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Landau damping is one of the cornerstones of plasma physics. Based on the initial-value
approach adopted by Landau in his original derivation of Landau damping, we examine
the solutions of the linear Vlasov–Poisson system for different equilibrium distribution
functions f0(v), going beyond the traditional focus on the root with largest imaginary part
and investigating the full set of roots that the dispersion relation of the system generally
admits. Specifically, we provide analytical insights into the number and the structure of
the roots for entire and meromorphic functions f0(v), such as Maxwellian and κ distribu-
tions, we discuss the potential issues related to the redefinition of ∂f0/∂v as a complex
variable function and we show how different sigmoids affect the root structure associated
with non-meromorphic cut-off distribution functions. Finally, based on the comparison
of the several root structures considered, we wonder if the multiple roots might hint at a
deeper understanding of the Landau damping phenomenon.
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1. Introduction

Landau damping is the paradigmatic example of kinetic effects in plasma physics.
It consists of an interaction mechanism between waves and particles in a collisionless
plasma, which converts wave energy into particle kinetic energy. The damping phe-
nomenon was mathematically predicted by Lev Landau in 1946 for one-dimensional
electrostatic oscillations and it was later identified in essentially all other modes of
collective oscillations in plasmas. Through the years it extended well beyond plasma
physics: analogous mechanisms have also been recognised in various branches of
physics (e.g. astrophysics, hydrodynamics, high-energy physics) and other sciences
(e.g. biology) (Vekstein 1998; Ryutov 1999), and the mathematical proof of the sur-
vival of Landau damping in the nonlinear setting provided ‘an unexpected bridge
between three of the most famous paradoxical statements from classical mechanics
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2 R. Stucchi and P. Lauber

in the twentieth century: Landau damping, KAM theory, and the echo experiment’
(Villani 2010).

In this work, we study Landau damping for the linear Vlasov–Poisson system
(LVP) in the context of Landau’s original initial-value approach (Landau 1946).
Under the assumption of a uniform and static ion background, LVP describes high-
frequency one-dimensional electrostatic oscillations and it is given as

∂f1(x, v, t)
∂t

+ v
∂f1(x, v, t)

∂x
− e

m
E(x, t)

∂f0(v)

∂v
= 0, (1.1)

∂E(x, t)
∂x

= −en0

ε0

∫
dvf1(x, v, t), (1.2)

where E(x, t) is the electric field, e is the elementary charge, m is the electron mass
and n0 is the equilibrium ion–electron number density. The function f (x, v, t) =
f0(v) + f1(x, v, t) corresponds to the electron velocity distribution integrated over vy
and vz, split into an equilibrium part f0(v) and a perturbation part f1(x, v, t). By
following Landau and by assuming that f0(v) is a Maxwellian distribution function,
the evolution of the Fourier-transformed electric field, E(k, t) = ∫ ∞

−∞ E(x, t)e−ikxdx,
is given as a linear combination of initial-value modes:

E(k, t) =
∑

n

Ane−ipnt, (1.3)

where pn = ωn + iγn are the roots, with γn < 0, of the dispersion relation

k2 − ω2
p

[∫ ∞

−∞
∂f0(v)/∂v
v − p/k

dv + 2iπ
∂f0

∂v
(p/k)

]
= 0, (1.4)

and ωp = √
e2n0/meε0 is the plasma frequency.

The present work is based on two interesting aspects related to the dispersion
relation of (1.4): the total number of roots pn and the generic evaluation of ∂f0/∂v
at the complex value p/k.

Firstly, (1.4) generally admits more than one root. However, in the literature it
is common to focus solely on the root pn with the largest imaginary part γn, as
this root dominates the long-time behaviour of (1.3). The aim of the present work
is then to explore the multiple solutions that LVP admits and investigate how the
structure of solutions is affected by equilibrium distribution functions f0(v) that are
not Maxwellian, such as the examples of figure 1.

Secondly, velocity distribution functions and their derivatives are generally defined
as real-valued functions in the real variable v ∈R. Nonetheless, the term ∂f0/∂v(p/k)
in (1.4), with p/k a complex number, requires the redefinition of ∂f0/∂v as a com-
plex variable function. For some distribution functions, e.g. Maxwellian and κ
distributions (with integer κ), the redefinition can be performed naturally by sim-
ply replacing the real variable v ∈R with a complex one z ∈C. For others, e.g.
incomplete distributions and κ distributions with non-integer κ , the redefinition can
be performed neither continuously nor uniquely. The distinction between the two
groups of distribution functions, for which the term ∂f0/∂v(p/k) is either well- or
ill-defined, leads us to organise this work as follows.

In § 2 we follow the literature and provide the necessary mathematical background.
In addition, we discuss how the assumption of Maxwellian f0(v) can be relaxed and
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FIGURE 1. One-dimensional distribution functions. See later sections for analytical definitions.

how the dispersion relation of (1.4) can be considered valid for non-Maxwellian
distributions.

In § 3 we deal with the first group of distribution functions. Specifically, we show
a simple argument to establish the number of roots, we describe analytically the
strongly damped roots in the Maxwellian f0(v) case and we advance a tentative
explanation for the physical meaning of the different solutions of LVP.

In § 4 we consider the second class of distribution functions. We mainly focus on
the case of distribution functions with compact support, also known as cut-off dis-
tributions, that are defined through the Heaviside step function H(v) and that, as an
example, are relevant for the description of non-thermal ions in fusion plasmas. We
notice that different definitions are possible for the dispersion relation, and although
this leads to the same E field evolution, we wonder how such ambiguity arises. To
investigate this, we employ different sigmoid functions to replace the Heaviside step
function and we observe how different root structures arise. In addition, based on
the physical interpretation of Landau damping as an average synchronisation mech-
anism (Escande et al. 2018, § 3.2), we determine which sigmoid is to be preferred.
Lastly, we briefly take two other cases into account, namely the slowing-down dis-
tribution function and κ distributions with non-integer κ parameters, and show the
respective root structures.

