Adv. Appl. Prob. 45,791-821 (2013)
Printed in Northern Ireland
© Applied Probability Trust 2013

DISCRETE-TIME APPROXIMATION OF DECOUPLED
FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL
EQUATIONS DRIVEN BY PURE JUMP LEVY PROCESSES

SOUFIANE AAZIZL,* Cadi Ayyad University

Abstract

We present a new algorithm to discretize a decoupled forward—backward stochastic
differential equation driven by a pure jump Lévy process (FBSDEL for short). The
method consists of two steps. In the first step we approximate the FBSDEL by a forward—
backward stochastic differential equation driven by a Brownian motion and Poisson
process (FBSDEBP for short), in which we replace the small jumps by a Brownian
motion. Then, we prove the convergence of the approximation when the size of small
jumps ¢ goes to 0. In the second step we obtain the L”-Holder continuity of the solution
of the FBSDEBP and we construct two numerical schemes for this FBSDEBP. Based on
the LP-Holder estimate, we prove the convergence of the scheme when the number of
time steps n goes to co. Combining these two steps leads to the proof of the convergence
of numerical schemes to the solution of FBSDEs driven by pure jump Lévy processes.
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1. Introduction and summary

In this paper we are concerned with the discretization of a system of decoupled forward—
backward stochastic differential equations (FBSDEs) driven by a pure jump Lévy process:

t t
X =Xo+/ b(Xr)dr—l—// B(X,—)M(de, dr),
0 0JR
T T (1.1)
Y =g(XT)+f f(®r)dl’—f / V.M (de, dr).
t t JR

Here ® := (X, Y, [ p(e)Vev(de)) and M(E, 1) = fEx[o,z] efi(de, dr), where fi(de, dr) :=
u(de,dr) — v(de)dr is an independent compensated Poisson measure and p is a Poisson
random measure on R x [0, T'] with intensity v satisfying f 1 Ale|*v(de) < oo.

Numerical discretization schemes for FBSDEs have been studied by many authors. In the
no-jump case, Ma et al. [19] developed the first step algorithm to solve a class of general
FBSDEs. Douglas ef al. [12] suggested a finite difference approximation of the associated
PDE. Other discrete schemes have been considered in [7], [8], and [10], based mainly on the
approximation of the Brownian motion by some discrete process; Lemor et al. [18] proposed
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an adapted Longstaff and Schwartz algorithm based on nonparametric regressions. In the jump
case, to the author’s knowledge, there is only the work of Bouchard and Elie [5], who proposed
Monte Carlo methods in the case when v(R) < oo.

The main motivation to study the numerical scheme of a system of the above form is to
examine the case when v(R) = oo, i.e. the existence of an infinite number of jumps in every
interval of nonzero length almost surely. In this sense, we should mention the important work on
the approximation of stochastic differential equations studied by Kohatsu-Higa and Tankov [17].

Since we are interested in the case v(R) = 0o, we will follow the idea of [17] to approximate
(1.2) below without cutoff of jumps smaller than ¢, which should improve the approximation
scheme. Then by using the approximation result of Asmussen and Rosinski [2] we replace the
small jumps of the Lévy-driven process with o (¢) W, where W is a standard Brownian motion
and 0% (¢) := [p.. e*v(de).

To approximate (1.1), we cut the jumps at € as

t t t
X, =X0+/ b(X,)dr—l—/ ﬁ(Xr—)dR,+/ B(X, )M (de, dr),
0 0 0JE,
. . . ] (1.2)
Y, =g<XT)+/ f(®r)dr—/ V, dR, —/ / V, M(de, dr),
t t t JE,

where R; = fé fle|<s eM(de, dr), E¢ := {e € Rsuch that |e| < ¢}, E, := {e € R such that
le| > ¢},and E := R = E* U E,.

