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1. Introduction. For any nilpotent group B of class c and any given element h of B
generating the subgroup H, Wiegold [1] has shown that if, in addition, [2?, H~\ has exponent p'
for some prime/? and integer r, then B can be embedded in a nilpotent group G such that G also
contains a/?sth root for h ( s ^ 1). In fact, Wiegold has gone further and calculated an upper
bound for the class of G in terms of the variables c, p, r, s.

In a thesis presented to the University of Manchester for the degree of Master of Technical
Science, I was able to improve on Wiegold's bound (which is a cubic in the variables c, ps, r) in
the case in which B is metabelian, obtaining a bound for the class of G which is a quadratic in
the variables and so is much smaller for large values of the variables. Here I have been able to
extend this result, using different (and very much simpler) commutator calculations, to a wider
class of groups (see Theorem 3.3.1), and by the same method to reduce the bound in the most
general case to about one third of the original value for large values of the variables (Theorem
4.1).

In § 5 we deal with the problem of lower bounds for the nilpotency classes of the embed-
ding groups under consideration. In [1], Wiegold constructed, for each odd integer rj£3, a
class 2 group Br, containing an element h and having the property that [5 , H] has exponent pr,
such that no nilpotent group Gr embedding Br and a pth root for h can have class less than
i(r+5). If we consider only those groups Gr which embed Br, contain apth root for h, and have
the same solubility length as Br (this is not an unnatural thing to ask; see § 3), then we can
further show that the groups Gr must have class at least p+1.

§ 2 deals with preliminaries and also contains a few easy results required later.
Finally, I should like to express my gratitude to my supervisor Dr James Wiegold for the

assistance he has willingly given me in preparing both my thesis and this paper.
I am indebted to the referee for his valuable comments.

2. Notation and preliminaries.

2.1. The notation will be that usually used in group-theoretical writings. For example,
we use the usual left-norming for commutators, so that for arbitrary elements xu x2, ..., xn,
xn+1 of a group G,

[xl, x2\ = xl x2 xtx2

and inductively

[ X l t X2, ..., Xn, X n + i j = [_L*1> X2> •••> xn]> x n + \ \ -

Similarly, for subsets Xu X2,..., Xn, Xn+1 of G, [Xt, X2~\ is the subgroup of G generated by
all commutators [xu x2] with x^e Xy,x2e X2, and inductively

\_XU X2, ..., Xn, Xn+i\ = \\_Xu X2, ..., Xnj, Xn+l].
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If x1 = x, x2 — x3 = ... = xn+l = y we shall write [xj, x2, •••, xn, xn + 1 ] as [x, «j] , and simi-
larly for subsets.

Two well-known commutator identities we require are

[x, yz~\ = [x, z][x, j>]z, (2.1.1)

[xy, z] = [x, z][x, z, y][y, z] (2.1.2)

for all x, y, z in a group G.
The lower and upper central series of a group G will be denoted respectively by

£ = Co(G)£Ci(G)s... £ C , ( G ) £ . . . ,

where £ is the unit subgroup of G.
Throughout B will denote a nilpotent group, c its class, and h the element of B to which we

adjoin roots. H will be the subgroup of B generated by h.

2.2. Let U, V be groups with V cyclic of order q (q arbitrary) generated by the element a.
For each i = 0, 1, ..., q— 1, let Ut be an isomorphic copy of U and let the element of U{ cor-
responding to the element u of U be denoted by Mf. Writing U for the direct product of the Uh

we define the wreath product of U by V to be the group W = £/ wr V given by

W = gp {U, V; a~JU(aJ = ui+J, u eU,0 ^j < q, i+j reduced mod q}.

It follows easily that every element of W can be written in the form

where K(0), U(1) u{q-1) are elements of U and 0 ^ i < q. The set of all such elements for
which «(0) = M(1) = ... = u(q-1) and i = 0 forms a subgroup U° of Wcalled the diagonal of
PP. Clearly C/° s £/. If w° is any element of U°, it is easy to show that a"1w°a = u°; thus every
power of a commutes with every element of U°. If u e U, it follows from Lemma 2.2.3 (below)
that (Moot)11 = «,,«!... M,_ t so that, on identifying U and U°, the element woa is a gth root for u in
W. (This method of root adjunction is due to Baumslag [2].)