In summary, the present work corresponds to an investigation of the multiple
and strongly damped roots of LVP. While on the one hand, such an investiga-
tion is motivated by the belief that these roots might relate to an enrichment in
the understanding of Landau damping, on the other hand a more practical motiva-
tion is connected to the study of electromagnetic oscillations in tokamak plasmas,
which can be described as the roots of a linear electromagnetic dispersion rela-
tion (Lauber 2013, equation (20)) containing terms similar to the left-hand side of
(1.1). Specifically, as shown in Girardo (2015) (see figures 4.2 and 4.8 therein) for
energetic-particle-driven geodesic acoustic modes (EGAMs), strongly damped roots
of the electromagnetic dispersion relation can be destabilised by the introduction of
a fast particle population (e.g. bump on tail distribution) and can potentially impact
the plasma dynamics (e.g. via quasi-linear theory). Hence the need of examining and
rigorously defining such roots for distribution functions that can occur in a tokamak
plasma (e.g. Maxwellian, slowing down). Then, because of the similarities in the
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4 R. Stucchi and P. Lauber

formulation of the problems, we adopt the electrostatic LVP as a simplified case to
gain insights that can be later translated to the electromagnetic setting.

As a final comment, it is worth mentioning that the plots of the dispersion relation
in the form of (1.4) are the main investigation tool of this paper and, as analytical
expressions are not always available, we heavily resort to the numerical scheme
from Xie (2013), which allows the numerical evaluation of the integral in (1.4) for
arbitrary distribution functions f0(v).

2. The LVP: solution for E(k, t) and assumptions on f0(v)

The approach adopted in Landau (1946) consists of applying a Laplace transform
in time and a Fourier transform in space to LVP. After some algebra, the Laplace–
Fourier transform of the electric field ẼUHP(p, k) can be analytically defined in the
upper half-plane (UHP; Im(p) > 0) as

ẼUHP(k, p) = GUHP(k, p)

εUHP(k, p)
, (2.1)

where GUHP and εUHP correspond to

GUHP(k, p) = e
kε0

∫ ∞

−∞
f̃1(t = 0, k, v)

p − kv
dv, Im(p) > 0,

εUHP(k, p) = 1 + e2

kε0m

∫ ∞

−∞
f ′
0(v)

p − kv
dv, Im(p) > 0.

(2.2)

Here, f̃1(t = 0, k, v) is the Fourier transform of the distribution function perturbation
at time t = 0, f1(t = 0, x, v). Moreover, we note that from now on the ∂/∂v operator
is replaced for clarity of notation by a prime mark′, e.g. ∂f0(v)/∂v → f ′

0(v).
In its most general form, the solution for the electric field is then given as the

inverse Laplace transform of ẼUHP(k, p):

E(k, t) = 1

2π

∫ iσ+∞

iσ−∞
e−iptẼUHP(k, p) dp, (2.3)

where the p-integration is performed on the horizontal line p = iσ + t, with t ∈
[−∞, ∞]. Here σ is defined such that σ > Maxn {0, Im(pn)}, i.e. the integration
path lies in the UHP and above all the UHP singularities {pn}UHP of ẼUHP(p, k).
We remark that ẼUHP(k, p) has been defined only in the UHP, as G̃UHP(k, p) and
ε̃UHP(k, p) are discontinuous as Im(p) → 0± and are ill-defined when Im(p) = 0.

Although it can already be considered the final solution for the electric field, (2.3)
can be more conveniently recast into the sum of initial-value modes by exploiting
the residue theorem. The integration contour over p = iσ + t is then closed with
an infinite-radius semicircle in the lower half-plane (LHP) and the functions GUHP
and εUHP are analytically extended to Im(p) � 0 by replacing the integral

∫ ∞
−∞ with

the Landau integration contour
∫

LC . Specifically, for a generic function F(z), the

integral
∫ ∞
−∞ dvF(v)/(v − z) becomes

1

1The infinite-radius-semicircle contribution is zero.
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Z(z, F) =
∫

LC

F(v)

v − z
dv =

⎧⎪⎪⎨
⎪⎪⎩

∫ ∞
−∞

F(v)
v−z dv, Im(z) > 0,

P.V.
∫ ∞
−∞

F(v)
v−z dv + iπF(z), Im(z) = 0,∫ ∞

−∞
F(v)
v−z dv + 2iπF(z), Im(z) < 0.

(2.4)

Thus, GUHP and εUHP are extended as

G(k, p) = e
kε0

∫
LC

f1(k, v, t = 0)

p − kv
dv,

ε(k, p) = 1 + e2

kε0m

∫
LC

f ′
0(v)

p − kv
dv = 1 − ω2

p

k2
Z(p/k, f ′

0),

(2.5)

and Ẽ(k, p) is redefined as

Ẽ(k, p) = G(k, p)

ε(k, p)
. (2.6)

If f1(k, v, t = 0) and f0(z) are entire functions in the complex variable z, G and ε

are also entire functions, and the only singularities of Ẽ(p, k) are the zeros of ε(k, p).
Applying the residue theorem then yields

E(k, t) = 1

2π

∫ iσ+∞

iσ−∞
e−ipt G(k, p)

ε(k, p)
dp = −i

∑
n

e−ipnt G(k, pn)

∂ε/∂p|pn

, (2.7)

with pn denoting the roots of the dispersion relation ε(k, pn) = 0. Moreover, it can be
shown that if f0(v) has only one maximum, no roots with γn ≥ 0 are to be expected,
and the dispersion relation assumes the form of (1.4) (Stix 1962).

