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1. Introduction

The theory of L-functions plays a crucial role in both number theory and arithmetic
geometry. L-Functions exhibit natural connections with various mathematical subjects
including number fields, automorphic forms, Artin representations, Shimura varieties,
abelian varieties and intersection theory. The central values of L-functions and their
derivatives reveal important connections to the geometric and arithmetic properties of
Shimura varieties such as the Gross-Zagier formula, Colmez’s conjecture and the averaged
Colmez formula. On the other hand, vector-valued modular forms are important gener-
alizations of elliptic modular forms that arise naturally in the theory of Jacobi forms,
Siegel modular forms and Moonshine. Important foundational results on vector-valued
modular forms were establihsed by Knopp and Mason [13, 14]. Being an important tool to
tackle classical problems in the theory of modular forms, Selberg used these forms to give
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an estimation for the Fourier coefficients of the classical modular forms [20]. Borcherds
in [4] and [6] used vector-valued modular forms associated with Weil representations to
provide a description of the Fourier expansion of various theta liftings. Some applications
of vector-valued modular forms stand out in high-energy physics by mainly providing a
method of differential equations in order to construct the modular multiplets and also
revealing the simple structure of the modular invariant mass models [18]. Other appli-
cations concerning vector-valued modular forms of half-integer weight seem to provide a
simple solution to the Riemann–Hilbert problem for representations of the modular group
[2]. So it is only natural to study the L-functions of vector-valued modular forms and
their properties as a buildup that aligns with the development of a Hecke theory to the
space of vector-valued modular forms. L-Functions of vector-valued modular forms have
been investigated in connection with sign changes of Fourier coefficients, Jacobi forms
and Hecke theory (for examples, see [3, 7, 11]). Moreover, they lead us to investigate a
Gross–Kohnen–Zagier theorem in higher dimensions [5].
In [17], we show that averages of L-functions associated with vector-valued cusp forms

do not vanish when the average is taken over the orthogonal basis of the space of vector-
valued cusp forms. To illustrate, we let {fk,1, . . . , fk,dk} be an orthogonal basis of the
space Sk,χ,ρ of vector-valued cusp forms with Fourier coefficients bk,l,j(n), where χ is
a multiplier system of weight k ∈ 1

2Z on SL2(Z) and ρ : SL2(Z) → GLm(C) is an
m-dimensional unitary complex representation. We also let t0 ∈ R, ε > 0 and 1 ≤ i ≤ m.
Then, there exists a constant C(t0, ε, i) > 0 such that for k > C(t0, ε, i), the function

dk∑
l=1

< L∗(fk,l, s), ei >

(fk,l, fk,l)
bk,l,i(ni,0)

does not vanish at any point s = σ+ it0, with
k−1
2 < σ < k

2 − ε, where < L∗(fk,l, s), ei >
denotes the ith component of L∗(fk,l, s) and ni,0 is the number given in equation (3.2).
Kohnen, Sengupta and Weigel in [16] proved a nonvanishing result for the derivatives

of L-functions in the critical strip for elliptic modular forms on the full group. In [19],
the second author generalized their result to modular forms of half-integer weight on the
plus space. In this paper, we show analogous results for the averages of the derivatives
of L-functions for the orthogonal basis of the space of vector-valued cusp forms in the
critical strip. In particular, given k ∈ 1

2Z, χ a multiplier system of weight k on SL2(Z),
t0 ∈ R, ε > 0, 1 ≤ i ≤ m and n a positive integer, we show that there exists a constant
C(t0, ε, i, n) > 0 such that for k > C(t0, ε, i, n), the function

dk∑
l=1

bk,l,i(ni,0)

(fk,l, fk,l)

dn

dsn
< L∗(fk,l, s), ei >

does not vanish at any point s = σ+ it, with t = t0,
k−1
2 < σ < k

2 − ε. From this, we show
that there exists a constant C(t0, ε, n) such that for k > C(t0, ε, n) and any s = σ + it,
with t = t0,

k−1
2 < σ < k

2 − ε, k
2 + ε < σ < k+1

2 , there exists f ∈ Sk,χ,ρ such that
dn

dsnL
∗(f, s) 6= 0.
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The isomorphism between the space of Jacobi forms of weight k and index m on SL2(Z)
and the space of vector-valued modular cusp forms with a specific multiplier system and
a given Weil representation depending on m leads to an analogous result for Jacobi forms.
We also give a similar result for cusp forms in the plus space.

