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Higher Dimensional Spaces of Functions
on the Spectrum of a Uniform Algebra

Richard F. Basener

Abstract. In this paper we introduce a nested family of spaces of continuous functions defined on

the spectrum of a uniform algebra. The smallest space in the family is the uniform algebra itself.

In the “finite dimensional” case, from some point on the spaces will be the space of all continuous

complex-valued functions on the spectrum. These spaces are defined in terms of solutions to the

nonlinear Cauchy–Riemann equations as introduced by the author in 1976, so they are not generally

linear spaces of functions. However, these spaces do shed light on the higher dimensional properties

of a uniform algebra. In particular, these spaces are directly related to the generalized Shilov boundary

of the uniform algebra (as defined by the author and, independently, by Sibony in the early 1970s).

In all that follows, A will be a uniform algebra defined on a compact Hausdorff
space X with spectrum M. We will regard the functions in A as being defined as

continuous, complex-valued functions on all of M by their natural extension there.
(For the definition of uniform algebras and their basic properties, please consult one
of the standard introductions to the area such as [1, 6, 7, 9].)

We wish to define two families of spaces of functions on M which will help to elab-

orate the higher dimensional structure of A and M. These families will be denoted
here by Aq and Ãq. It remains to be demonstrated whether or not Aq and Ãq can
be different from each other. These spaces are defined in terms of solutions of the
generalized Cauchy–Riemann equations as defined by the author, so we first recall

the definition and some basic properties of solutions of these equations (See [3, 4]
for proofs and further details.)

Definition 1 Let n be a positive integer, and letΩ be an open subset of C
n. Let q be

a nonnegative integer. Then the generalized Cauchy–Riemann equation of order q is
given by

∂ f ∧ (∂∂ f )q
= 0

where f is, say, a C∞ complex-valued function defined on Ω. In this case we will say
that the function f is q-holomorphic on Ω.

The following result gives an alternative characterization of q-holomorphic func-
tions.

Proposition 2 Let f ∈ C∞(Ω) for some open subset Ω of C
n. Let M( f ) be the

n×(n+1) matrix defined by adjoining the antiholomorphic gradient of f to the complex

Hessian of f . So
M( f ) = (( fz̄i z j

) fz̄)
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where

fz̄ = ( fz̄1
, . . . , fz̄n

).

Then f is q-holomorphic on Ω if and only if the rank of M( f ) is less than or equal to q

everywhere on Ω.

The following are some basic properties of q-holomorphic functions.

Proposition 3 If φ is a holomorphic function into the domain of a q-holomorphic
function f , then f ◦ φ is q-holomorphic.

Proposition 4 If φ is a holomorphic function on C whose domain contains the image
of a q-holomorphic function f , then φ ◦ f is q-holomorphic.

Proposition 5 Let f ∈ C∞(Ω) for some open subset Ω of C
n. If locally there ex-

ists coordinates ζ1, . . . , ζn on Ω such that f is holomorphic in ζ1, . . . , ζn−q, then f is

q-holomorphic.

The converse of the above Proposition should be true with suitable nondegeneracy

conditions on the derivatives. See [3] for an example. The next result is very useful,
and shows that q-holomorphic functions on C

n are nontrivial when q < n.

Theorem 6 Let f ∈ C∞(Ω) for some open subset Ω of C
n, and suppose that f is

q-holomorphic on Ω for some q < n. Then f satisfies the “maximum principle” on Ω.
That is, if K is a compact subset of Ω, then | f | achieves its maximum somewhere on the
topological boundary of K.

Example 1 Obviously holomorphic functions are q-holomorphic for all q ≥ 0. The
functions |z|2 and |w|2 are 1-holomorphic on C

2. However, |z|2 + |w|2 is not 1-holo-

morphic on C
2 (or on any subdomain of C

2).

Having reviewed some of the basic properties of q-holomorphic functions, we

now relate these functions to the theory of uniform algebras. We introduce here
certain new spaces of functions defined on the spectrum of a uniform algebra.