The idea we propose is to discretize the solution of (1.1) in two steps. In the first step we
approximate (1.2) by the following FBSDE:

t t t
X¢ =X8+/ b(xf)dr+a(s)/ ﬁ(Xf)dW,+// B(XE_)M(de, dr),
0 0 0JE,
, . ; ] (1.3)
YP=g(X%) +/ f(@Hdr — / Z:dw, — / / Us(e)M(de, dr).
t t t JEg

Here ®% = (X%,Y%,T%) and I'¢ .= fE; p(e)U?¢(e)ev(de). Furthermore, we show that, for a
finite measure m defined by m(E) := [, e?v(de), our error
t t 2
Err, (Y, V)2 := E[sup Y, — Yf|2] n E[sup / V, dR, — / Z¢ AW, }
t<T t<T | JO 0

T
—HE[// |V,—Uf(e)|2m(de)dr],
0 JE,

is controlled by o (¢)2, which means that the solution of (1.3) converges to the solution of (1.1),
as the size of the small jumps ¢ goes to 0 (see Remark 2.1 below). We also derive the upper
bound

E[sup X, — Xf|2] < Co(e).
t<T
In the second step we discretize the approximated FBSDE (1.3) and study its convergence to
(1.2). For this purpose, we consider two numerical schemes. The first scheme is based on the
discrete-time approximation of decoupled FBSDEs derived by Bouchard and Elie [5]. More
precisely, for a fixed ¢, given aregular gridw = {t;, = iT/n, i = 0,1, ..., n.}, the authors
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approximated X° by its Euler scheme X™¢ and (Y®, Z%,T'?) by the discrete-time process
Y%,z T, ie.

_ _ 1 - _ o
X =Xt + —b(Xz',’.’g) +a@BX)AWit +/ B(Xy )M (de, (1, ti41]),
Ee

Z7* =RV, AWy | F1,

e —nE[ /E pe)M (de, (ri,rm])‘ﬂ,},

HS E[Ytl‘l«? |j‘[[]+ f(XZé‘ )’lS FZ,E)’

l

on each interval [;, f;11), where the terminal value ¥, := g(X;*). By adapting the proof
of [5], we prove, under Lipschitz continuity of the solution, that the discretization error

T
Err, (Y€, Z¢,T%)% := sup E[|Y} — “|2]+/ E[|Z — Z"° 1> + |0 — %1 dr
0

t<T
achieves the optimal convergence rate n~ /2. Finally, we derive the first main result of this
paper (Proposition 3.1), showing that the approximation-discretization error

2i|

t t
/ V,dR, — / ZE dw,
0 0
is bounded by Cin~ ! 4+ o()?) and converges to 0 as (n, &) tends to (oo, 0), where I' :=
ng p(e)Vev(de).

The second numerical scheme is inspired by the work of Hu er al. [16], who studied a
backward stochastic differential equation driven by a Brownian motion with general terminal
variable £. They proposed a new scheme using the representation of Z¢ as the trace of the
Malliavin derivative of Y¢. Their discretization scheme is based on the L?-Holder continuity
of the solution Z¢, and leads to an estimate of the form

Bt (1, V)7 = sup 11, = 7P +
t<T

+ T = T2,

E|Zf — ZE)P < K|t — s|7/?,

which implies the existence of a y-Holder continuous version of the process Z¢ for any y <
l — 1/p. In this sense, our paper extends the work done in [16] to an FBSDE with jumps and
termmal value g(X ). Similarly to [16], we obtain the following regularity of I'¢:

E|T¢ — TP < Clr — s|P/%.
This allows us to deduce the existence of a y-Holder continuous version of the process '
for any y < % — 1/p. Finally, on the one hand, we use the representations of Z¢ and I'® as

the trace of the Malliavin derivative of Y?¢ to derive our new extended discretization scheme
for the solution (Y¢, Z%, I'?) of (1.3). On the other hand, we approximate X® by X"¢, the
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continuous-time version of the Euler scheme, that is, for a fixed ¢ > 0,

X{'s_X“+b(X¢n)(t—¢t)+o(8)ﬂ(X Wi — W)

/3(X¢n YM(de, (1, 9}1),

Yt = Y" o O DAL | F ]

i+l fit1
n,e __ n,e n,e n,e
z; _E[f;,imnaxg(xT )Dy, X7

n—1

+ Z 8;11+51 1 Ox f(®lk+1)Dfl XZ’sAtk
k=i

e = E[ / pe) [82;1 D8 (X530

]

+ Z 8§+nl tk+latz lk+1 Dy, Xg:l Atki|v(d€) ‘%ii|’
with terminal values Y;* = g(X7°), Z;* = 0 ()0, g(X7)B(XF®), and U} = g(X7° +
B(XT5)) — g(X7°), where ', & f ,and & ;‘ are detailed in Section 4.