2. The Kernel function

In this section, we define the kernel function Rk,s,i and determine its Fourier expansion.
The kernel function being a cusp form will play an important role in determining the
coefficients of a given cusp form in terms of L-functions when the given cusp form is
written in terms of the orthogonal basis. So, let Γ = SL2(Z), k ∈ 1

2Z and χ a unitary
multiplier system of weight k on Γ, i.e. χ : Γ → C satisfies the following conditions:

(1) |χ(γ)| = 1 for all γ ∈ Γ.
(2) χ satisfies the consistency condition

χ(γ3)(c3τ + d3)
k = χ(γ1)χ(γ2)(c1γ2τ + d1)

k(c2τ + d2)
k,

where γ3 = γ1γ2 and γi =
(

ai bi
ci di

)
∈ Γ for i = 1, 2 and 3.

Let m be a positive integer and ρ : Γ → GL(m,C) an m-dimensional unitary complex
representation. Let {e1, . . . , em} denote the standard basis of Cm. For a vector-valued
function f =

∑m
j=1 fjej on H and γ ∈ Γ, define a slash operator by

(f |k,χ,ργ)(τ) := (cτ + d)−kχ−1(γ)ρ−1(γ)f(γτ).

The definition of the vector-valued modular forms is given as follows.

Definition 2.1. A vector-valued modular form of weight k ∈ 1
2Z, multiplier system χ

and type ρ on Γ is a sum f =
∑m

j=1 fjej of functions holomorphic in H satisfying the
following conditions:

(1) f |k,χ,ργ = f for all γ ∈ Γ.
(2) For each 1 ≤ j ≤ m, each function fj has a Fourier expansion of the form

fi(τ) =
∑

n+κj≥0

aj(n)e
2πi(n+κj)τ .

Here and throughout the paper, κj is a certain positive number with 0 ≤ κj < 1.

The space of all vector-valued modular forms of weight k, multiplier system χ and type
ρ on Γ is denoted by Mk,χ,ρ. There is a subspace Sk,χ,ρ of vector-valued cusp forms for
which we require that each aj(n) = 0 when n+ κj is non-positive.
Following [12], we now define the L-function of a vector-valued cusp form. For a vector-

valued cusp form f(τ) =
∑m

j=1

∑
n+κj>0 aj(n)e

2πi(n+κj)τej ∈ Sk,χ,ρ, we see that aj(n) =

O(nk/2) for every 1 ≤ j ≤ m as n→ ∞ by the same argument for elliptic modular forms.
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Then, the vector-valued L-function defined by

L(f, s) :=
m∑
j=1

∑
n+κj>0

aj(n)

(n+ κj)s
ej

converges absolutely for Re(s) � 0. This has an integral representation

Γ(s)

(2π)s
L(f, s) =

∫ ∞

0

f(iv)vs
dv

v
.

From this, we see that it has an analytic continuation to C and a functional equation
given by

L∗(f, s) = ikχ(S)ρ(S)L∗(f, k − s),

where L∗(f, s) = Γ(s)
(2π)sL(f, s) and S =

(
0 −1
1 0

)
.

Let i be an integer with 1 ≤ i ≤ m. Define

ps,i(τ) := τ−sei.

For s ∈ C with 1 < Re(s) < k − 1, we define the kernel function by

Rk,s,i := γk(s)
∑
γ∈Γ

ps,i|k,χ,ργ,

where γk(s) := 1
2e

πis/2Γ(s)Γ(k − s). Then, this series converges absolutely uniformly
whenever τ = u+ iv satisfies v ≥ ε, v ≤ 1/ε for a given ε> 0 and s varies over a compact
set. Moreover, it is a vector-valued cusp form in Sk,χ,ρ.
We write < ·, · > for the standard scalar product on Cm, i.e.〈

m∑
j=1

λjej ,
m∑
j=1

µjej

〉
=

m∑
j=1

λjµj .

Then, for f, g ∈ Sk,χ,ρ, we define the Petersson scalar product of f and g by

(f, g) :=

∫
F
< f(τ), g(τ) > vk

dudv

v2
,

where F is the standard fundamental domain for the action of Γ on H. Then, by
[17, Lemma 3.1], we have

(f,Rk,s̄,i) = ck < L∗(f, s), ei >, (2.1)

where ck := (−1)k/2π(k−2)!

2k−2 .

https://doi.org/10.1017/S001309152400052X Published online by Cambridge University Press

https://doi.org/10.1017/S001309152400052X


Results on the derivatives of L-functions of vector-valued modular forms 67

We can also compute the Fourier expansion of Rk,s,i.