Definition 7 Given a uniform algebra A on a compact set X with spectrum M,
let Ãq = Closure{φ( f1, . . . , fm) : f1, . . . , fm ∈ A, and φ is q-holomorphic in a
neighborhood of the joint spectrum σ( f1, . . . , fm)}.

Here closure denotes closure in the uniform norm on M, and the joint spectrum
σ( f1, . . . , fm) is the image of M in C

n under the mapping x → ( f1(x), . . . , fm(x)).

Ãq gives us one way to measure the “codimension” of a uniform algebra A relative
to C(M), the space of all continuous complex-valued functions on M, by comparing
Ãq with C(M) for various values of q.

Definition 8 codim(A) = min{n : Ãn = C(M)}.
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(If the set on the right-hand side is empty, we will say that codim(A) is infinite.)
Recall the following notion of an analytic polydisk in the spectrum:

Definition 9 A subset V of the spectrum M is called an “analytic polydisk” of di-
mension n if there exists a continuous one-to-one mapping ψ of the interior of the
standard unit polydisk ∆

n onto V such that all of the functions in A are holomorphic
on ∆

n when composed with ψ.

The existence of an analytic polydisk in the spectrum M forces codim(A) to be at
least as large as the dimension of the polydisk.

Proposition 10 Let n be a positive integer, and suppose that M contains an analytic

polydisk of dimension n. Then codim(A) ≥ n.

Proof Let V be an analytic polydisk in M of dimension n, and let ψ be a corre-
sponding map from ∆

n onto V . Let K be any compact subset of ∆
n, and let f be any

function in Ãn−1. Suppose first that f = φ( f1, . . . , fm) for some f1, . . . , fm ∈ A, and
for some φ which is (n − 1)-holomorphic near the joint spectrum of f1, . . . , fm.

Then f1 ◦ ψ, . . . , fm ◦ ψ are holomorphic on ∆
n, hence by Proposition 3 f ◦ ψ

is (n − 1)-holomorphic on ∆
n. It follows by Theorem 6 that f ◦ ψ must achieve its

maximum value somewhere on the boundary of K. Since functions such as f are
dense in Ãn−1, it follows that all functions in Ãn−1 have this same property.

Let K = {z ∈ ∆
n : |z j | ≤ 1/2 for all j}. There is a function g ∈ C(M) which

is 1 on ψ(0) and 0 on ψ(∂K). By the above, g is not in Ãn−1, so codim(A) ≥ n as

claimed.

Conversely, if the spectrum M is embedded in C
n, then codim(A) can be no larger

than n.

Proposition 11 Let A be a uniform algebra on a compact set X. Suppose that for
some n the spectrum M of A is contained in C

n in the sense that there exist n functions
f1, . . . , fn ∈ A such that the mapping F = ( f1, . . . , fn) from M to the joint spectrum is
one-to-one. Then codim(A) ≤ n.

Proof Let P be any complex polynomial in 2n variables. Consider g(z1, . . . , zn) =

P(z1, . . . , zn, z̄1, . . . , z̄n). By Proposition 5, any such g is n-holomorphic on C
n. Hence

g ◦F ∈ Ãn. But functions such as g are dense in the space of continuous functions on

the joint spectrum. It follows that Ãn = C(M). So codim(A) ≤ n as claimed.

What functions are in Ãq? Consider the following.

Definition 12 Given a uniform algebra A on a compact set X with spectrum M, let

Aq = Closure{P( f1, . . . , fr, f̄r+1, . . . , f̄r+q) : r ≥ 0, P is a polynomial, f j ∈ A}.

Example 2 Let A = P(∆2), the uniform closure of the complex polynomials on
C

2 restricted to ∆
2. The spectrum M of A is, of course, ∆

2. Note that |z|2 ∈ A1 and
|w|2 ∈ A1, but |z|2 + |w|2 ∈ C(M) \ A1.
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Proposition 13 Aq is a subspace of Ãq.

