to the experimental
result of φcrit ≈ 0.6 % to 0.65 %, supporting the proposed mechanism. Our critical liquid
fraction is a factor of five below the critical liquid fraction reported in Hutzler et al.
(1998) for the onset of CI in cylindrical channels. One reason for the discrepancy is our
significantly larger channel width B, which reduces the critical liquid fraction according
to (5.15). Also, Hutzler et al. (1998) investigated the critical liquid fraction φCI for the
onset of CI (transition from stage III to stage IV). By comparing figures 3 and 4 for
homogeneous water inflow φCI ≈ 1.05 % is demonstrated to be larger than φcrit ≈ 0.65 %
for the transition from stage II to stage III. And finally, our channel is one order of
magnitude longer, giving the inhomogeneity more distance to grow. Thus, smaller liquid
fractions can lead to the onset of CI. The influence of the channel length on φCI is
documented in figures 5(b) and 7(b).

We do not believe that the deviations between our critical liquid fraction and previous
findings result from the small initial inhomogeneity of the liquid introduction. Despite
considerable efforts, a small inhomogeneity of Mφ ≈ 1 mm has always been present.
Presumably, this is a feature of the water addition to a random foam structure and cannot
be avoided. Possibly, a similar inhomogeneity was also present in former studies. But since
former studies did not measure the horizontal liquid distribution, this aspect may have gone
unnoticed. Despite the different geometry and critical liquid fractions, the dependency of
our stability criterion on the bubble size φcrit ∝ R−4/3

b shows the same trend as earlier
findings

This work takes only monodisperse foam into account. In industrial applications, foam
is usually rather polydisperse. Polydispersity modifies the ingredients of the instability
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mechanism, namely the foam permeability, the anisotropic drainage term, the shear
modulus and the capillary pressure term in the drainage equation. But none of these
ingredients would be cancelled or negated in the case of polydispersity. Thus, we assume
that our mechanism does apply to polydisperse foam as well, but the critical liquid fraction
might change considerably.

For the stability analysis, α ∝ φ
3/2
l is assumed. This is only valid for some surfactants.

However, as demonstrated in appendix B, the stability criterion is identical for α ∝ φ2
l .

Since permeability acts on all terms on the right-hand side of the drainage equation, its
effect is neutralized in steady state.

The stability analysis shows that any mode k becomes unstable at a certain critical liquid
fraction, which scales with φcrit ∝ k4/3 (see (5.15)). But, according to the linear stability
analysis, the smallest modes show the highest growth rate in space and presumably
suppress higher modes in many cases. Vera et al. (2000) have observed convective
structures with higher modes in systems with bubble diameters below 100 μm. In the
present study, the case with the liquid being added by the two outermost porous cylinders
(oxxo) corresponds to a mode k = 2π/B and shows superior stability (see figure 5a).
However, the resulting convection roll then was not a double roll but a single roll filling
the full cross-section (see figure 1a), corresponding to k = π/B.

While the one-dimensional drainage equation without anisotropic drainage does not
show any signs of instabilities (Verbist, Weaire & Kraynik 1996), we found an instability
in two-dimensional steady drainage which presumably also occurs in three-dimensional
steady drainage. This has strong implications for any experiment with columns of liquid
foam under forced drainage. In such experiments, one should either measure the horizontal
liquid fraction distribution or observe the elastic deformation of the foam.

The proposed mechanism of unstable drainage relies on the anisotropic deformation
of the Plateau border network. In the case of very small bubbles or even solid grains
and particles, (5.3) presumably loses its validity. This should be further investigated by
drainage experiments under prescribed shear, and by simulations. It is possible that neutron
imaging (Heitkam et al. 2018) or a combination of the Surface Evolver (Brakke 1992) with
drainage equation could yield valuable insights into that phenomenon.
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Appendix A. Solving the partial differential equation

This appendix demonstrates how to solve the partial differential equation given in (5.4).
Note that (5.4) considers anisotropic drainage only in the horizontal direction, not in the
vertical direction. Considering a steady liquid distribution, the term ∂φl/∂t equals zero.
Dividing by Kα yields

0 = −ρf g
ηf

[
∂φ

3/2
l

∂x
+ 0.5

∂εxyφ
3/2
l

∂y

]
+ γ

2δbRbηf
(∇2)φl. (A1)
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Feeding the ansatz (5.5) for φl and (5.11) for εxy yields

0 = −ρf g
ηf

∂[φ0 + φk(x) eiky]3/2

∂x

+ 0.5ρf g
ηf

∂K1φk(x) 1
ik eiky[φ0 + φk(x) eiky]3/2

∂y

+ γ

2δbRbηf
(∇2)[φ0 + φk(x) eiky]. (A2)

Carrying out the derivatives yields

0 = −3
2

ρf g
ηf

[φ0 + φk(x) eiky]1/2φ′
k(x) eiky

+ 0.5ρf g
ηf

[
K1φk(x) eiky[φ0 + φk(x) eiky]3/2

+ 3
2

K1[φk(x) eiky]2[φ0 + φk(x) eiky]1/2
]