Lemma 2.2. [17, Lemma 3.2] The function Rk,s,i has the Fourier expansion

Rk,s,i(τ) =
m∑
j=1

∑
n+κj>0

rk,s,i,j(n)e
2πi(n+κj)τ ,

where rk,s,i,j(n) is given by

rk,s,i,j(n) = δi,j(2π)
sΓ(k − s)(n+ κi)

s−1

+ χ−1
((

0 −1
1 0

))
ρ−1

((
0 −1
1 0

))
j,i

(−1)k/2(2π)k−sΓ(s)(n+ κj)
k−s−1

+
(−1)k/2

2
(2π)k(n+ κj)

k−1Γ(s)Γ(k − s)

Γ(k)

∑
(c,d)∈Z2

(c,d)=1,ac>0

c−k
( c
a

)s

×
(
e2πi(n+κj)d/ceπisχ−1

((
a b
c d

))
ρ−1

((
a b
c d

))
j,i 1F1(s, k;−2πin/(ac))

+ e−2πi(n+κj)d/ce−πisχ−1
((−a b

c −d

))
ρ−1

((−a b
c −d

))
j,i 1F1(s, k; 2πin/(ac))

)
,

where 1F1(α, β; z) is Kummer’s degenerate hypergeometric function.

3. The main theorem

In this section, we give the main theorem for the existence of at least one L-function
whose derivative does not vanish.

Theorem 3.1. Let k ∈ 1
2Z, and let χ be a multiplier system of weight k on SL2(Z).

Let t0 ∈ R, ε > 0 and n a positive integer. Then, there exists a constant C(t0, ε, n) such
that for k > C(t0, ε, n) and any s = σ+it with t = t0,

k−1
2 < σ < k

2 −ε,
k
2 +ε < σ < k+1

2 ,

there exists f ∈ Sk,χ,ρ such that dn

dsnL
∗(f, s) 6= 0.

Proof. We follow the argument in the proof of Theorem 3.1 in [16]. Suppose that
{fk,1, . . . , fk,dk} is an orthogonal basis of Sk,χ,ρ with Fourier expansions

fk,l(τ) =
m∑
j=1

∑
n+κj>0

bk,l,j(n)e
2πi(n+κj)τ (1 ≤ l ≤ dk)

and dk is the dimension of dimSk,χ,ρ.
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For each 1 ≤ i ≤ m, by equation (2.1), we have

Rk,s,i = ck

dk∑
l=1

< L∗(fk,l, s), ei >

(fk,l, fk,l)
fk,l. (3.1)

Let

ni,0 :=

1 ifκi = 0,

0 ifκi 6= 0.
(3.2)

If we take the first Fourier coefficients of ith component function on both sides
of equation (3.1), then by Lemma 2.2 we have

(2π)sΓ(k − s)(ni,0 + κi)
s−1 (3.3)

+ χ−1
((

0 −1
1 0

))
ρ−1

((
0 −1
1 0

))
i,i

(−1)k/2(2π)k−sΓ(s)(ni,0 + κi)
k−s−1

+
(−1)k/2

2
(2π)k(ni,0 + κi)

k−1
∑

(c,d)∈Z2
(c,d)=1,ac>0

c−k
( c
a

)s

×
(
e2πi(ni,0+κj)d/ceπisχ−1

((
a b
c d

))
ρ−1

((
a b
c d

))
i,i 1f1(s, k;−2πini,0/(ac))

+ e−2πi(ni,0+κi)d/ce−πisχ−1
((−a b

c −d

))
ρ−1

((−a b
c −d

))
i,i 1f1(s, k; 2πini,0/(ac))

)

= ck

dk∑
l=1

< L∗(fk,l, s), ei >

(fk,l, fk,l)
bk,l,i(ni,0),

where

1f1(α, β; z) :=
Γ(α)Γ(β − α)

Γ(β)
1F1(α, β; z).