Proof Let P be a complex polynomial in r + q variables. Then the function z 7→
P(z1, . . . , zr, z̄r+1, . . . , z̄r+q) is q-holomorphic on C

r+q. It follows from the definition

of Ãq that P( f1, . . . , fr, f̄r+1, . . . , f̄r+q) ∈ Ãq. Hence Aq ⊆ Ãq.

Note that A0 = A, hence the standard holomorphic functional calculus implies
that A0 = Ã0. It is not immediately clear, at least to this author, whether the same al-
ways holds true when q > 0. So for now, we could also define an alternative measure

of the “codimension” of a uniform algebra as follows.

Definition 14 CODIM(A) = min{n : An = C(M)}.

Proposition 15 CODIM(A) ≥ codim(A). Hence if the spectrum M contains a poly-
disk of dimension n, then CODIM(A) ≥ n. Furthermore, if, as defined above, M is
“contained” in C

n, then CODIM(A) ≤ n.

Proof That CODIM ≥ codim follows immediately from Proposition 13. The last
assertion follows from the fact that the functions from Ãn used in the proof of Propo-
sition 11 are actually in the subspace An.

To further understand the structure of the spectrum M in terms of properties of

Aq (or Ãq) it is useful to recall the notion of a “boundary” for a space of functions.

Definition 16 If X is a compact Hausdorff space and F is any collection of con-
tinuous complex-valued functions on X, then we will say that a subset E of X is a
“boundary” for F if for every f ∈ F there exists x ∈ E such that | f (x)| = ‖ f ‖ =

max{| f (x)| : x ∈ X}.

A fundamental fact in the theory of uniform algebras is that for any uniform al-

gebra A on a compact Hausdorff space X with spectrum M there is a smallest closed
boundary (the “Shilov boundary”) K ⊆ X ⊆ M for A considered as a space of func-
tions on X or M. That is, K is a closed subset of X which is boundary for A, and if
K0 is any other closed boundary in M for A, then K0 ⊇ K. We will denote the Shilov

boundary of A by ∂0A.

The notion of Shilov boundary was independently generalized to a higher dimen-
sional concept by Sibony [8] and the author [2]. A full discussion of these ideas may
be found in Tonev’s book [10].

Notation If A is a uniform algebra with spectrum M, and if G ⊆ A, we will let

#G denote the cardinality of the set G and we will let V (G) = {x ∈ M : for all g ∈
G, g(x) = 0}.

https://doi.org/10.4153/CMB-2007-001-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2007-001-4


Higher Dimensional Spaces of Functions on the Spectrum of a Uniform Algebra 7

Definition 17 Let A be a uniform algebra with spectrum M. If q is a nonnegative
integer, we define the q-th order Shilov boundary of A, denoted ∂qA, to be the small-

est closed subset of M with the property that if G ⊆ A and #G ≤ q and V (G) 6= ∅,
then for every f ∈ A there exists x ∈ ∂qA ∩V (G) such that

| f (x)| = max{| f (y)| : y ∈ V (G)}.

Note that when q = 0, this definition of ∂qA is consistent with the previous defi-
nition of the original Shilov boundary. It is an easy exercise to show that ∂qA always
exists. Part of the motivation for the definition of the generalized Shilov boundary
may be seen in the fact that when n ≥ 2, ∂0P(∆n) is a proper subset of the topological

boundary of ∆
n in C

n. However, for all n > 0, ∂n−1P(∆n) is exactly the topological
boundary of ∆

n.
It turns out that the generalized Shilov boundary is related to the space of func-

tions Aq.

Theorem 18 If A is a uniform algebra and q is a nonnegative integer, then ∂qA is the
smallest closed boundary for the space Aq.

Proof Let K be a subset of the spectrum M which is a closed boundary for Aq. We
will first prove that K contains ∂qA. Let G ⊂ A with #G ≤ q and V (G) 6= ∅. Let
f ∈ A.