Let us now comment on Landau’s analyticity requirements for f1(k, z, t = 0) and
f0(z) in the complex z variable, namely their analyticity across the whole complex
plane (i.e. entire functions). If the final solution is to be expressed as the sum of
exponentials with frequencies exclusively given as roots of the dielectric function,
the assumption on f1(k, z, t = 0) cannot be abandoned. Abandoning this assumption
introduces G(p, k) singularities that the residue theorem must account for. In the
present work, we follow Landau and we always keep f1(k, z, t = 0) entire. For a
discussion on ’non-Landau solutions’ induced by disregarding the requirement on
f1(k, z, t = 0), see Belmont et al. (2008).

On the other hand, (2.7) remains valid if the assumption on f0(z) is relaxed by
simply requiring it to be meromorphic, i.e. a complex function that is analytical
on the whole complex plane except for a set of isolated points. In this case, the
singularities of f0 do not pose any issue for the residue theorem because an isolated
ε(p, k) singularity translates to an analyticity point of 1/ε(p, k). As we show in the
next section, singularities of f0(z) are also meaningful as they can be regarded as the
generators of the roots of the dispersion relation. Entire and meromorphic functions
f0(z) correspond to the aforementioned first group of distribution functions f0(v),
which admit a straightforward complex redefinition and are dealt with in the next
section.

Additionally, distribution functions f0(v) that cannot be redefined continuously
in the whole complex plane are associated with some f0(z) that is neither entire nor
meromorphic. The function f0(z), and consequently Ẽ(k, p), thus feature non-isolated

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377825000108
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 13:27:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377825000108
https://www.cambridge.org/core


6 R. Stucchi and P. Lauber

discontinuity points that the residue theorem must avoid. As shown in Twiss (1952)
and Weitzner (1963), the residue theorem has to circumvent such discontinuities and
(2.3) has to be corrected as

E(k, t) = 1

2π

∫ iσ+∞

iσ−∞
e−iptẼ(k, p)dp

= −i
∑

n

Res
{
e−ipntẼ(k, pn)

}
− 1

2π

∫
ΓD

e−iptẼ(k, p)dp.
(2.8)

where ΓD indicates the contour around the non-isolated discontinuity of the Laplace
transformed electric field, Ẽ(k, p), and pn are the roots of the dispersion relation
ε(k, pn) = 0. An interesting feature of (2.8) is that, despite leading to the same elec-
tric field E(k, t), its right-hand side can be defined in multiple ways. Section 4 goes
into more details of such a feature.

3. Distribution functions with unique complex definition

In this section we consider the case of equilibrium distribution functions f0(v) that
can be uniquely redefined as an entire or meromorphic complex-variable function,
f0(z). Notable examples are the well-known Maxwellian distribution

fMax(v) = 1√
πv2

t

e−v2/v2
t ,

and κ distributions with integer κ , of which we consider the one-dimensional version
from Lima et al. (2000),

fκ (v) = Aκ

(
1 + v2

κv2
t

)−κ

, (3.1)

where Aκ is the normalisation constant and vt is defined as
√

2T/m, with T
corresponding to a generic temperature parameter. While the Maxwellian distri-
bution represents the standard equilibrium state of statistical physics and all plasma
physics, κ distributions are the non-thermal stationary states of non-extensive sta-
tistical mechanics, and it has been shown experimentally that they well describe
low-collisionality plasma systems, such as the solar wind and the solar corona (Lazar
& Fichtner 2021).

3.1. Number of solutions
If we assume an entire or meromorphic equilibrium distribution function f0(z) that

admits only one maximum on the real axis, all the roots of the dispersion relation
pn = ωn + iγn lie in the LHP and the dispersion relation ε(k, p) = 0 is written as

k2 = ω2
p

∫ ∞

−∞
f ′
0(v)

v − z
dv + 2iπω2

pf ′
0(z), Im(z) < 0, (3.2)

with z = p/k. In the limit k → ∞, the integral term can be neglected and (3.2)
becomes

k2

ω2
p

≈ 2iπ f ′
0(z). (3.3)
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FIGURE 2. Dispersion relation roots for the f0 = fκ=2 case, with vt = √
2. Here k is rescaled

to the dimensionless k′ = kλD, with λD = vt/(ωp
√

2). Left: k′ = 10 case and comparison with
(3.5). Right: k′ = 0.1 case.

As k can be arbitrarily large, the previous equality can be satisfied only if its right-
hand side can also be made arbitrarily large. In other words, z must belong to a
sufficiently small neighbourhood of a singularity point of f ′

0(z). Let us then assume
that z belongs to a small neighbourhood of z0, a singularity point of order n in the
LHP. By representing z − z0 as Reiθ , we can approximate f ′

0(z) as

f ′
0(z) ≈ C(z0)eiα(z0)

Rneinθ
, (3.4)

where C(z0)eiα(z0) is the n-order coefficient of the Laurent series expansion. Plugging
(3.4) into (3.3) and taking the absolute value and the phase of the resulting equation
yield ⎧⎨

⎩k2 = πω2
pC

Rn → Rn = n

√
πω2

pC
k2 ,

2mπ = π
2 + α − nθ → θn,m = −2mπ

n + π/2+α
n .

(3.5)

Hence, given n (and k), the approximate solutions zn can be expressed as z0 +
Rneiθn,m. We then conclude that, as k → ∞, each singularity zs in the LHP, of order
ns, is generating ns roots ps of the dispersion relation of (3.2). Moreover, such roots
are distributed symmetrically around the singularity z0.

