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WEIGHTED OCCUPATION TIME 
FOR BRANCHING PARTICLE SYSTEMS 

AND A REPRESENTATION 
FOR THE SUPERCRITICAL SUPERPROCESS 

STEVEN N. EVANS AND NEIL O'CONNELL 

ABSTRACT. We obtain a representation for the supercritical Dawson-Watanabe su-
perprocessin terms of a subcritical superprocess with immigration, where the immigra­
tion at a given time is governed by the state of an underlying branching particle system. 
The proof requires a new result on the laws of weighted occupation times for branching 
particle systems. 

1. Introduction. In this paper we obtain a representation theorem for the supercriti­
cal (Dawson-Watanabe) superprocess (X, P ) over a (Borel right) Markov process £ with 
branching mechanism <j>(z) = bz — cz2 /2 , where b, c > 0. We will show in §3 that X can 
be represented as the sum of two independent components. If (X, P ) is the superprocess 
over £ with branching mechanism </>(z) = — bz — cz2/2, then the first is a copy of X 
under P^. The second is produced by choosing at random a finite number of particles via 
a Poisson random measure with intensity (2Z?/c)/i, letting these move like independent 
copies of £ and perform binary branching at rate b, each particle constantly throwing 
off mass at rate c that continues to evolve according to the dynamics under which mass 
evolves for X. In terms of the "particle picture", the particles throwing off mass can be 
thought of as individuals with infinite lines of descent (cf. [13,12]). The bulk of the mass 
represents individuals without infinite lines of descent and, as we would thus expect and 
indeed show in Proposition 3.1, X evolves like X conditioned on extinction. 

To prove our representation theorem we will apply a new result on the law of the 
"weighted occupation time" for branching particle systems. This result describes the 
joint law of 

J0 ds{ZSlgt_s) 

and Zu for any branching particle system Z and collection of measurable functions {gs}. 
To be more precise, denote by [HT the law of Z started with initial state v (an integer-valued 
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measure). We will show in §2 that 

r exp - £ ds(Zs1 gt_5) - (Z„/> = exp -(*/, Vff), 

where Vff is the unique solution to the integral equation 

exp -Vff = Pte~f + j f ds PtsWcxp -Vf/) - gs exp -Vf/ ] ; 

here (Pt) is the transition semigroup of the underlying spatial motion and 77 is an operator 
characterising the branching mechanism of the process. As far as we are aware, no such 
result has appeared before in the literature. The case where Z is critical binary branching 
Brownian motion in Rd and gt := 1A, for some bounded Borel A, was considered by Cox 
and Griffeath [2], where various asymptotic results are obtained and a statement similar 
to ours concerning the moments of the occupation time are justified heuristically. The 
analogous result for (a special class of) superprocesses was first obtained by Iscoe [10], 
and later generalised by Fitzsimmons [9] and Dynkin [4, 5]. 

The representation theorem was motivated by, and is in some sense a generalization 
of, the so-called immortal particle representation for the critical (i.e. b = 0) superprocess 
conditioned on non-extinction (in the sense of [8]). Evans [7] proves that this superprocess 
can be represented as the sum of two independent components. The first is a copy of 
the unconditioned superprocess: this is how the initial mass evolves. The second is 
produced by choosing at random an "immortal particle" according to the normalized 
initial measure, letting this move like an independent copy of the underlying spatial 
motion and throw off pieces of mass that continue to evolve according to the dynamics 
under which mass evolves for the unconditioned superprocess. The immortal particle 
representation was predicted by heuristic arguments of Aldous [1] as part of his work 
on continuum random trees, and by a Feynman-Kac type formula of Roelly-Coppoletta 
andRouault[15]. 