The key ingredient for the computatlon of the discretization error is the LP-Holder continuity
of the solution (Y#, Z¢, I'?). This allows us to prove that

Errn(Ysazggre) =E max[|Y5— "8| -|-|Z€_ |+|1-8_ na|2]

0<i<n

is controlled by n!/1°27=1 Then we obtain the second main result of this paper (Theorem 4.3),
which states that

T n 2
Err, (Y, V)? := max sup E[|Y; — Y,’f’alz] —HE‘/ V,.dR, — ZZZ’EAW,i
0 ,

0=i=n e, 1]

li+1

n—1
+Z/ EIT, — If 2 dr
i=0 Vi

is of the order o (¢)* + n'/1°¢"=1 and converges to 0 as the discretization step (¢, n) tends
to (0, 00).

The importance of the above scheme is that it can be adapted to the case where the terminal
value is not given by the forward diffusion equation X?, as is the case in [16]. However, this
scheme remains to be further investigated.

The two numerical schemes above are not directly implemented in practice and require an
important procedure to simulate the conditional expectation. However, there exist different
techniques which can be adapted to our setting to compute this conditional expectation; see,
for example, [3], [6], [9], and [18].

The paper is organized as follows. In Section 2 we prove the convergence of the approximated
scheme. In Section 3 we describe the discrete-time scheme introduced in [5] and state our first
main convergence result. In Section 4 we extend the new discrete scheme of [16] and state our
second main result. We also discuss a general case of backward stochastic differential equations
(BSDEs). Section 5 is devoted to Malliavin calculus for a class of FBSDEs with jumps. We
obtain the LP-Holder continuity of Z¢ and I'? via the trace of the Malliavin derivatives of Y.
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2. Approximation of decoupled FBSDEs driven by pure jump Lévy processes

Let (2, F,F = (¥):<r,P) be a stochastic basis such that ¥y contains the P-null sets,
Fr = ¥, and T satisfies the usual assumptions. We assume that F is generated by a one-
dimensional Brownian motion W and an independent Poisson measure w1 on [0, T] x E. We
denote by FV = (FV);<7 and F* = (¥);<r the P-augmentation of the natural filtration of
W and ., respectively. As usual, we denote by B (X) the Borel set of the topological set X. We
introduce the subsets E¢ := {e € R such that |e] < ¢} and E, := {e € R such that |e| > ¢},
E:=R=EfUE,.

The martingale measure & is the compensated measure corresponding to the Poisson random
measure 1 such that fi(de,dr) = u(de,dr) — v(de)dr, where v is a Lévy measure on E
endowed with its Borel tribe &. The Lévy measure v will be assumed to satisfy v(R) = oo and
fR le|*v(de) < oo. Throughout this paper we deal with the measure M defined by

M(t, B) = / efi(dr, de), B € B(E),
[0,t]x B

which can be considered as a compensated Poisson random measure on [0, 7] x E and
flo (X E ep(dr, de) is a compound Poisson random variable. We associate to M the o -finite
measure

m(B) := / e*v(de), B € B(E). (2.1
B

In particular, we have o (¢)? = m(E?®).

The measure M is taken to drive the jump noise instead of ji, in order to adopt the concept
of Malliavin calculus on the canonical Lévy space from [11].

For some constant K > 0, we consider the four K-Lipschitz functions 8: R — R,
b:R—>R,g:R—>R,and f: 2 x R xR x LZ(E,S,V,R) — IR such that

[6x) = bW+ 1B(x) = B+ 11g(x) — gl = Kllx =yl (2.2)

and
If e, x"x™) = O,y v < Kdlx =yl + X" = Yl + X" = y"1D. (2.3)

Define p to be a measurable function p: E — R such that

sup [p(e)| < K.
ecE

For any p > 2, we consider the following class of processes.