Finally, we note that with this notation [xf, j , ] = [x, j ] f for all x, y e U, 0 ^ i < q.
The following lemma is easily proved by induction on t.

LEMMA 2.2.1. IfW= U wr V(V = gp {a : a* = 1}), fAe/i,/or any M e U and any arbitrary
positive integer t,

vv/jere (<: /) denotes the binomial coefficient , (Because of the frequent occurrence of binomial

coefficients in exponents, we shall use this notation throughout the present paper.)
This is Lemma 3.1 of Liebeck [3], where it is apparently stated incorrectly; there is a

slight mistake in the signs of the indices.
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If t ^. q we can simplify [M0, fa] by observing that Uh Ui+q, Ui+2q, ... are all the same
subgroup Ut of W. It follows that we may write [w0, /a] as

[«0, ^ ] = M«°-'>««»•')... uJL'f'• '> = ' f l "•• ° ' ° . (2-2-2)
i=0

where X(i, t) = (-l) ( + i (r : ,-)+(_i)'+'+*(f: / + , )+ ... (* £ i, 0 ^ i < 9).

Now using induction on r we can prove

LEMMA 2.2.3. For any non-negative integer r such that r = (k— l)q+i (k ^ 1, 0 £i<q)
and any element u of U, we have

M o a ) = a . M j U 2 . . . U j U i + 1 . . . M , _ 1 M 0 .

Note that the components uh u} are permutable for i #y since they belong to the direct
product U.

Finally in this section we establish

LEMMA 2.2.4. Let G be a group and S any subgroup of G. Then if g, x are arbitrary
elements ofG, \G, S], respectively, we have, for n > 0,

0", g] = [x, gy[x, g, x](n:2> ... [x, g, (n-l)x] mod [G, [G, S], [G, S], [G, S, G]]. (2.2.5)

Proof. We note that all elements occurring on the right-hand side belong to normal
subgroups (namely [[G, 5], G], [[G, 5], G, [G, SJ],...) of G. (For the normality of [G, S]
in G, see Golovin [4]). The proof proceeds by induction; we assume the result for n = k, then
write

and use (2.1.2). The subgroup [G, [G, 5], [G, 5], [G, S, G]] is chosen simply because it is the
smallest (sensible) subgroup of G modulo which all the elements on the right-hand side of
(2.2.5) commute.

Since [>, g, lx~] e [G, [G, S], [G, 5], [G, S]] for / ^ 2, we obtain

COROLLARY 2.2.6. /« /Ae notation of Lemma 2.2.4,

[V, g] = [x, g]-[x, ff, x] ( n : 2 ) mod [G, [G, S], [G, S], [G, S]].

3. The upper bound.

3.1. Preliminary remarks. The contents of this section depend almost entirely on the
following two results.

LEMMA 3.1.1. (Liebeck [3]). Let p be any prime, n and s arbitrary positive integers and i
an integer such that 0 ^ i<ps. If r is any positive integer and/= rps—(r—\)p"~l andifwe
define K(n, i) by

f(n : 0 - ( B : i + ps)+ ... + ( - l A » : i + B?)+ - for p odd,
K(n, i) =

{(n : i) + (n : i+ps)+ ... +(n : i + 9ps)+ ... for p = 2,

then (i) pr divides K(n, i) if n't. f (ii) p' does not divide K(n, i) ifn=f-\.
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LEMMA 3.1.2. Let G be a group generated by a subset X = {xt, x2, • ••} of its elements.
Then, if for some g e G we have [g, xu x2, ..., *,] = 1 in G for all sets of t elements from X, it
follows that g e (,(G).

This result is well-known and in any case very easy to prove.