As an example, figure 2 shows the roots for a κ = 2 distribution fκ=2 for two
different k values. In agreement with our previous considerations, the plot on the
left depicts the short-wavelength limit k → ∞. It exhibits three roots, as many as
the order of the f ′

κ=2 singularity, distributed symmetrically around the singularity

z0 = −i
√

κv2
t . Moreover, the intersections between the red circle and the half-lines

m = i give the location of the roots according to (3.5).
In the right-hand plot, figure 2 shows instead the opposite long-wavelength limit

k → 0. Compared with the left-hand plot, symmetry is lost because of the non-
negligible contribution of the integral term, and the roots are here found in regions
where ∂ε/∂p has different values. Recalling that ∂ε/∂p appears in the linear combi-
nation coefficients of (2.7), we deduce that the two small damping roots, in regions
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8 R. Stucchi and P. Lauber

of smaller |∂ε/∂p|, dominate the electric field evolution and that the contribution
from the third root is suppressed. This behaviour is compatible with the k → 0 limit
of Landau (1946), for which two stable roots oscillating at the plasma frequency are
predicted.

As a final comment we remark that we demonstrated how many roots are to be
expected only in the case k → ∞. However, even if not supported by a rigorous
mathematical proof, observing the root structure at different κ and k seems to sug-
gest that the number of solutions for distribution functions with a single singularity
point in the LHP does not depend on the wave vector k.

3.2. Maxwellian
As regards the Maxwellian distribution, we firstly remark that fMax(v) is naturally

associated with the entire function fMax(z) by simply replacing v ∈R with z ∈C. In
other words, fMax(z) has no singularities at finite real and imaginary parts. Still, it
diverges as Im(z) goes to −∞ so that, in a broader sense, the Maxwellian features
a singularity of order infinity at Im(z) = −∞. Based on the previous discussion
about singularities, we then expect infinite solutions to the associated dispersion
relation. To describe these solutions analytically,

2
we neglect the integral term of

(3.2) (k → ∞ limit) and we plug in fMax(z), so that

k2 ≈ 2iπω2
pf ′

Max(z), (3.6)

and, with z expressed in polar form Reiθ ,

k2λ2
D = −2i

√
π

Reiθ

vt
exp

(
−R2eiθ

v2
t

)
. (3.7)

Here, we defined λ2
D as the ratio 2v2

t /ω
2
p . By setting k′2 = k2λ2

D and by taking the
absolute value and the phase of the previous equation, we obtain the system⎧⎨

⎩
k′2 = 2

√
π R

vt
exp

(
−R2 cos 2θ

v2
t

)
,

2πm = 3π
2 + θ − R2 sin 2θ

v2
t

.
(3.8)

The first equation of the system in the limit of large R/vt yields

k2 = 2
√

π
R
vt

exp

(
−R2 cos 2θ

v2
t

)
∝ δ(2θ − π/2 − πn) (3.9)

and implies that θ = (π/4) + (π/2)n. As we are considering only the LHP, the solu-
tions for θ are θ = {−(π/4), −(3/4)π} (with n = −1, −2), and by substituting these
values into the second equation of (3.8), we determine

2πm + 3π

4
= R2

v2
t

→ R
vt

=
√

±2πm + 3π

4
, (3.10)

where the plus and minus signs correspond, respectively, to θ = −π/4 and θ = −3/4.
It is clear that, due to the assumption of large R/vt needed for (3.9), the solution
for R/vt becomes more accurate as m grows. The correctness of (3.10) in the limit
R → ∞ is depicted in figure 3.

2The final expression (3.10) was obtained independently in Maekaku et al. (2024) and Stucchi (2024).
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FIGURE 3. Maxwellian multi-roots, solutions of the dispersion relation k′2 − v2
t Z(z, f ′

Max)/
2 = 0, with thermal velocity vt = 0.1 and wave vector k′ = 10. The analytical expression of (3.10)
is also represented.

3.3. From κ to Maxwellian
The typical feature of the ’Maxwellian’ LVP is that its dispersion relation admits

infinite roots. Mathematically, the Maxwellian root structure can be straightfor-
wardly connected to the root structure for the κ distribution case by simply observing
the limit

fκ (z) = Aκ

(
1 + v2

κv2
t

)−κ
κ→∞−−−→ fM = 1√

πvt
e−v2/v2

t . (3.11)

Specifically, as shown in figure 4, the Maxwellian root structure can be interpreted
as the root structure induced by an equilibrium κ distribution with κ that goes to

infinity and with the singularity −i
√

κv2
t that moves towards Im(z) = −∞.

If the singularity argument sheds light on how the roots of the LVP dispersion rela-
tion arise from a purely mathematical point of view, we wonder if a deeper physical
meaning can be associated with the number and the structure of LVP solutions or, in
other words, if there exists a physical property related to the equilibrium distribution
function that determines the number of roots of the LVP dispersion relation.

A tentative and speculative interpretation is suggested by considering the more
precise definition of κ distributions in the framework of non-extensive statistical
mechanics. In particular, given an N -particle system with f degrees of freedom
(f = ND stands for the product of N and the single particle degrees of freedom,
D), the f -dimensional κ distribution function is introduced (Livadiotis & McComas
2011) as

fκ0 (
v) ∝
⎛
⎝1 + 1

κ0v2
t

f∑
i=1

v2
i

⎞
⎠

−κ0−1−f /2

, (3.12)

where 
v denotes the f -dimensional velocity vector, with components {v0, v1, . . . , vf },
and κ0 is the invariant κ index. Consequently, the one-dimensional distribution func-
tion for the single degree of freedom is obtained by marginalising fN over the f − 1
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10 R. Stucchi and P. Lauber

FIGURE 4. Roots for κ distributions approaching a Maxwellian. Left: f0 = fκ=8; centre: f0 =
fκ=80; right: f0 = fκ=∞ = fMax. Parameters used: vt = √

2, k′ = 1.

degrees of freedom, and the more precise version of (3.1) is then given as

fκ0(v) ∝
(

1 + v2

κ0v2
t

)−κ0−3/2

. (3.13)

The same Livadiotis & McComas (2011) proves that κ0 represents the ther-
modynamic distance from the Maxwellian thermal equilibrium and captures the
correlation ρ between the degrees of freedom of the system through the expression