+ γ

2δbRbηf
eiky(φ′′

k (x) − k2φk(x)). (A3)

When the stability is analysed regarding small disturbances, φk is assumed to be small
compared with φ0, yielding

0 = −3
2

ρf g
ηf

[φ0]1/2 φ′
k(x) eiky

+ 0.5ρf g
ηf

[K1φk(x) eiky[φ0]3/2]

+ γ

2δbRbηf
eiky(φ′′

k (x) − k2φk(x)). (A4)

Now, one needs to compare φ′′
k (x) and k2φk(x) from the third term of (A4). We assume an

exponential growth of φk(x) in the x direction (which we will find later):

φk(x) = φk(x = 0) eAx → φ′′
k (x) = φk(x = 0)A2 eAx = A2φk(x). (A5)

In a linear stability analysis, one investigates the case where the perturbation just starts to
grow. Thus, the growth rate A is close to zero, i.e. much smaller than the wavenumber k.
Consequently it holds that

φ′′
k (x) = A2φk(x) � k2φk(x) (A6)

and we can neglect φ′′
k (x) in (A4).
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This yields

0 = −3
2

ρf g
ηf

[φ0]1/2 φ′
k(x) eiky

+ 0.5ρf g
ηf

[K1φk(x) eiky[φ0]3/2]

− γ

2δbRbηf
φk(x) eiky(k2φk(x)). (A7)

Dividing by eiky and sorting the terms yields

0 = −3
2

ρf g
ηf

φ
1/2
0 φ′

k(x) +
(

0.5ρf g
ηf

K1φ
3/2
0 − k2γ

2δbRbηf

)
φk(x) (A8)

and

φ′
k(x) =

(
1

3.0
K1φ0 − k2γ

3δbRbρf g
φ

−1/2
0

)
φk(x). (A9)

This ordinary differential equation is solved by

φk(x) = φk(x = 0) eAx, A = 2.0
3.0

Rb

γ
ρf gφ0 − k2γ

3δbRbρf gφ
1/2
0

. (A10a,b)

Consequently, small imbalances of φl grow exponentially over the vertical distance x,
if A > 0, i.e. if the horizontal wavenumber k is sufficiently small. The smallest possible
wavenumber in a channel that fulfils the boundary conditions (5.8) is kmin = π/B. This
yields the stability criterion for drainage in an infinitely long vertical foam channel (see
(5.15)):

φ
3/2
crit = γ 2

δbR2
b

0.5
ρ2

f g2

π2

B2 , (A11)

above which initial inhomogeneities grow exponentially. In the present case, this yields
φcrit ≈ 0.74 %.

Appendix B. Other surfactants

In the above derivation, the relation α = Kαφ
3/2
l has been used, which is valid for the

employed surfactant, SDS. However, for many other surfactants the liquid permeability
α scales with α ∝ φ2

l . This changes the derivation, as the term α/φ
3/2
l in (5.2) does not

vanish. Thus, the second derivative is slightly more complex:

(∇2)φl → ∇φ
1/2
l ∇φl, (B1)

and also the exponents in (A1) change, yielding

0 = ρf g
ηf

[
−∂φ2

l
∂x

− 0.5
∂εxyφ

2
l

∂y

]
+ γ

2δbRbηf
∇φ

1/2
l ∇φl. (B2)
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Convective instability in foam

Carrying out the derivations yields for the third term in (A3)

γ

2δbRbηf
eiky(φ′′

k (x) − k2φk(x))

→ (φ′
k(x) eiky)2 1

2 (φ0 + φk(x) eiky)−1/2 + ikφ′′
k (x) eiky(φ0 + φk(x) eiky)1/2

+ (ikφk(x) eiky)2 1
2 (φ0 + φk(x) eiky)−1/2

+ (ik)2 φk(x) eiky(φ0 + φk(x) eiky)1/2. (B3)

Under the assumption of small distortions φk � φ0 and neglecting terms with φ2
k , this

gives
γ

2δbRbηf
[φ0]1/2 eiky(φ′′

k (x) − k2φk(x)), (B4)

the same term as in (A4), only with an additional factor [φ0]1/2. Consequently, all the
following steps can be carried out similarly, eventually yielding the growth rate:

A = 1
2.0

Rb

γ
ρf gφ0 − γ k2φ

1/2
0

4δbRbρf gφ1
0

= 1
2.0

Rb

γ
ρf gφ0 − γ k2

4δbRbρf gφ
1/2
0

. (B5)

The corresponding stability criterion equals

φ
3/2
crit = γ 2

δbR2
b

0.5
ρ2

f g2

π2

B2 , (B6)

which is identical to the stability criterion (A11) for SDS above. Consequently, the type of
surfactant has no influence on the stability analysis.
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