3.2. Let B be a nilpotent group of class c and h an element of B such that [5 , / / ] is of
exponent pr (for some prime p and integer r). We construct a group G (see Wiegold [1]) which
contains (an isomorphic copy of) B and a /?sth root for h (s ^ 1). We then prove that G is
nilpotent, and in so doing determine an upper bound for the nilpotency class of G in terms of
the variables c, p, r, s.

We construct G by forming the wreath product W of B with a cyclic group of order ps

generated by the element a. As we have seen (§ 2.2), hoa is a psth root for h in W. We putf
A = gp {hoa] and G = gp {B°, A}, where B° is the diagonal of W. Thus Gcontains an isomorphic
copy of B, namely B°, and a psth root, namely ho<x, for the element hot B(B and 5° now being
identified). The reason we choose G rather than W as the embedding group for B and ho<x is
that G can be shown to be nilpotent given that B is nilpotent and that [B, H~\ has prime
power exponent, whereas W is certainly not nilpotent if B is not a /7-group of finite exponent
(Baumslag [2]).

We now establish

LEMMA 3.2.1. In the wreath product W = B wr {a}, where a generates a q-cycle (g arbitrary)
and with A defined as above, the subgroup [2?°, A] is generated by all elements of the form \b, A*] f,
where b runs over all elements of B, k is any integer, and the suffix i inicates to which component
B, of the direct product B the commutator [6, hk\ belongs.

Proof. It is sufficient for our purposes to show that \B°, A~\ is contained in the subgroup
J of W generated by all such \b, /i*]j and this only shall we do. The reader will easily satisfy
himself that all the generators of / belong to [B°, A~\, so that J = [B°, A].

Now [5°, A] is generated by all elements of the form [6°, (hoa)m'], where m is an arbitrary
integer and b° = bQbl ... Z>?_! is an arbitrary element of the diagonal of W. Lemma 2.2.3
shows that for m = (k—l)q+i^ 0,

(hooi)m = amh\h\ ...

so that, by (2.1.1),

[b°, (/ioa)m] = [b°, h\ ... tih^l ... ^

= \b, h"], ... [b, hkl[b,

ka\ ... hk
qZ[hk

0-\

o"1] (since b° and <xm commute)

] i + 1 ... [b, fc'-a-iO. ft*"1].)- (3-2.2)

A similar result follows for m ^ 0, on recalling that conjugation by a power am of a increases
indices by m. This completes the proof.

We now remark that, if the set {b(l), b(2),...} generates B, then Wean be generated by
the set K, = {b(l)h b(2)h ..., a}, each i (0 ^ / < q) yielding a different generating set.

t The group G has some interesting properties (cf. Kargapolov, Merzlyakov, Remeslennikov [5]). We
mention that it is possible to prove that C £ (B)' =B', the derived group of the direct product of p' isomorphic
copies of B. Hence G is soluble of the same length as B, and C and B' have the same nilpotency class.
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Let us now consider the commutator [[ft, /i*];, w(l), w(2), ..., w(/i,)] of W, where ft is an
arbitrary element of B, k an arbitrary integer, i an arbitrary but fixed integer (0 ^ / < q) and
w(l), ..., »v(«,) an arbitrary set of n, generators from Kt. If nt can be chosen such that the above
commutator reduces to the unit element of fFfor all be B, all k and all sets of n, generators of
iVfwm Kj (/fixed), we shall then be able to deduce fromLemma 3.1.2 that the set of all elements
[ft, /i*]j (i fixed) is contained in (,ni(W). The same procedure may be applied for all integers
i (0 ^ / < q) and, if N denotes the maximum of all the nt, we see that the set of all generators of
/ (and hence / itself) is contained in C,N( W). Since / 2 [5°, A] and W 2 G, it will then follow
that

But G is generated by 5° and A and so G is (see Wiegold[6]) a generalized (N+ l)th nilpotent
product of two nilpotent groups B°, A and so is itself nilpotent of class at most max {N+1, class
of B°, class of A}.