ρ(κ0) = 1/2

1/2 + κ0
,

where the correlation ρ between two generic velocity degrees of freedom, vi and vj,
is defined as

ρ(κ0) = 〈v2
i · v2

j 〉 − 〈v2
i 〉 · 〈v2

j 〉√
〈v4

i 〉 − 〈v2
i 〉2

√
〈v4

j 〉 − 〈v2
j 〉2

,

with the angle brackets denoting averaging over the distribution function fN .
Hence, as κ0 increases, larger collisionality destroys correlation, and in the limit

κ0 → ∞, the null-correlation Maxwellian distribution is retained.
Recalling that the number of LVP roots corresponds to the order of the f ′

0(z)

LHP singularity (κ0 + 1/2 for the f0 = fκ0 case
3
), we are consequently tempted to

hypothesise a connection between the number of roots and the system correlation
so that a stronger (weaker) correlation implies fewer (more) roots and a reduced
(increased) ’freedom of movement’ of the system.

4. Non-unique analytical continuation

For other interesting cases, the complex redefinition f0(v) → f0(z) cannot be per-
formed as straightforwardly as in the previous section. The main notable examples
involve distribution functions that feature an empty interval I such that f0(v ∈ I) ≈ 0:

3In accordance with previous comments regarding the definition of the complex variable function f0(z), we
assume that κ0 + 1/2 is an integer. The non-integer κ case is discussed later.
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(i) Incomplete distributions. In laboratory plasmas, in the presence of poten-
tial barriers, such as sheaths near material walls or probes, a trapped-passing
boundary is created. As a consequence, at the edge of an absorbing wall sheath
the passing interval of the electron distribution will be empty.

(ii) Slowing-down distribution. Fast ions, such as 3.5 MeV αα-particles and NBI
beams in fusion plasmas, because of their high energy compared with the back-
ground and because of the low intra-species collisionality, do not thermalise to
the Maxwellian state. Instead, they slow down via collisions with the back-
ground plasma to a stable distribution known as a slowing-down distribution,
where f0(|v| > vc) ≈ 0, with vc standing for the fast species injection velocity
(Gaffey 1976).

In both cases, if we neglect the energy dispersion, the empty intervals can be
modelled by means of the Heaviside function H(v), which is responsible for the
problematic complex redefinition.

A further example, not related to the Heaviside function, corresponds to κ distri-
bution with non-integer κ. In fact, when κ is a non-integer, the complex distribution
function f0(z) becomes multi-valued and branch cuts are introduced.

In the following, we focus on the case of cut-off distributions, which exemplify the
issues connected to the Heaviside function, and we later briefly mention the specific
case of slowing-down and non-integer κ distributions.

4.1. Cut-off distributions
We formally define cut-off distributions as

fCO(v) =
{

F0(v) if |v|� vc,

0 otherwise,
(4.1)

and we conveniently express them in terms of the Heaviside function H(v):

fCO(v) = H(v + vc) · F0(v) · H( − v + vc) = F0(v)Wvc(v). (4.2)

Here, we introduce Wvc(v) as the symmetric ’window’ function with cut-off velocity
vc, representing the product of two Heaviside functions. For simplicity, we further
assume that F0(v) is a symmetric real-valued function with a single maximum and a
unique definition in the LHP.

4
The derivative f ′

CO(v) is then given by

f ′
CO(v) = F ′

0(v)Wvc(v) + F0(v) [δ(v + vc) − δ(v − vc)] . (4.3)

By considering the definition from (2.4) of the ’Landau integral’ with F(v) = f ′
CO(v),

Z(z, f ′
CO) =

∫
LC

f ′
CO(v)

p − kv
dv, (4.4)

we realise that Z(z, f ′
CO) remains consistent and uniquely defined in the UHP and

on the real axis, but not in the LHP.

4The case of an asymmetric distribution function does not introduce significant differences in the following
discussion.
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12 R. Stucchi and P. Lauber

4.1.1. Upper half-plane and real axis
Given the assumptions on F0, the same arguments from Stix (1962) can be applied
and unstable solutions with Im(z) > 0 can be excluded. On the other hand, on the
real axis the dispersion relation becomes

k2

ω2
p

= P.V.
∫ vc

−vc

F ′
0(v)

v − z
dv + F0(vc)

2vc

z2 − v2
c

+ π iF ′
0(v)Wvc(v), (4.5)

and similarly to Weitzner (1963) we can show that if F0(vc) 
= 0 a stable solution
exists for any value of k, provided |Re(z)| > vc.

The real-axis solution remains consistent with the argument that singularities gen-
erate solutions, as the singularity point of f ′

CO at z = ±vc is responsible for such a
stable root. In addition, the physical interpretation in terms of the standard resonant
interaction mechanism is also straightforward. Compact support implies that no par-
ticles at velocities larger than vc are present. Hence, when the wave phase velocity
is greater than vc there is no interacting particle, and the wave propagates without
damping.

Since unstable solutions are absent, the stable solution dominates the long-time
limit. Nonetheless, to examine the full-time evolution of E(k, t), the LHP must be
investigated and f ′

CO(z) must be defined.

4.1.2. Lower half-plane
In the LHP, the formal definition of Z(z, f ′) for cut-off distributions is

ZLHP(z, f ′
CO) =

∫ ∞

−∞
F ′

0(v)Wvc(v)

v − z
dv + 2π iF ′

0(z)Wvc(z) + F0(vc)
2vc

z2 − v2
c

. (4.6)

While F ′
0(z) is generally well-defined, Wvc(z) is not. Since there is no unique way

to define Wvc(z), we introduce three different possible definitions, among infinitely
many, for the ’window’ function:

Wvc,0(z) = 0,

Wvc,1(z) = H(vc − |Re(z)|),
Wvc,2(z) = 1.