We assume that

dk∑
l=1

bk,l,i(ni,0)

(fk,l, fk,l)

dn

dsn
< L∗(fk,l, s), ei > (3.4)

is zero. If we take the nth derivative with respect to s on both sides in equation (3.3),
then we have

dn

dsn

[
(2π)sΓ(k − s)(ni,0 + κi)

s−1

]
(3.5)

= − dn

dsn

[
χ−1

((
0 −1
1 0

))
ρ−1

((
0 −1
1 0

))
i,i

(−1)k/2(2π)k−sΓ(s)(ni,0 + κi)
k−s−1

]
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− dn

dsn

[
(−1)k/2

2
(2π)k(ni,0 + κi)

k−1
∑

(c,d)∈Z2(c,d)=1,ac>0

c−k
( c
a

)s
×
(
e2πi(ni,0+κj)d/ceπisχ−1

((
a b
c d

))
ρ−1

((
a b
c d

))
i,i 1f1(s, k;−2πini,0/(ac))

+ e−2πi(ni,0+κi)d/ce−πisχ−1
((−a b

c −d

))
ρ−1

((−a b
c −d

))
i,i 1f1(s, k; 2πini,0/(ac))

)]
.

Then, the left-hand side of equation (3.5) is equal to

1

ni,0 + κi

n∑
ν=0

dν

dsν
[(2π(ni,0 + κi))

s]
dn−ν

dsn−ν
Γ(k − s)

=
(2π(ni,0 + κi))

s

ni,0 + κi

n∑
ν=0

(−1)n−ν

(
n

ν

)
(log(2π(ni,0 + κi)))

νΓ(n−ν)(k − s)

= (2π)s(ni,0 + κi)
s−1(log(2π(ni,0 + κi)))

nΓ(k − s)

+ (2π)s(ni,0 + κi)
s−1

n−1∑
ν=0

(−1)n−ν

(
n

ν

)
(log(2π(ni,0 + κi)))

νΓ(n−ν)(k − s).

Then, we have

1

(2π)s(ni,0 + κi)s−1Γ(k − s)
· d

n

dsn

[
(2π)sΓ(k − s)(ni,0 + κi)

s−1

]
= (log(2π(ni,0 + κi)))

n +
n−1∑
ν=0

(−1)n−ν

(
n

ν

)
(log(2π(ni,0 + κi)))

ν Γ
(n−ν)(k − s)

Γ(k − s)
.

Let ψ(s) := Γ′(s)
Γ(s) . Then, one can see that Γ(n)(s)

Γ(s) is a polynomial P (ψ,ψ(1), . . . , ψ(n−1))

with integral coefficients and it contains the term ψn , which is the highest power of ψ
occurring in P. It is known that ψ satisfies the following asymptotic formulas:

ψ(s) ∼ log(s)− 1

2s
−

∞∑
ν=1

B2ν

2νs2ν

and

ψ(n)(s) ∼ (−1)n−1

(
(n− 1)!

sn
+

n!

2sn+1
+

∞∑
ν=0

B2ν
(2ν + n− 1)!

(2ν)!s2ν+n

)

for s → ∞ in | arg(s)| < π, where Bn denotes the nth Bernoulli number (for example,
see [1, 6.3.18 and 6.4.11]). Let s = k

2 − δ + it0 (ε < δ < 1
2 ). Then, the leading term of
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Γ(n−ν)(k−s)
Γ(k−s) for 0 ≤ ν ≤ n− 1 is (log(k2 + δ − it0))

n−ν as k → ∞ and ψ(n)(s) = o
(

1
|s|n

)
as |s| → ∞ in | arg(s)| < π for n ∈ N. Therefore, we have

n−1∑
ν=0

(−1)n−ν

(
n

ν

)
(log(2π(ni,0 + κi)))

ν Γ
(n−ν)(k − s)

Γ(k − s)
= Q

(
log(

k

2
+ δ − it0)

)
+ o(1)

as k → ∞, where Q is a polynomial of degree n and its highest coefficient is (−1)n.
For the first term on the right-hand side of equation (3.5), we have

dn

dsn

[
χ−1

((
0 −1
1 0

))
ρ−1

((
0 −1
1 0

))
i,i

(−1)k/2(2π)k−sΓ(s)(ni,0 + κi)
k−s−1

]
= χ−1

((
0 −1
1 0

))
ρ−1

((
0 −1
1 0

))
i,i

(−1)k/2
(2π(ni,0 + κi))

k

ni,0 + κi

n∑
ν=0

(
n

ν

)
dν

dsν

× [(2π(ni,0 + κi))
−s]

dn−ν

dsn−ν
Γ(s)

= χ−1
((

0 −1
1 0

))
ρ−1

((
0 −1
1 0

))
i,i

(−1)k/2
(2π(ni,0 + κi))

k−s

ni,0 + κi

×
n∑

ν=0

(−1)ν
(
n

ν

)
log(2π(ni,0 + κi))

νΓ(n−ν)(s).