By symmetry n0 = nL = ... = « , _ , , and so, if we determine a value for n0 using the
generating set Ko for W, we shall then be able to take N as nQ. Specifically, we consider com-
mutators of the form [[ft, /**]<,, w(l), w(2), ..., w(n0)] and try to find a value for n0 such that
the above commutator reduces to the identity of W for all ft e B, all integers k, and all sets
of n0 elements from Ko.

We comment on the general case later, but for the moment content ourselves with the
following theorem.

3.3. THEOREM 3.3.1. Let B be a nilpotent group of class c, and let h be an element lying in
yi(B) and generating the subgroup H of B. Let the commutator subgroup [2?, H~\ of B be of ex-
ponent p', where p( ^ 2) is aprime and r a positive integer, andlet [5, [5 , / / ] , [5 , If], [5, / / ] ] = E.
Then B can be embedded together with a psth root for h(s^ 1) in a group G having the same
solubility length as B, whose derived group G' has the same nilpotency class {namely, at mostf
[•Jc]) as that ofB', G itself being nilpotent of class at most max(c, (r+c—i— l)ps — (r — l)ps~i +1).

Introduction to proof. As described above, we shall consider commutators of W of the
form [[ft, hk]0, >v(l), iv(2), ..., w(n0)]. We shall say that such a commutator is of length n0,
and if among the vv(l), >v(2), ..., w(n0) there occur a total of /? generators from the subset
K0—a ofK0 we shall call such a commutator a ̂ -commutator. Thus in a 0-commutator all the
>v(l), ..., w(n0) are equal to a.

The above commutator can clearly be written in the form

[x0, H&, ft(l)0, n2a, ..., fiua, b(n)0, nn+la, . . . ] , (3.3.2)

where we have written x for [ft, hk~] and n{a indicates /it successive commutations by a. Note
that any of pu n2, ••• may well be zero. The ft(l), ..., b(n) are arbitrary elements from the
given generating set for B.

We can now begin the proof. From now on q will take the specific value p".

t [*] denotes the greatest integer less than or equal to x.
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Proof. Using (2.2.2) we write, on abbreviating X{i, p;) to

n
i = 0

It follows that

This result easily extends to

[xo,Ai,a, 6(l)0, ...,pna, 6(n)0] = [[[... x*0-1', 6(l)]i<°-2>, ..., 6(n-l)]A(0-«>, 6(n)]0

e{B,H,nB-]0 (n = 1, 2, ...). (3-3.4)

Let us define, for integers p, <r ^ 0,

/(0,0) = 0,

/(p, a) = pps—(a—l)ps ~1 otherwise.

(i) If (3.3.2) is a O-commutator, it takes the form (3.3.3) and if fit ^f(r, r), Lemma 3.1.1
tells us that all the A's are multiples of pT, so that [x0) p^a] reduces to the unit element of W,
since \B, H~] has exponent pr.

(ii) If (3.3.2) is a 1-commutator, it takes the form [x0, p ^ , b{\)Q, p2oc]. By (3.3.4), we
have

[xo,p1a,ft(l)o] = [^(Oll ).Ml)]o (3-3.5)
and so, by (2.2.2),

o, P2«] = fl [x^°-1>, fc(l)F- 2>. (3.3.6)
i = O

We now use Corollary 2.2.6 and the fact that [B, [B, H~\, [B, H~\, [B, Hj] = E to write

|V<0' l\ b(l)] = [x, 6(1)]«°- "[x, 6(1), x]v, (3.3.7)

where v = (A(0, 1): 2). Hence

] ^ - 2 ) = [x, fc(l)]J(0> l)-AU-2)[x, 6(1), x]r w - 2 ) , (3.3.8)

since [x, 6(1)] and [x, b(l), x] commute mod [5, [B, H~\, [B, H], [B, Hj].
Now suppose that Hi+n2 ^f(r+l,r) — l and that f(rur1)^n1<f(r1 + l,r1 + \)

{rx ^ 0). It follows that /i2 ^.f(r-ru r-rx) and so A(0, 1) is a multiple of p'1 and A(f, 2) is a
multiple of pr~p', by Lemma 3.1.1. Sincef p ¥= 2, v is also a multiple of p r \ and so

since the exponents of both elements on the right hand side of (3.3.8) are then multiples of//.

t v is not necessarily a multiple of p'x if p=2, so we must employ Corollary 2.2.6 in the form

[*", g] = [x, 3T mod [B, [B, H], [fl, H]].