We may suppose that G = {g1, . . . , gq} for q functions from A with the property

that
∑q

j=1
|g j |

2 ≤ 1/2 on M. Assume that f is not identically zero on V (G). (If not,

work with f + 1 instead.) Choose x∗ ∈ V (G) such that | f (x∗)| = max{| f (y)| : y ∈
V (G)} > 0.

For each nonnegative integer n define a polynomial Pn in 2q + 1 variables by Pn =

z1(1 −
∑q

j=1
z j+1z j+q+1)

n
, and let pn = Pn( f , g1, . . . , gq, ḡ1, . . . , ḡq) ∈ Aq. Since pn ∈

Aq and since K is a boundary for Aq, ∀n ∃xn ∈ K such that

|pn(xn)| = max{|pn(y)| : y ∈ M} ≥ |pn(x∗)| = | f (x∗)|.

Let x be a limit point in K of {xn}. Then x ∈ V (G). For, if not, there exists k

such that gk(x) 6= 0. Since x is a limit point of {xn}, there is a sequence of large n

such that |gk(xn)| > (1/2)|gk(x)|. Since
∑

|g j |
2
≤ 1/2, we have for these large n

that |1 −
∑

|g j(xn)|2| = 1 −
∑

|g j(xn)|2 ≤ 1 − |gk(xn)|2 < 1 − (1/4)|gk(x)|2. Let

r = 1 − (1/4)|gk(x)|
2
. Then 0 < r < 1, so we can choose a large N such that rN <

| f (x∗)|/‖ f ‖. Then |pN (xN )| = | f (xN )|(1 −
∑

|g j(xN )|
2
)

N
< ‖ f ‖(| f (x∗)|/‖ f ‖) =

| f (x∗)|. This contradicts the property of pN established above and shows that x ∈
V (G), as claimed.

Since x ∈ K, to prove that K contains ∂qA it remains to show that | f (x)| =

| f (x∗)|. We already know that | f (x)| ≤ | f (x∗)|. But since x is a limit point of {xn},

and since for all n we know that | f (xn)| ≥ | f (xn)||1−
∑

|g j |
2
| = |pn(xn)| ≥ | f (x∗)|,

it follows that | f (x)| ≥ | f (x∗)| as desired.
Now we wish to show that ∂qA is a boundary for Aq. So let P be a polyno-

mial in r + q variables, let f1, . . . , fr and h1, . . . , hq be functions in A, and let p =
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P( f1, . . . , fr, h̄1, . . . , h̄q) ∈ Aq. We must show that there exists x ∈ ∂qA such that
|p(x)| = ‖p‖ = max{|p(y)| : y ∈ M}.

Choose x∗ ∈ M such that |p(x∗)| = ‖p‖. Let g j = h j − h j(x∗) for j =

1, . . . , q, and let G = {g1, . . . , gq}. Note that x∗ ∈ V (G). Since for each j we
have h j = g j + h j(x∗), we can, by rearranging terms, find a polynomial Q such that
p = Q( f1, . . . , fr, ḡ1, . . . , ḡq).

Let f = Q( f1, . . . , fr, g1, . . . , gq) ∈ A. Then, by definition of the generalized
Shilov boundary, there exists x ∈ ∂qA ∩V (G) such that: | f (x)| = max{| f (y)| : y ∈
V (G)}. In particular, | f (x)| ≥ | f (x∗)|.

But for y ∈ V (G) we have g j(y) = 0 = ḡ j(y) for j = 1, . . . , q. Hence for such y

we get

f (y) = Q( f1(y), . . . , fr(y), g1(y), . . . , gq(y))

= Q( f1(y), . . . , fr(y), ḡ1(y), . . . , ḡq(y))

= p(y).

Since x, x∗ ∈ V (G), we get |p(x)| = | f (x)| ≥ | f (x∗)| = |p(x∗)| = ‖p‖ ≥ |p(x)|.
Therefore |p(x)| = ‖p‖ as desired.