If we divide this by (2π)s(ni,0 + κi)
s−1Γ(k − s), then we have

χ−1 (( 0 −11 0 )) ρ−1 (( 0 −11 0 ))i,i (−1)k/2
(2π(ni,0 + κi))

k−2s

(ni,0 + κi)2
(3.6)

×
n∑

ν=0

(−1)ν
(
n

ν

)
log(2π(ni,0 + κi))

ν Γ
(n−ν)(s)

Γ(s)
· Γ(s)

Γ(k − s)
.

Let s = k
2 − δ + it0 (ε < δ < 1

2 ). Then, by [1, 6.1.23 and 6.1.47], we have

∣∣∣∣ Γ(s)

Γ(k − s)

∣∣∣∣ = ∣∣∣∣k2 + it0

∣∣∣∣−2δ

·

∣∣∣∣∣1 +O

(
1

|k2 + it0|

)∣∣∣∣∣ ,
where the O constant is absolute, uniformly in ε < δ < 1

2 . On the other hand, the highest-

order term in Γ(n−ν)(s)
Γ(s) is

(
ψ
(
k
2 − δ + it0

))n−ν
. This behaves like (log(k2 − δ + it0))

n−ν

for 0 ≤ ν < n as k → ∞. Thus, we can see that all terms in the sum in equation (3.6) go
to zero as k → ∞.
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The second term on the right-hand side of equation (3.5) is equal to

− (−1)k/2

2
(2π)k(ni,0 + κi)

k−1
∑

(c,d)∈Z2(c,d)=1,ac>0

c−k d
n

dsn

[( c
a

)s
×
(
e2πi(ni,0+κj)d/ceπisχ−1 (( a bc d )) ρ−1 (( a bc d ))i,i 1f1(s, k;−2πini,0/(ac))

+ e−2πi(ni,0+κi)d/ce−πisχ−1 ((−a bc −d )) ρ−1 ((−a bc −d ))i,i 1f1(s, k; 2πini,0/(ac))

)]
= − (−1)k/2

2
(2π)k(ni,0 + κi)

k−1
∑

(c,d)∈Z2(c,d)=1,ac>0

c−k
n∑

ν=0

(
n

ν

)( c
a

)s (
log
( c
a

))ν
(3.7)

× dn−ν

dsn−ν

[(
e2πi(ni,0+κj)d/ceπisχ−1 (( a bc d )) ρ−1 (( a bc d ))i,i 1f1(s, k;−2πini,0/(ac))

+ e−2πi(ni,0+κi)d/ce−πisχ−1 ((−a bc −d )) ρ−1 ((−a bc −d ))i,i 1f1(s, k; 2πini,0/(ac))

)]
.

In the above equation, the derivative in the last two lines is equal to

n−ν∑
w=0

(
n− ν

w

){
e2πi(ni,0+κj)d/cχ−1

((
a b
c d

))
ρ−1

((
a b
c d

))
i,i

× dw

dsw
[
eπis

] dn−ν−w

dsn−ν−w

[
1f1(s, k;−2πini,0/(ac))

]
+ e−2πi(ni,0+κi)d/cχ−1

((−a b
c −d

))
ρ−1

((−a b
c −d

))
i,i

× dw

dsw
[
e−πis

] dn−ν−w

dsn−ν−w

[
1f1(s, k; 2πini,0/(ac))

]}
n−ν∑
w=0

(
n− ν

w

){
(πi)

w
e2πi(ni,0+κj)d/ceπisχ−1

((
a b
c d

))
ρ−1

((
a b
c d

))
i,i

× dn−ν−w

dsn−ν−w

[
1f1(s, k;−2πini,0/(ac))

]
+ (−πi)w e−2πi(ni,0+κi)d/ce−πisχ−1

((−a b
c −d

))
ρ−1

((−a b
c −d

))
i,i

× dn−ν−w

dsn−ν−w

[
1f1(s, k; 2πini,0/(ac))

]}
.

By [1, 13.2.1], for Re(β) > Re(α) > 0, we have

1f1(α, β; z) =

∫ 1

0

ezuuα−1(1− u)β−α−1du.
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Therefore, for any n ∈ Z≥0, we obtain

dn

dsn

[
1f1

(
s, k;±2πini,0

ac

)]
=

∫ 1

0

e±
2πini,0

ac u d
n

dsn
[
us−1(1− u)k−s−1

]
du

=

∫ 1

0

e±
2πini,0

ac u

 n∑
j=0

(−1)n−j

(
n

j

)
(log(u))j(log(1− u))n−j

us−1(1− u)k−s−1du.