2. Weighted occupation times for branching particle systems. Let £ = 
(Q, J, J*, 0h £,, Px) be a Borel right Markov process with Lusin state space (E1 d, T) 
and semigroup (Pt). We assume that (Pt) is conservative (i.e. Ptl = 1). Denote by N(E) 
the class of finite integer-valued Borel measures on £, and by 0{fE) the Borel a-algebra 
generated by the weak* topology on N(E). We write b'L (resp. /?£, bpT) for the class 
of bounded (resp. non-negative, bounded and non-negative) 'E-measurable real valued 
functions on E. Let (p be the probability generating function of a non-negative integer-
valued random variable: (p(z) = HpiZ1 (0 < z < 1) for some non-negative sequence 
/?/, / = 0,1, 2 , . . . with E A = 1. We will assume that 

(i) y>'(i) = £ i/>,-< 00. 

This assumption allows us to extend (p to the entire real line in such a way that the 
extended function, which we denote by <£, has bounded and continuous first derivatives 
on R and is therefore uniformly Lipschitz continuous on R. We can (and will) also regard 
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(p as an operator on b*L (considered as a Banach space with sup norm) by defining 
[&(/)](*) := <£ (/"(*))> f ° r / £ b% x e E. Then <£>, considered as an operator on b*E in this 
sense, is uniformly Lipschitz continuous on bT,. 

Let b G R+ and define the operator 77 on &£ by 17(f) := b[(p(f) — / ] . Note that 77 
uniquely determines </? and &, and is also uniformly Lipschitz continuous on b*E. 

Let Z = (W, Ç, (#, 0 r , Zf, HI17) be a branching particle system with £ as its underlying 
spatial motion, if as the generating function of its offspring distribution, and with constant 
branching rate b. Then Z is a Borel right Markov branching process with (Lusin) state 
space (N(E), fA£(2s)) a nd Laplace functionals given (see, for example, [5]) by 

(2) r exp -(Zhf) = exp -(z/7 V/), 

for/ G /?£, where Vf := exp — V/ satisfies the integral equation 

(3) Vtf = Pte-f + £dsPsr](Vt-sf). 

We refer to 77 as the branching mechanism of Z, and to Z as a branching particle system 
over £ vwY/z branching mechanism 77. That V/ is the unique solution to (3) follows 
from the following uniqueness lemma, which we record also for later reference. It is a 
modification of (part of) a well known theorem, originally due to Segal [17], a nice proof 
of which appears in [14, Theorem 6.1.2]. 

LEMMA 2.1. Let X be an arbitrary Banach space, and let f: [0, T] x X —> X be 
continuous in t on [0, 7] and uniformly Lipschitz continuous on X. Let (Tt) be a semigroup 
of bounded linear operators onX, uniformly bounded on [0, 7]. Suppose that, for uo G X, 
the integral equation 

u(t) = Ttuo + / Tt-<f(s, ̂ (5)) ds 

has a solution u: [0, T] —> X. Then it is unique. 

The proof is a simple application of Gronwall's inequality (cf [14]). (We state Lemma 2.1 
in sufficient generality to allow the reader to extend the results of this section to branching 
particle systems with a more general time-dependent branching mechanism rjt(z) = 
btWAz) — z], where bt and <pt depend continuously on t and 77, is uniformly Lipschitz on 
every bounded time interval.) 

To apply the lemma to our case, note that (Pt) is a contraction semigroup on b*E, and 
is therefore bounded on intervals. 

The main result of this section describes the joint law of the weighted occupation time 

J0 ds{Zslgt-s) 

and Zt under W. 

THEOREM 2.2. Let f G /?£ and, for each s, gs G bpT,. Assume that the mapping 
(x, s) 1—> gs(x) is jointly measurable in (x, s). Then, in the above notation, 

(4) H" exp - f ds(Zs, gt_s) - (Zt,f) = exp -{v, Vf/), 
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where Vff := exp —Vff is the unique solution to the integral equation 

(5) Vff = Pte
f + jf dsPt-s[ri(yff) - & V?/]. 

PROOF. Without loss of generality we can assume that gs is independent of time: 
gs = g, say, Vs. To extend the argument to time dependent gs, just set g(x, s) = gs(x)ls<t 

and consider the branching particle system with the same branching mechanism 77, but 
over the space-time process associated with £, and with initial measure v x So. The 
hypothesis ensures that g G bp*E*, where £* is the Borel cr-algebra on E x R+. 