Another concept from the standard theory of uniform algebras which also applies

in the present context is the notion of a “peak set” or “peak point” for which we give
a generalized definition here.

Definition 19 If X is a compact Hausdorff space and F is any collection of contin-

uous complex-valued functions on X, then we will say that a closed subset K of X is
a “peak set” for F if there exists f ∈ F such that f ≡ 1 on K and | f | < 1 on X \ K.
If K = {x} for some point x ∈ X, x is called a “peak point.”

The following result follows immediately from the above definitions.

Proposition 20 If A is a uniform algebra with spectrum M and q is a nonnega-
tive integer, then any boundary E ⊆ M for Aq must contain the set { x ∈ M :

x is a peak point for Aq }.

It is a result of Bishop ([5], or see, for example, [9]) that for a uniform algebra A

on a compact metric space, the set of peak points for A is in fact a boundary for A. It
is therefore the minimal boundary for A, and its closure must be ∂0A.

Example 3 Let A = P(∆2). Then ∂1A = ∂∆
2

= {x ∈ ∆
2 : x is a peak point

for A1}. In fact, if (z0,w0) is a point in the topological boundary of ∆
2, then, say,

|z0| = 1 and |w0| ≤ 1. In that case the following function in A1 “peaks” at (z0,w0):

f (z,w) = P(z,w, w̃) = (1/8)(z̄0z + 1)(4 − |w − w0|
2).

We can easily derive a weaker version of Bishop’s result for the peak points of Aq.
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Theorem 21 Let A be a uniform algebra defined on a compact metric space X with
spectrum M. Then

∂qA = Closure{x ∈ M : x is a peak point for Aq}.

Proof Since by Theorem 18 we have that ∂qA is a boundary for Aq, by Proposition
20 we have that

∂qA ⊇ Closure{x ∈ M : x is a peak point for Aq}.

On the other hand, let f1, . . . , fr, g1, . . . , gq be functions in A, and let P be any
polynomial in r + q variables. Let p = P( f1, . . . , fr, ḡ1, . . . , ḡq) ∈ Aq. Let B be the

uniform algebra on M generated by A together with G = {ḡ1, . . . , ḡq}. Note that
B ⊆ Aq.

Since p ∈ B, by Bishop’s result there is a peak point x ∈ M for B such that
|p(x)| = ‖p‖. But any peak point for B is also a peak point for Aq. So, in particular,

|p| achieves its maximum on Closure{x ∈ M : x is a peak point for Aq}.
Since functions of the form of p are dense in Aq, it follows that Closure{x ∈ M :

x is a peak point for Aq} is a closed boundary for Aq and must (by Theorem 18)
contain ∂qA.

Open Questions

The above results suggest a number of questions for further study. Here are a few

whose answers are not immediately obvious to the author.

If A and B are two uniform algebras, it is possible to define the tensor product

algebra A ⊗ B (see, for example, [9]). For algebras such as P(∆n), we clearly have
CODIM(A ⊗ B) = CODIM(A) + CODIM(B). Is this always true? Is it true for
“codim” instead of “CODIM”?

In the simple examples such as A = P(∆n), we clearly have CODIM(A) =

codim(A). Is this true for all uniform algebras?

Note that Ãq = Aq for all uniform algebras when q = 0. This is simply a direct
consequence of the usual holomorphic functional calculus. Is this result also true

when q > 0? If so, this would, of course, imply that CODIM and codim are always
the same.

In simple examples where CODIM(A) = n, we can find n functions g1, . . . , gn ∈
A such that the uniform algebra generated by A∪{ḡ1, . . . , ḡn} on the spectrum M is
C(M). Is this always true?

Theorem 21 shows that

Closure{x ∈ M : x is a peak point for Aq}

is a boundary for Aq when A is a uniform algebra defined on a metric space. Is the
possibly smaller set

{x ∈ M : x is a peak point for Aq}

always a boundary for Aq? Bishop’s result says that it is when q = 0.
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