Since log(u) = o(u−ε′) for any ε′ > 0 as u→ 0, we see that∣∣∣∣ dndsn
[

1f1

(
s, k;±2πini,0

ac

)]∣∣∣∣ ≤ Kn,

where Kn is a constant depending only on n.
Let s = k

2 − δ + it0 (ε < δ < 1
2 ). Then, the series in equation (3.7) is

�
∞∑
a=1

∞∑
c=1

a−
k
2+δc−

k
2−δ

(
2
∣∣∣log ( c

a

)∣∣∣n eπ|t0|K0

+ 2eπ|t0|
n−1∑
ν=0

(
n

ν

) ∣∣∣log ( c
a

)∣∣∣ν n−ν∑
w=0

(
n− ν

w

)(π
2

)w
Kn−ν−w

)
.

This can be estimated in terms of the Riemann zeta function and a positive constant
factor B(t0, n) depending only on t0 and n. If we divide the second term on the right-hand
side of equation (3.5) by (2π)s(ni,0 + κi)

s−1Γ(k − s), then the absolute value is

� (2π(ni,0 + κi))
k
2+δ

Γ(k2 + δ − it0)
B(t0, n)

and this goes to 0 as k → ∞ uniformly in δ ∈ (ε, 12 ) by Stirling’s formula.
In conclusion, if we divide both sides of equation (3.5) by (2π)s(ni,0 + κi)

s−1Γ(k− s),
then the right-hand side goes to zero as k → ∞, but the absolute value of the left-hand
side is

� | log(k
2
+ δ − it0)|n

as k → ∞. This is a contradiction.
Therefore, there exists a constant C(t0, ε, i, n) > 0 such that for k > C(t0, ε, i, n), the

function in equation (3.4) does not vanish at any point s = σ+ it, with t = t0,
k−1
2 < σ <

k
2 − ε. From this, we get the desired result by using the functional equation of L∗(f, s)
(f ∈ Sk,χ,ρ). �
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Remark 3.2.

(1) In [15, 16], one takes the average over the basis consisting of normalized Hecke
eigenforms for the case of classical modular forms. In fact, the basis is an orthogonal
basis, and the results in [15, 16] hold for any orthogonal basis of the space of cusp
forms.

(2) The vector-valued cusp form f in Theorem 3.1 depends on n in general.

4. The case of Γ0(N)

Now, we consider the case of an elliptic modular form of integral weight on the congruence
subgroup Γ0(N). By using Theorem 3.1, we can extend a result in [16] to the case of
Γ0(N). To illustrate, let N be a positive integer and let k be a positive even integer. Let
Γ = Γ0(N), and let Sk(Γ) be the space of cusp forms of weight k on Γ. Let {γ1, . . . , γm}
be the set of representatives of Γ \ SL2(Z), with γ1 = I. For f ∈ Sk(Γ), we define a
vector-valued function f̃ : H → Cm by f̃ =

∑m
j=1 fjej and

fj = f |kγj (1 ≤ j ≤ m),

where (f |k
(
a b
c d

)
)(z) := (cz + d)−kf(γz). Then, f̃ is a vector-valued modular form of

weight k and the trivial multiplier system with respect to ρ on SL2(Z), where ρ is a certain
m-dimensional unitary complex representation such that ρ(γ) is a permutation matrix
for each γ ∈ SL2(Z) and is an identity matrix if γ ∈ Γ. Then, the map f 7→ f̃ induces
an isomorphism between Sk(Γ) and Sk,ρ, where Sk,ρ denotes the space of vector-valued
cusp forms of weight k and trivial multiplier system with respect to ρ on SL2(Z).
For f̃ , g̃ ∈ Sk,ρ, we define a Petersson inner product by

(f̃ , g̃) :=

∫
F
< f̃, g̃ > yk

dxdy

y2
.

Note that if f, g ∈ Sk(Γ) such that f and g are orthogonal, then f̃ and g̃ is also orthogonal.