It follows from the branching property of Z that, for each t > 0, there exists Vff G pT, 
such that 

(6) W exp - / J ds(Zs, g) - (ZtJ) = exp -(1/ , Vf/). 

To show that Vf/ is the unique solution to (5) it is sufficient to prove that it satisfies (5): 
the uniqueness follows from Lemma 2.1. (Note that since 77 is uniformly Lipschitz 
continuous on /?£, the mapping/ 1—> r\(f) —fg is also uniformly Lipschitz continuous 
on &£.) 

We will first show, by conditioning on the first branch point, that Vff satisfies the 
integral equation 

(7) Vff = Pfe^ + ̂  ds PlMVff), 

where (Pf ) is the semigroup on b<E defined by 

(8) Pfh{x) := /*(exp - jf <fe$(&))/i(6)-

Then we will establish the equivalence of (7) and (5) to complete the proof. 
By conditioning on the first branch point 

(9) inf{f > 0 : Z(t) > Z(0)} 

we get 

(10) Vff = e~htPfe-f + f be~brPg
r(t>(Vf_rf) dr. 

Now by repeated application of (10), 

£ bP*(VU) dr = fo bPf \e-b(t-*P*t_re-f + f~' be-^P^&l^/) ds 

= (1 - e-bt)F*e-f + fQ bPS f~T be-bsPf<P(V?_r_J) ds 

= I*e-f - Vff + £ be"brPf<P(Vf_rf) dr 

(11) +f bPf j ' ~ r be-^P^iVlr.j) ds 

dr 
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To simplify the last expression on the RHS of (11) we change the order of integration 
and integrate by parts: 

£ bP* f~r be-bsPft(V?^J) ds dr = £ be-1»!* £~S bPfcfiVf^f) drds 

= f be-bs f'bPg
r(j>(Vlf)drds 

JO Js 

= £ bP*<KVf-f) dr - £ be-bsPl4>{VU) ds. 

Equation (7) follows. To show that (7) and (5) are equivalent we use the following 
version of the Feynman-Kac formula {cf. [18, III.39]). 

LEMMA 2.3 (FEYNMAN-KAC). In the above notation 

PsJ=Ptf-j'0dsPs(gPg
t-sf). 

PROOF. By the Markov property, 

£dsPs{gP*_f) = £ dsP,[gp(exp- £" g(tr)dr)f (£,.,)] 

= £ <fc ***(&)/*'[(exp- £~S gi^drJM,^)] 

= f*£ds g(6) (exp - £ g(Çr) dr)f(Çt) 

= PxM,)£d{exp-£g^r)dr) 

= Ptf~PgJ-

Now (7) becomes 

Vff = P*e-' + £dsPfj1(V?_j) 

= ps,e-f + £ ds[psV(Vf-/) - £ drPrlgPlMVf-f)] 

= P*e-f + £ dsPMVf-f) - £ drPr[g£ ds P*_rf$1-f) 

= P*e-f + £ dsPMVf.f) - £ drPr[(Vlrf - P*_re-f)g] 

= Pte~f + £ dsPt-s[r){Vg
sf) - gVff], 

and the theorem is proved. • 

3. The representation theorem. Let £ be a Borel right Markov process with Lusin 
state space (E, £) and conservative semigroup (Pt). Denote by M(E) the class of finite 
Borel measures on E. Let X = (W, Ç, Ç„0„X„P") and X = (W, Ç, Ç„@„X„F) be 
superprocesses over £ with respective branching mechanisms <j>(z) = bz — cz2/2 and 
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4>(z) = —bz — cz2/2 (b, c > 0), and denote their respective transition semigroups by (Qt) 
and (Qt). (For details concerning the existence and regularity of superprocesses in this 
context, see [9].) Denote by (Ut) and (Ut) the cumulant semigroups associated with X 
and X respectively. Thus, for each / G bp% UJ and £// are the unique solutions to the 
integral equations 

(12) Utf = Ptf + fQdsPs<KUt-sf) 

and 
(13) Ûtf = Ptf + fo dsPskÙt-J), 

respectively. The Laplace functional of X and X are given by 

(14) F exp - ( * „ / ) = exp -(/z, £//), 

and 
(15) P" exp -<X„/) = exp -(/x, £//). 