This remark also applies to Theorem 4.1.
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Thus any 1-commutator of length/(/•+1, r) reduces to the unit element of W.

(iii) If (3.3.2) is a 2-commutator, we begin by noting from (3.3.6) and (3.3.8) that

[x0, Ai,a, 6(l)0, W, 6(2)O] = [[x, 6(l)]v
0

(1>[x, 6(1), x]J<2\ 6(2)O], (3.3.9)

where v(l) = A(0, 1) . 2(0, 2) and v(2) =v . A(0, 2). By (2.1.2) and the fact that

[B, [B, / / ] , [B, Hi [B, HJ] = E,

the right-hand side of (3.3.9) becomes

[[x, fc(l)]v(1), 6(2)]0[x, 6(1), x, 6(2)]J(2), (3.3.10)

and by applying Corollary 2.2.6 to the first term, since [x, 6(1)] e [5 , # ] , (3.3.10) becomes

[[x, 6(1)], 6(2)]J<1>. [[x, 6(1)], 6(2), [x, 6(l)]]v
0

( 1 ) : 2 . [x, 6(1), x, 6(2)]tf2>. (3.3.11)

From all this it follows that

[x0, /<!<*, 6(l)0, n2x, 6(2)O,

= Tl{[>> 6(0, 6(2)]7<" • [[*, 6(1)], 6(2), [x, 6(l)]]j"<1>!2>. [x, 6(1), x, 6(2)];<2>}i<l'3\
( = 0

(3.3.12)

where X(i, 3) is a multiple of p"3 if ^3 ^ / ( r 3 , r3). The A(i, 3) can be taken inside the product
since everything involved in the product commutes.

Now if Hi + Hi + to £/(»•+2, r ) - 2 and if /(r f , r,) ^ /i, < / ( r , + l, r ,+ l) (i = 1, 2), then
^3 ^f(r~ri~r2'> r~ri~ri) owing to the inequality concerning ^1 + ^2+^3-

Hence A(0,1), and consequently the v (since/? # 2), are multiples of pr\ A(0,2) is a multiple
of/?1"2; consequently v(l), v(2) and (v(l): 2) are multiples of//l+r2. Finally A(«, 3) is a multiple
of pr~n~ri and so all the exponents on the right-hand side of (3.3.12) are multiples of pr. That
is, every 2-commutator of length at least f(r + 2, r) reduces to the unit element of W.

(iv) Having shown how the working goes we can proceed by induction on /?. We assume
(cf. (3.3.6) together with (3.3.8) and (3.3.12)) that (3.3.2) is a ^-commutator and that it can be
written as a product of /? + 1 elements, of which the first belongs to \B, H\ and the remaining
P belong to [B, [B, H], [B, / / ] ] , , Further, if'n, ̂ f(rp ry) (j = 1, 2, ..., p+1), the powers to
which the terms are raised are all multiples of/?r i+P2+-+r» + l. We then commutate by 6(/? +1)0

and then by fif+2 copies of a. Repetition of (3.3.9) to (3.3.12) then completes the argument.

(v) Now we assume that hey,(B). Hence [B, / / ] e y i + l ( i ? ) and so, looking at (3.3.4)
with n = c — i, we see that, if (3.3.2) has more than c — i— 1 of the generators 6(l)0, 6(2)O, ..., it
will at once reduce to the unit element of W.

If we look at the commutator (3.3.2) and assume its length to be at least

-i-l)ps-(r-l)ps-l=f(r+c-i-l,r),
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we see that (3.3.2) is either at least a (c—i)-commutator (i.e. contains at least c—i of the
generators b(l)0, b(2)0, ...) or at most a (c—i— l)-commutator containing at least

copies of «. In either case we deduce from the above work that such a commutator is the unit
element of W. Thus we have found a value for n0 = N and so, by the discussion preceding
Theorem 3.3.1, the theorem is proved.