(4.7)

This leads to three different definitions for Z(z, f ′
CO) in the LHP:

ZLHP,0(z, f ′
CO) =

∫ vc

−vc

F ′
0(v)

v − z
dv + F0(vc)

2vc

z2 − v2
c
,

ZLHP,1(z, f ′
0) =

∫ vc

−vc

F ′
CO(v)

v − z
dv + 2π iF ′

0(z)H(vc − |Re(z)|) + F0(vc)
2vc

z2 − v2
c
,

ZLHP,2(z, f ′
CO) =

∫ vc

−vc

F ′
0(v)

v − z
dv + 2π iF ′

0(z) + F0(vc)
2vc

z2 − v2
c
,

(4.8)

and to three different dispersion relations and associated roots, as depicted in
figure 5.

Despite different root structures, (2.8) guarantees that the electric field evolution
does not depend on the specific definition Wvc(z). The key point is to observe that
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FIGURE 5. Root structures for different LHP definitions of fCO. The white lines represent the
discontinuity of the different Zi(z). The support function F0 is a κ = 1 distribution fκ=1, with
vt = √

2.

FIGURE 6. Discontinuities generated by the different definitions for the ’window’ function,
Wvc,0, Wvc,1 and Wvc,2, and the associated contour ΓD needed for (2.8).

extending the window function Wvc(z) into the LHP leads to non-isolated points
of discontinuity for Z(z, f ′

0) and E(p, k). When applying the residue theorem, such
discontinuities must be circumvented as exemplified in figure 6, and lead to the
additional integral term. Nevertheless, we notice that:

(i) In the original Landau treatment, as per (2.7), the E field solution could be
entirely decomposed into the sum of residues, i.e. initial-value modes. On the
contrary, when f ′

0(z) is not continuous, this is not true as an integral contribu-
tion around ΓD remains. Thus, the whole point of applying the residue theorem
to conveniently express the inverse Laplace transform as a sum of residues no
longer holds. We then wonder if the integral contribution ΓD can be expressed,
at least approximately, as the sum of initial-value modes.

(ii) Although the final result is the same, multiple equivalent descriptions are possi-
ble in the LHP. Again, we wonder if the LHP extension is a pure mathematical
artefact or whether it might hide some physical meaning.

To tackle these aspects, we include energy dispersion in the equilibrium dis-
tribution function by smoothing the Heaviside function by means of sigmoid
functions.
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14 R. Stucchi and P. Lauber

FIGURE 7. Logistic and error function sigmoids. The α parameters are chosen in order to
approximately overlap the sigmoids.

4.2. Smooth cut-off distributions
Because of energy dispersion, a cut-off distribution more realistically entails a

high-energy tail rather than being sharply cut off at v = vc. We model such energy
dispersion in two possible ways: with a logistic sigmoid:

σlog,α(v) = 1

1 + e−v/α
α→0−−−−−−→ H(v) =

⎧⎨
⎩

1 v > 0,

1/2 v = 0,

0 v < 0,

(4.9)

and an error function sigmoid:

σerf,α(v) = 1 + erf(v/α)

2
α→0−−−−−−→ H(v) =

⎧⎨
⎩

1 v > 0,

1/2 v = 0,

0 v < 0,

(4.10)

that both converge (point-wise) to the Heaviside function in the limit α → 0
(figure 7). The parameter α represents the steepness of the sigmoid and the error
function is defined as erf(z) = 2/

√
π

∫ z
0 exp ( − t2)dt. While the choice of the logistic

sigmoid is not based on any a priori physical derivation and it was simply included
in the discussion because of the simple analytical expression, the error function sig-
moid appears analytically as one of the terms describing the energy dispersion for
the fast-ion slowing-down distribution function (Gaffey 1976).

Both sigmoids are well defined as complex variable functions when v ∈R is
replaced by z ∈C but, despite a similar real-axis behaviour and the same real-axis
limit, they behave quite differently in the complex plane, as shown in figure 8.
Specifically, σlog,α(z) converges point-wise to a function that corresponds almost
everywhere to H(Re(z)):
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FIGURE 8. Real part of the complex variable logistic (σlog,α(z), left) and error function (σerf,α(z),
right) sigmoid. The α parameters are chosen so that the two sigmoids approximately overlap on
the real axis. The singularities of σlog,α(z) are also highlighted.

lim
α→0

[
1

1 + e−z/α

]
=

⎧⎪⎪⎨
⎪⎪⎩

1 + i0 x > 0
0 + i0 x < 0
1
2 + i0 x = 0, y 
= −πα − 2πmα

∞ + i0 x = 0, y = −πα − 2πmα.

(4.11)

On the other hand, observing the following decomposition of the error function
erf(z/α):

erf(z/α) = 2√
π

∫ x/α

0
e−t2dt + 2i√

π

∫ y/α

0
e−(x/α)2+s2

e−2ixs/αds (4.12)

yields that in the region Re(z)2 − Im(z)2 > 0, σerf,α(z) converges to 1 if Re(z) > 0
and to 0 if Re(z) < 0, and outside the region Re(z)2 − Im(z)2 > 0 no convergence is
guaranteed.

By employing the sigmoid functions just introduced, we can then define ’smooth’
cut-off distribution functions:

ferf,α(z) = σerf,α(z + vc) · F0(z) · σerf,α( − z + vc) (4.13)

and

flog,α(z) = σlog,α(z + vc) · F0(z) · σlog,α( − z + vc), (4.14)

and observe the impact of different sigmoids on the solution of LVP.
Firstly, with the dominated convergence theorem, it can be proven that the LVP

solution Eα(k, t) with f0 = ferf,α or f0 = flog,α converges to the same solution E(k, t)
with f0 = fCO. Even if trivial in appearance, this fact ensures the good behaviour of
the LVP solution in the limit α → 0, regardless of the chosen sigmoid.