The relationship between X and X is given by the following proposition. 

PROPOSITION 3.1. The superprocess X conditioned on extinction has the same law as 
X. 

PROOF. Set 

r = inf{f > 0 : (X„1) = 0}. 

By the Markov property, 

P^{exp-(X„/) | T< oo} = P / i { r < oo}-1P / i{exp-(X r , / ) (r< oo)} 

(16) = P^{r < o o ^ P ^ e x p -(XtifîpX'iT < oo)}. 

To calculate P^{T < oo}, le t / be a constant, À say, and solve (12) for Ut\. Now plug 
this into (14), let À —> oo and then t —» oo to get 

(17) V»{T < oo} = exp - ( / / , 2bIc). 

Therefore, by (17), (16) and (14), 

P { e x p - ( X , , / ) | r < o o } = (exp(^2b/c))P»{exp-(XtJ + 2b/c)} 

= exp - ( / / , Utif + 2bIc) - 2bIc). 

It is easy to check that Ut(f + 2b/c) — 2b jc satisfies (13), so by uniqueness it must equal 
Utf, as required. • 

We now construct an M(E) x N(E)-valued branching process (W, F, Q^) as follows. 
First, let (Y, Q^u) be a branching particle system over £ with branching mechanism 
X(z) = bz(z — 1) and initial measure v. We remind the reader that \ corresponds to 
binary branching at rate b. Note that for this branching particle system the condition 
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(1) is satisfied. Then, conditional on {Yt, t > 0}, let (W, Q^u) be a superprocess over 
£ with branching mechanism </>, initial measure /i, and with immigration; where the 
immigration at time t is according to the measure cYt. (Superprocesses with immigration 
were introduced by Dawson [3]; see also [15].) To write down the Laplace functionals 
of this process, first note that 

(18) 

Q^{exp -(W t,f) - (Yh h) | y„ t > 0} = exp -(/z, Ûf) - £ ds(cYs, #,_/> - (Yh h). 

Now take expectations under Q^v to get 

(19) 

CT' exp -(Wt1f) - (Yh h) = [exp - ( / / , £ / / ) ]Q^ exp - j£ <fe(y„ ctf,_/> - (K„ A). 

We denote the transition semigroup of (W, F) by (/?,). Denote by ^ the law of the 
Poisson random measure on E with intensity (2b/c)n. The Laplace functionals of N^ 
(see, for example, [11]) are given by 

(20) ^ ^ ( J i / ) e x p - ( z / , / z ) = e x p - ( ^ M , 1 - e~h). 

We are now ready to state the theorem. 

THEOREM 3.2. The law ofW under Q6»xN» is the same as the law ofX under P*\ 

Our strategy for proving Theorem 3.2 will be first to show that the one-dimensional 
distributions coincide; then we show that W under Q ^ x ^ is a Markov process, and the 
result follows. To do this we will need the following criterion for a function of a Markov 
process to be also Markov, due to Rogers and Pitman [16, Theorem 2]. We state the 
result as it appears in [7]. 

LEMMA 3.3. Consider two measurable spaces F and G and a Markov process Z with 
state space F and transition semigroup (St). Let T be the Markov kernel from F to G 
which is induced by a measurable function 1\F —> G according to the formula 

//wr(-,^)=/o7, 
/ measurable, and let Abe a Markov kernel from G to F. Suppose that: 

(i) the kernel AT is the identity kernel on G; 
(ii) for each t > 0, the Markov kernel Tt := AStT from G to G satisfies the identity 

ASt = TtA; 
(Hi) the process Z has initial distribution A(y, -)for some y G G. 

Then 7 o Z is a Markov process with initial state y and transition semigroup (Tt). 

REMARK. Dynkin [6] has found an alternative approach for proving Theorem 3.2, 
namely by using an analytic characterisation of the Laplace functionals of the finite 
dimensional distributions of a superprocess to show directly that the finite dimensional 
distributions of the two processes coincide. 
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PROOF OF THEOREM 3.2. First we show that for/ e bp<E, 

(21) Of»*"» exp-(W„/) = P"exp-(X„/) . 