Corollary 4.1. Let k be a positive even integer with k> 2. Let N and n be positive
integers and Γ = Γ0(N). Let t0 ∈ R, ε > 0. Then, there exists a constant C(t0, ε, n) > 0
such that for k > C(t0, ε, n), there exists a basis element f ∈ Sk(Γ) satisfying

dn

dsn
L∗(f̃ , s) 6= 0

at any point s = σ + it0, with

k − 1

2
< σ <

k

2
− ε and

k

2
+ ε < σ <

k + 1

2
.
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5. The case of Jacobi forms

We now consider the case of Jacobi forms. Let k be a positive even integer and m be a
positive integer. From now, we use the notation τ = u + iv ∈ H and z = x + iy ∈ C.
We review basic notions of Jacobi forms (for more details, see [9, Section 3.1] and
[10, Section 5]). Let F be a complex-valued function on H × C. For γ =

(
a b
c d

)
∈

SL2(Z), X = (λ, µ) ∈ Z2, we define

(F |k,mγ)(τ, z) := (cτ + d)−ke
−2πim cz2

cτ+dF (γ(τ, z))

and

(F |mX)(τ, z) := e2πim(λ2τ+2λz)F (τ, z + λτ + µ),

where γ(τ, z) = (aτ+b
cτ+d ,

z
cτ+d ).

We now give the definition of a Jacobi form.

Definition 5.1. A Jacobi form of weight k and index m on SL2(Z) is a holomorphic
function F on H× C, satisfying

(1) F |k,mγ = F for every γ ∈ SL2(Z),
(2) F |mX = F for every X ∈ Z2,
(3) F has the Fourier expansion of the form

F (τ, z) =
∑
l,r∈Z

4ml−r2≥0

a(l, r)e2πilτe2πirz. (5.1)

We denote by Jk,m the space of all Jacobi forms of weight k and index m on SL2(Z).
If a Jacobi form satisfies the condition a(l, r) 6= 0 only if 4ml− r2 > 0, then it is called a
Jacobi cusp form. We denote by Sk,m the space of all Jacobi cusp forms of weight k and
index m on SL2(Z).
Let F be a Jacobi cusp form F ∈ Sk,m with its Fourier expansion equation (5.1). We

define the partial L-functions of F by

L(F, j, s) :=
∑
n>0

n+j2≡0 (mod 4m)

a
(

n+j2

4m , j
)

(
n
4m

)s
for 1 ≤ j ≤ 2m. This L-function was studied in [3, 8]. Moreover, F can be written as

F (τ, z) =
∑

1≤j≤2m

Fj(τ)θm,j(τ, z) (5.2)
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with uniquely determined holomorphic functions Fj : H → C and functions in {Fj | 1 ≤
j ≤ 2m} have the Fourier expansions

Fj(τ) =
∑
n>0

n+j2≡0 (mod 4m)

a

(
n+ j2

4m
, j

)
e2πinτ/(4m),

where the theta series θm,j is defined by

θm,j(τ, z) :=
∑
r∈Z

r≡j (mod 2m)

e2πir
2τ/(4m)e2πirz

for 1 ≤ j ≤ 2m.
We write Mp2(R) for the metaplectic group. The elements of Mp2(R) are pairs (γ, φ(τ)),

where γ =
(
a b
c d

)
∈ SL2(R) and φ denotes a holomorphic function on H, with φ(τ)2 =

cτ + d. Throughout this paper, following [21], we use the convention that
√
τ is chosen

so that arg(
√
τ) ∈ (−π/2, π/2]. The map

(
a b
c d

)
7→
(̃
a b
c d

)
= (
(
a b
c d

)
,
√
cτ + d)

defines a locally isomorphic embedding of SL2(R) into Mp2(R). Let Mp2(Z) be the inverse
image of SL2(Z) under the covering map Mp2(R) → SL2(R). It is well-known that Mp2(Z)
is generated by T̃ and S̃, where T̃ and S̃ are the lifts of the standard generators T and S
of SL2(Z), respectively. We define a 2m-dimensional unitary complex representation ρ̃m
of Mp2(Z) by

ρ̃m(T̃ )ej = e−2πij2/(4m)ej

and

ρ̃m(S̃)ej =
i
1
2

√
2m

2m∑
j′=1

e2πijj
′/(2m)ej′ ,

Let χ be a multiplier system of weight 1
2 on SL2(Z). We define a map ρm : SL2(Z) →

GL2m(C) by

ρm(γ) = χ(γ)ρ̃m(γ̃)

for γ ∈ SL2(Z). The map ρm gives a 2m-dimensional unitary representation of SL2(Z).
Let {e1, . . . , e2m} denote the standard basis of C2m. For F ∈ Sk,m, we define a vector-

valued function F̃ : H → C2m by F̃ =
∑2m

j=1 Fjej , where Fj is defined by the theta

expansion in equation (5.2). Then, the map F 7→ F̃ induces an isomorphism between
Sk,m and S

k−1
2 ,χ̄,ρm

.
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Let L∗(F, j, s) := Γ(s)
(2π)sL(F, j, s). Then, we have the following corollary.