Secondly, as both ferf,α(z) and flog,α(z) fall into the entire/meromorphic functions
class, the electric field solution can be entirely expressed as the sum of residue con-
tributions, as per (2.7). However, because of the different behaviour of the sigmoids
in the complex plane, the root structure will look significantly different, depending
on the sigmoid.
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FIGURE 9. Root structures for the smooth cut-off distribution flog,α with α = 0.1 (left) and
α = 0.02 (right). The support function F0 is a κ = 1 distribution with vt = √

2 and the cut-off is
at vc = 2.

As a specific example, figure 9 shows the root structures for smooth cut-off distri-
butions flog,α(z) for different α values, with the κ = 1 distribution as support function
F0. By applying the concepts of § 3, the following comments can be made:

• In both plots, we can recognise the left-most root as one of the two roots
generated by the singularity of the support function derivative F ′

0 = f ′
κ=1.

• In both plots, the remaining roots are generated by the logistic sigmoid.
According to (4.9), the singularities of σ ′

log are located at Re(z ± vc) = 0 and
Im(z) = −απ (1 + 2m). Moreover, as can be easily seen by Taylor expanding
1/(1 + e(−x/α))2, such singularities are of order 2 and generate two roots each.

• Among the sigmoid roots, the smallest damping one resembles the stable root
of the fCO,κ=1(z) case, shown in figure 5.

• As α decreases, in agreement with the expression Im(z) = −απ (1 + 2m), sin-
gularities and roots get denser and closer to Re(z) = vc. We reckon a similarity
between the root structure of flog,α(z) in the limit α → 0 and the root structure
from Z1(f ′

CO), discontinuous at Re(z) = ±vc (centre plot in figure 5).

As a term of comparison, figure 10 depicts the root structure of the same cut-off
κ = 1 distribution smoothed out by the error function sigmoid σerf,α , with the α
parameters chosen so that σerf,α(v) have qualitatively the same steepness as σlog,α(v)
used for figure 9. The root structure is evidently dissimilar.

• The root generated by the singularity of F ′
0 = f ′

κ=1 is no longer observable.

• The sigmoid function generates the remaining roots. In particular, as the
derivative σerf,α is proportional to e−z2

, we notice a root structure similar to
the Maxwellian case of figure 3. Moreover, the nearly stable root can still be
spotted.

• In the limit α → 0, the sigmoid singularities become denser. However, they do
not approach the same discontinuous structure as in the logistic case. Here,
the sigmoid structure approaches a structure that is discontinuous in the LHP
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FIGURE 10. Root structures for the smooth cut-off distribution ferf,α , α = 0.1 (left) and α = 0.02
(right). The support function F0(v) is a κ = 1 distribution with vt = √

2 and the cut-off is at
vc = 2.

along the directions θ = {−π/4, −3π/4}, suggesting a new definition for the
complex Heaviside function, i.e.

H(z) = H(Im(z)2 − Re(z)2) =
{

1 Im(z)2 > Re(z)2,

0 Im(z)2 < Re(z)2.
(4.15)

Based on the plots above, we are then led to conclude that the discontinuous
dielectric functions associated with the Heaviside functions can be interpreted as
the limiting case of ’sigmoid-smoothed’ distribution functions. In particular, differ-
ent sigmoid functions lead to different discontinuous dielectric functions, and the
ambiguity in the complex definition of the Heaviside function can be connected to
the multiple sigmoids one could use to replace H(v). Moreover, we observe that by
employing sigmoid functions, the discontinuity contribution ΓD from (2.8) can be
approximated and decomposed into the (infinite) sum of modes generated by the
sigmoid function. As the sigmoid gets steeper, the infinite number of such solutions
get denser and phase mix to yield the power-law decay of the ΓD integral, previously
shown by Hudson (1962).

4.2.1. A privileged sigmoid?
Although the two different sigmoid functions can be considered mathematically
equivalent as they lead in the limit α → 0 to the same electric field evolution, we
wonder if one of them can be preferred in terms of its physical interpretation.

According to the common interpretation of Landau damping as a resonance
effect, damping occurs because of the resonant interaction between the electric field
component ∝ eγ t−iωt and the particles with velocity v ≈ ω/k. Therefore, given a
generic equilibrium distribution f0(v) = F0(v) that features the set of roots A= {pn},
we expect the associated cut-off distribution fCO(v) = F0(v)H(|v| < vc) to yield the
set B = {pn|vc > |Re(pn)/k|} in addition to the aforementioned stable solution. That
is, the roots associated with the support function F0 are roots for the cut-off distri-
bution case if they resonate with the non-empty region of fCO, i.e. |Re(pn)/k| < vc.
Consequently, the natural way of defining the complex Heaviside function according
to the resonance interpretation would be H(z) = H(Re(z)), as in the definition Wvc,1.
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When accounting for energy dispersion, the sigmoid σlog is then preferred over σerf
because of the limit

σlog,α(v) → H(Re(z)), a.e.,

and because the roots that σlog,α(z) introduces are all located in the region ω/k ≈ vc,
where the steep gradient acts as the sink of the wave damping process.

However, the resonance interpretation is not fully accurate. Instead, Landau
damping is more precisely described as a non-resonant mechanism that originates
from the average synchronisation of particles with respect to the wave, and given
a mode of complex frequency ω + iγ , the particles for which the synchronisation is
maximised are those whose velocity v satisfies the condition |kv − ω| ≈ |γ | (Escande
et al. 2018). As illustrated in figure 10, the roots generated by the error function sig-
moid are approximately located along the half-lines defined by |vc − Re(z)| ≈ ±Im(z)
(originating from z = vc and directed along θ = {−π/4, −3π/4}), and by recalling
that z = (ω + iγ )/k, we immediately associate the half-lines with the maximum syn-
chronisation condition. In other words, the real frequency ω and the damping γ of
the roots are compatible with the fact that the maximum synchronisation occurs
in the region v ≈ vc where the sigmoid is located. Therefore, we conclude that
because of the compatibility with the more precise non-resonant interpretation of
Landau damping, the error function sigmoid corresponds to the more physical way
of describing the energy dispersion for a cut-off distribution.