By (19), this can be rewritten as 

(22) Q*"x"" exp - jf &(r s , cUt-J) = exp -(/x, £// - &/). 

Now to apply Theorem 2.2, set gf = cÛrf and write V/ for Vf. The measurability of gr 

follows from [9, Proposition 2.3(a)]. Therefore, by Theorem 2.2 and (20), 

Q W e x p - f ds(Ys1cUt^) = / A ^ ) e x p - > , V/(0)) 
JO JN(E) 

= exp-( (2é /c)^ , l~exp-V/(0) ) , 

and so it is sufficient to show that 

(23) exp-V/(0) = 1 - ^ ( ( / / - # / ) . 

It follows from (5) that Vj (0) := exp —Vj (0) is the unique solution to the integral equation 

(24) V/(0) = 1 + j£ dsPs[X{vls(0J) ~ c(vl_s(0))(Ut-J)\ 

and from (12) and (13) that the right hand side of (23) also satisfies (24), as required. 
We have thus proved that the one-dimensional distributions coincide, and all that 

remains to be shown is that Wunder Q6»*^ is Markov. To do this we apply Lemma 3.3. 
Denote by F the Markov kernel induced by the projection from M(E) x N(E) onto M(E) 
and by A the Markov kernel from M(E) to M(E) x N(E) given by A(/x, •) = 6^ x N^. 
Clearly, Ar is the identity kernel on M(E). It follows from (21) that Qt = ARtT, so by 
Lemma 3.3 all we need to show is that ARt = QtA. This would follow if for all h G bp% 

(25) Q^xAHexp-(F,,/*) | Wt\ = exp-(—Wt,l - e~h 

\ c 

Q^xA^-almost surely; or equivalently, if for all / i , / G bp<E, 

(26) Q ^ x ^ e x p - ( — Wt1 l-e-
h}- (Whf) = Q6»xN» exp-(Y t lh) - (Whf). 

By (19), (20) and Theorem 2.2 the right hand side of (26) is equal to 

2b 
(27) exp-(/i , # / ) ~ ( y M , 1 - e x p - V > J , 

where Vjh:= exp — Vjh is the unique solution to the integral equation 

(28) V}h = Pte~h + fo dsPs[x(Ylsh) - c&lMUt-f)]. 
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Similarly, the left hand side of (26) is equal to 

(29) exp - ( / i , &,(^(1 - e~h) + / ) ) - ( yM, 1 - exp -Vfh), 

where Vjh := exp —Vf/z is the unique solution to the integral equation 

(30) VJh = Pte
h + jf <fapJx(V*_5fc) - c ( V ^ / o ( & , - , ( ^ ( l - *"*) + / ) ) ] . 

Finally, it is easy to check using (28), (30), (13) and Lemma 2.1 that 

-e-h (3D Ûtf-—V}h=Ùt(f-

and 

(32) ût(f+ y d -*"*)) - f Vf/z = &,(/- ^ " * ) . 
c J c 

It follows that (26) holds, and the theorem is proved 

In particular, Theorem 3.2 gives us a representation for the total mass process Mt := 
(Xt, 1), a diffusion with infinitesimal generator 

Let (a;, £, Qwz) be the process with generator 

C d28f ^ / L X 5 # , 
-w—-r(w, z) + (cz - bw)—( 
2 dwz aw 

Bg(w, z) = -w—r(w, z) + (cz - fcw)—(w, z) + fe[g(w, z + 1) - g(w, z)], 
i » - , . z » - •-

g G C^°(R+). It is easy to check that the process ((W., 1), (K, 1 )) under QMZ/has the same 
law as (a;, 0 under Q^'1)'^'1). if ^ is Poisson with rate 2bx/c, then by Theorem 3.2 the 
process (u;tlt > 0) under Qf^x has the same law as the process (Mt, t > 0) started at JC. 
For an independent proof of this fact, relying only on the theory of diffusion processes, 
see [12]. 
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