Corollary 5.2. Let k be a positive even integer with k> 2. Let m and n be positive
integers. Let t0 ∈ R and ε> 0.

(1) Let j be a positive integer with 1 ≤ j ≤ 2m. Then, there exists a constant
C(t0, ε, j, n) > 0 such that for any k > C(t0, ε, j, n) and any s = σ + it0 with

2k − 3

4
< σ <

2k − 1

4
− ε,

there exists a Jacobi cusp form F ∈ Sk,m such that

dn

dsn
L∗(F, j, s) 6= 0.

(2) There exists a constant C(t0, ε, n) > 0 such that for any k > C(t0, ε, n) and any
s = σ + it0 with

2k − 3

4
< σ <

2k − 1

4
− ε and

2k − 1

4
+ ε < σ <

2k + 1

4
,

there exist a Jacobi cusp form F ∈ Sk,m and j ∈ {1, . . . , 2m} such that

dn

dsn
L∗(F, j, s) 6= 0.

Remark 5.3. Note that ρm(−I) is not equal to the identity matrix in GL2m(C).
Instead, we have

ρm(−I)ej = ie2m−j .

By a similar argument, we prove the same result as in Theorem 3.1 for the representation
ρm.

6. The case of Kohnen plus space

Let k be a positive even integer. By [10, Theorem 5.4], there is an isomorphism φ between
Sk,1 and S+

k− 1
2
, where S+

k−1
2
denotes the space of cusp forms in the plus space of weight

k − 1
2 on Γ0(4). Moreover, this isomorphism is compatible with the Petersson scalar

products.
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Let f be a cusp form in S+

k−1
2
with Fourier expansion f(τ) =

∑
n>0

n≡0,3 (mod 4)
c(n)e2πinτ .

Then, the L-function of f is defined by

L(f, s) :=
∑
n>0

n≡0,3 (mod 4)

c(n)

ns
.

For 1 ≤ j ≤ 2, let cj be defined by

cj(n) :=

c(n) if n ≡ −j2 (mod 4),

0 otherwise.

Then, c(n) = c1(n) + c2(n) for all n. With this, we consider partial sums of L(f, s) by

L(f, j, s) :=
∑
n>0

n≡0,3 (mod 4)

cj(n)

ns

for 1 ≤ j ≤ 2.
Suppose that F is a Jacobi cusp form in Sk,1. By the theta expansion in equa-

tion (5.2), we have a corresponding vector-valued modular form (F1(τ), F2(τ)). Then,
the isomorphism φ from Sk,1 to S+

k−1
2
is given by

φ(F ) =
2∑

j=1

Fj(4τ).

From this, we see that

L(f, j, s) =
1

4s
L(F, j, s).

We have the following corollary regarding the partial sums of L(f, s) for f ∈ S+

k−1
2
.

Corollary 6.1. Let k be a positive even integer with k> 2. Let n be a positive integer.
Let t0 ∈ R and ε> 0.

(1) Let j be a positive integer with 1 ≤ j ≤ 2. Then, there exists a constant
C(t0, ε, j, n) > 0 such that for any k > C(t0, ε, j, n) and any s = σ + it0 with

2k − 3

4
< σ <

2k − 1

4
− ε,
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there exists a cusp form f ∈ S+

k−1
2
such that

dn

dsn
[4sL∗(f, j, s)] 6= 0.

(2) There exists a constant C(t0, ε, n) > 0 such that for any k > C(t0, ε, n) and any
s = σ + it0, with

2k − 3

4
< σ <

2k − 1

4
− ε and

2k − 1

4
+ ε < σ <

2k + 1

4
,

there exist a cusp form f ∈ S+

k− 1
2
and j ∈ {1, . . . , 2} such that

dn

dsn
[4sL∗(f, j, s)] 6= 0.

Funding Statement. The first author was supported by the National Research
Foundation of Korea grant funded by the Ministry of Science and ICT (MSIT) (No.
RS-2024-00346031).

References

(1) N. Abramowitz and I. Stegun, Handbook of mathematical functions, (Dover, New York,
1965).

(2) P. Bantay and T. Gannon, Vector-valued modular functions for the modular group and
the hypergeometric equation, Commun. Number Theory Phys. 1(4) (2007), 651–680.

(3) R. Berndt, L-functions for Jacobi forms á la Hecke, Manuscripta Math. 84(1) (1994),
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