4. The general case. We again consider commutators of type (3.3.2). Let/jeyj(#)and for
the moment assume that /+1 < £c, where c is the class of B. Lety be the smallest integer such
thaty ^ %c and let k =j—i—l. Then k > 0. Consider a commutator of type (3.3.2) of length
k .f(r, r), where, as before, p' is the exponent of \B, If]. Such a commutator is at least a
^-commutator or at most a (k— l)-commutator containing at least k .f(r, r) — (k— 1) copies of
a. In this case at least one of the /t's (there are at most k of them) is greater than or equal to
f(r, r), and so (3.3.2) will reduce to the unit element. If (3.3.2) is of the former type, that is at
least a ̂ -commutator, we consider the " subcommutator " of (3.3.2) as far as the term b(k)0,
that is (3.3.4) with n = k. This subcommutator then belongs to

[B, H, kB]0 £ yi+1 +k(B0) = yj(B0).

Call this subcommutator Xo. Hence Xo e [5, H, kB~\0 s [5, H]o and so has order// at most.
Now [B, yj(B), yj(B), yj(B)] = E, since; ̂  %c and yj(B) = [?_,_ j (B), B] so that, by Corollary
2.2.6 with G = B and S =y,._ 1 (B), we have, for any y e yj(B) and b e B,

We now proceed in exactly the same way as in § 3.3, and we see that, since Xo e yj(B0), the
commutator [Xo, tv(l), w(2), ..., w(nx)~\ = 1 in W(where tv(l), w(2), ..., w(nx)eK0), provided
that nx ^f(r+c-j, r) (cf. Theorem 3.3.1 (iv)). But Xo was itself of length at most k .f{r, r)
and so any commutator of type (3.3.2) of length at least (j-i- l)f(r,r)+f(r+c-j,r) = Z, say,
is the unit element of W.

Thus the set of all \b, hk\ e Cz W and so [5°, A, ZG~\ = E in G. Hence G is nilpotent of
class at most max (c, Z+1) (p # 2). If /+1 ^ c , then {B, [B, H], [B, If], [B, HJ] = E and
so Theorem 3.3.1 applies. Precisely, we have

THEOREM 4.1. Let B be nilpotent of class c and let ft e yi(B), H = gp {h}. Let [B, H] have

exponent p' (p # 2). Then B can be embedded with a psth root for h{s^\) in a group G having

the same solubility length as B, G' and B' having the same nilpotency class, G itself being nilpotent

of class at most

ifi +
max{c,(r+c-i-l)ps-(r-l)ps-l + l}, ifi + l^^c,

where j is the integer such that $c ̂ j <
For / = 1, the first bound here is approximately one third that obtained by Wiegold [1],

which was (on correcting a minor error) (c—l)(rps—(r—l)p'~1) + l.
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5. Lower bounds. If B is any nilpotent group of class c contained in the nilpotent group
G, then the class of G is not less than c. As stated in the introduction, Wiegold has constructed,
for each odd integer r ^ 3, a class 2 group BT containing an element h and for which [B, H} has
exponent pr, such that no nilpotent group Gr containing Br and a pth root for h has class less
than ^(r+5). If we restrict attention to those groups Gr having the same solubility length as
Br, we can prove slightly more, namely, that the class of Gr also depends on p.

We require the following lemmas.

LEMMA 5.1. Ifx,y are arbitrary elements of the metabelian group X and n is an arbitrary
positive integer, the following equality holds:

[x, / ] = [x, y]"[x, 2yT:2) . . . [* , ny\. (5.2)

The proof follows easily by induction on n.

LEMMA 5.3. Ifxit x2, ..., xn are arbitrary elements of the derived group of the metabelian
group Xandify is an arbitrary element of X, we have, for et = ±l,

[xfx? ... x<", y] = [*!, yT\x2, y^ ... [xn) yj". (5.4)

The proof is straightforward.
The group Br constructed by Wiegold was given by

B, = gp {b, h;b<" = h" = [/., b, 6] = \h, b, K\ = 1}.