4.3. Slowing-down and non-integer κ distributions
So far, we have focused on the non-analytical features of the LVP dispersion

relation induced by the Heaviside function. However, other cases exist where the
complex variable distribution features non-isolated points of discontinuities that
are not determined by the Heaviside function. For example, the one-dimensional
slowing-down distribution can be defined as in Xie (2013):

fSD(v) = N(vt, vc)
1

|v|3 + v3
t
Wvc(v), (4.16)

where vt is a generic parameter, vc is the cut-off (injection) velocity and N is the
normalisation constant. While the same discussion from the previous section applies
for Wvc(v), the additional non-analytical feature of fSD is related to the absolute value
of v, which emerges from the approximation v ≈ vc needed to simplify the expression
for fSD (Gaffey 1976). Nevertheless, the discontinuity induced in the complex plane
by |v| can be removed by noticing that

|v| = v · sign(v) = v · [2H(v) − 1]

and by simply approximating H(v) with a sigmoid function. The left-hand plot of
figure 11 shows the roots for fSD,α,β , corresponding to the ’smoothed’ version of
fSD:

fSD(v) = σα(z + vc) · N(vt, vc)

v3 · [2σβ(v) − 1]3 + v3
t

· σα( − z + vc), (4.17)

with σα and σβ identifying two generic sigmoid functions with respective steepness
parameter α and β. While the Re(z) ∼ vc roots relate to the Wvc -induced disconti-
nuity observed in the previous section, the Re(z) ∼ 0 roots relate to the |v|-induced

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377825000108
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 13:27:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377825000108
https://www.cambridge.org/core


Journal of Plasma Physics 19

FIGURE 11. Left: dispersion relation roots for the ’smooth’ slowing-down distribution. Logistic
sigmoids are used, with steepness parameter α = β = 0.1. Other parameters: vt = √

2, vc =
3, k′ = 1. Right: imaginary part of the function Z(z, f ′

κ=4.2). The white line represents the
discontinuity.

discontinuity. Despite arguing in the previous section that the error function sig-
moid is to be preferred from a physical point of view, figure 11 shows the case with
a logistic sigmoid chosen for both σα and σβ simply because it provides a more
understandable plot.

Another example worth mentioning corresponds to κ distributions, defined in
(3.1), with non-integer κ , whose non-analytical feature arises because non-integer
powers of complex numbers are multi-valued and require the introduction of branch
cuts. Namely, different discontinuous LHP definitions are possible depending on the
chosen orientation of the branch cut. However, while the discontinuities induced by
the Heaviside function and by the absolute value of v can be removed by employing
sigmoid functions, we did not find a way to eliminate the discontinuity induced
by the non-integer power branch cut (right-hand plot of figure 11), hence implying
that the integral term on the right-hand side of (2.8) would have to be retained.
Moreover, a physical explanation for the branch cut discontinuity and the different
possible definitions for the complex variable non-integer κ distribution is yet to be
found.

5. Conclusions and outlook

The present work focused on the full set of solutions of the LVP à la Landau. We
discussed how the multiple roots of the dispersion relation are generated, and for
the case of entire/meromorphic functions we showed that the number of roots in the
k → ∞ limit is equal to the order of the singularity of the equilibrium distribution
function derivative f ′

0(z). In the same limit k → ∞ we also provided analytical for-
mulas to describe the roots for general meromorphic and Maxwellian distribution
functions. On the other hand, for the case of the cut-off distribution function, we
showed that the non-uniqueness of the associated LHP description can be related to
the different possible ways of describing the energy dispersion and that the sigmoid
functions allow the decomposition of the LHP discontinuities of the dispersion rela-
tion into a set of damped roots. We also noticed that among the considered logistic
and error function sigmoids, the error function sigmoid is more physically accurate
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by virtue of the consistency with the average synchronisation mechanism at the origin
of Landau damping. Finally, we mentioned the case of non-integer κ -distributions,
for which the ambiguity of the LHP description has not been resolved.

On a different note, as symbolised by briefly considering the slowing-down dis-
tribution, the various aspects discussed in this paper lay the ground for studying
the influence of non-Maxwellian distributions on the more complex electromagnetic
case in tokamak geometry, mentioned in the introduction. Some preliminary work,
which examines the non-analytical features of the electromagnetic dispersion rela-
tion induced by different equilibrium distribution functions, is presented in Stucchi
(2024), while a more comprehensive analysis on the structure of the electromagnetic
roots is left for future work. In particular, it would be interesting to inspect in more
detail, for both the electrostatic and the electromagnetic case, the destabilisation of
damped roots described by Girardo (2015, Chapter 4), as this could be potentially
used as an experimental means to investigate the properties of EGAMs and to probe
the root structures in the LHP.

At a deeper level, the analysis carried out made us ponder whether an improved
understanding of the Landau damping phenomenon might hide behind the strongly
damped roots, specifically in terms of some physical property of the equilibrium
distribution function that could explain the number and the structure of roots. While
remarking on the need for further and more rigorous investigation, we speculated
about a possible connection between Landau damping and the correlation among
the degrees of freedom of the system.

Furthermore, it is worth noticing that throughout the present work we assumed
that the plasma under consideration could be described by a continuous (or piece-
wise continuous) distribution function f0(v). However, in some cases, e.g. when f0(v)
approaches zero, such as in the presence of steep sigmoid functions, this assumption
might be debatable and an N -body discrete description on the model of Escande
et al. (2018, § 5.5) might be more accurate. For future work, we hence believe that
analysing the root structures presented here in terms of the N -body approach can be
an interesting starting point, in particular by checking if the multiple roots can be
retained and connected to some property in the dynamics of the N particles.
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