It is clear that Br has class 2 and is consequently metabelian. Without loss of generality, we
take Gr to be a metabelian nilpotent group generated by Br and an element a such that a? = h.
We shall prove that Gr is nilpotent of class greater than p. In Br, [b, /i]pr = [b^, h~\ = 1,
whilst [b, hY~l = [pr", /,] # 1. Putting B = 6 p r " , we have [Bp, h~] = 1, [5, h) # 1 in Br.
Further, Gr is generated by elements ofp-power order and so is ap-gwup. Hence the elements
[B, a], \b, a] have p-power order. Since Gr is metabelian, [Br, A] is abelian (A = gp {a}) and
since Br, A generate Gr, [Br, /4]< G. Now in Gr,

1 ^ [B, h] = [B, a"] = [5, aY\B, 2ay:2) - [E,pa],

(by 5.2), and since the order of [5, i +1 a] divides that of \b, ia~\ (/ = 1, 2, ...) (this follows
since [b, i'+1 a] = [b, ia~]~ia~i[b, ia'ja and [Br, A\ is abelian normal in Gr), we deduce that, if
[5, a] has order p, then [5, pa] # 1 in Gr. That is, the class of G is greater than p.

If, on the other hand, [B, a] has order pv, say, where v > 1, we write

Using the argument above, we deduce that, if [a, ib~] has order pv', then [a, i+1 5] has order
pVi*', where v; ^v 1 + 1 . That is, vt ^ v 2 ^ ... ^vp .

We now write the above equation in the form

[a, pE] = [a, By "[a, 25]-<':2>... [a, p - 1 B]-^'-l\ (5.5)

and commutate on each side by a further B, giving (by 5.4)

[a, p+T 5] = [a, 25]-"|>, 35] ( - p : 2 ) . . . [a, p S ] " ^ ' - " . (5.6)
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We now substitute for the final term using (5.5), noting that all terms are permutable since
G is metabelian, to obtain

[a, p+1 5] = [a, 5]"[a, 25]" ... [a, p - 1 5 ] ' ' - , (5.7)

where tt is a multiple of p 2 but not of p 3 and ?2, *3> • ••> tp-i are multiples of/? and not of/?2.
Continuing this process j times (where y is an arbitrary integer such that 1 ̂ / ^ p —1) we
easily obtain, again using induction,

[a, p+j 5] = [a, 5]"[fl, 25]" ... [a, p - 1 5 ] 1 ' - , (5.8)

where now * j , /2) ..., f7- are multiples of p2 but not of/?3 and f,+1,..., tp-l are multiples of/?
but not of/?2.

Now let v, be such that vt =v2 = ... = V;>V;+1 2JV J + 2 ^ ... ^ v p _ t and take (5.8) with
j = /— 1. We obtain

[a, p + i - l 5] = [a, 5]"[a, 25]" ... [a, p - 1 5 ] ' ' - , (5.9)

where / l 5 1 2 , ..., f,_i are multiples of/?2 but not of/?3 and /,, ti+1 fp_j are multiples of/?
but not of/?2. Raising each side of (5.9) to the power /?Vl~2 and remembering that vt ^ 2,
we have, putting vy =v,

[a, p + i-l BY = [a, 5]w'[a, 25]Wi ... [a, p - 1 5]w'->, (5.10)

where w,, w2, ..., w,_x are multiples ofpv but not ofp v + 1 and wh wi+1, ..., wp_x are multiples
o f p v - 1 but not ofpv. Equation (5.10) then reduces to

[ > , p + i - l 5 ] ' y - 2 = [>, i5] '"-1 , (5.11)

all other terms on the right hand side of (5.10) reducing to the unit element of G. We deduce
that [a, p + i-l F]pV~2 # 1 in G, and consequently [a,p +1—1 E] and, even more so, [a,p5] # 1
in G. That is, the class of G is greater than p.
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