e S7 is the set of real-valued adapted RCLL processes Y such that

1/p
1Y lsp := IE( sup |Y,|p) < 00.
0<t<T

e HY is the set of progressively measurable R-valued processes Z such that

T p/2\1/p
\ZN\gr = <E</ |Zr|2dr> ) < 00.
0
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e L7 isthe set of ( ® &)-measurable maps U: 2 x [0, T] x E — R such that

T 1/p
WUl = (E/ / IUr(e)Ipv(de)dr> < 0.
0 JE

e The space B? := 87 x HP x LP is endowed with the norm
(Y. Z. D)llgr = YN + 1 ZI g + IUNTDYP.

e M?>7 is the class of square-integrable random variables F of the form

T T
F = IEF—i—/ U, dw, +f / Y (r, e)u(de, dr),
0 o JE
where u and i are respectively progressively measurable and measurable processes
satisfying sup, .y Elu;|? < oo and sup, - IEfE | (2, e)|Pv(de) < oo, respectively.

To simplify the notation, we shall denote by C, a generic constant depending only on p and
the constants K, v(E;), b(0), 8(0), g(0), £(0,0,0), and T. In the rest of the paper, the real
number p will be always greater than 2.

2.1. Approximation scheme
In this subsection we show that the approximation error
t t
Err, (Y, V)2 := E[sup Y, — Yf|2] + E[sup / V,dR, — / Z8 dW,
1<T 1<T | Jo 0

T
+E[// |V,—Uf(e)|2m(de)dr]
0 JE.

converges to 0 as ¢ goes to 0.

Theorem 2.1. Under the space (2, ¥, P),

]

1. there exists a solution X on [0, T] of

t t
X, = Xo+ / b(X,) dr + / B(X,-) M (dr, de),
0 0

where Xg € R,

2. there exists a solution X¢ on [0, T] of

t t t
X¢ =Xg+/ b(xf)dr+/ ﬂ(xf)a(e)dw,+// B(XE_)M(dr, de),
0 0 0JE,

where X§ € R.

Moreover,
IE[ sup | X, — Xf|2] < Co(e). (2.4)

0<t<T
To prove Theorem 2.1, we require the following lemma.

Lemma 2.1. On the space (2, ¥, P), fixing ¢ > 0, we have, for p > 2,

E[ sup |Xt|”] < 00, ]E[ sup |Xf|”] < 00.
0<t<T 0=<t<T
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Proof. Using Jensen’s inequality, the Burkholder—Davis—Gundy inequality, and Lipschitz’s
property of b and 8, we have

s 14 s _ p
E sup X7 < C,E sup (|Xo|"+ (/ b(X»dr) + (// BX) M (dr, de)) )
0<s<t 0<s<t 0 0JE

t
< Cp<|X0|P+/ E[lb(Xo)| + | X (17 dr
0
t
+// E[BO)| + X [17]e|”v(de) df’)
0JE

t
SC<|X0|”+Ib(0)|p+|/3(0)|”+/ E| sup |Xu|Pdr]).
0

O0<u<r

‘We conclude the first assertion by Gronwall’s lemma. Following the same arguments, we obtain
the second assertion.

Proof of Theorem 2.1. The existence and uniqueness of such stochastic differential equa-

tions has been studied in the literature; see, e.g. [15] and [1]. Thus, it remains to prove estimate
2.4).

Using Jensen’s inequality, we obtain

t 2
E sup |X, — X SC2<E[/ |b<xr)—b(Xf>|dr}
0

O0<u<t

rpt 2
L E /0 f |ﬂ(xr>—ﬂ<xi)|M<dr,de>]

-t 2
+E / f |ﬁ(xr>|M<de,dr)}
LJO JEE

— t 2

+E|o(e) f BX)] dwr] )
L 0

By the Burkholder—Davis—Gundy inequality we obtain

t
E sup |X, — X5 < c(rE[ / b(X,) — b(Xf))zdr}
0

O0<u<t

t
+ E[ f (B(X,) — B(XE) m(de) dr]
0JE,

t
+E[/[/ ,B(X,)zm(de)dr}+CE[/ ﬂ(xf)za(e)zer.
0JE® 0

By the Lipschitz property of b and 8,

t
E sup |Xu—xj|2§c([/ E|Xr—Xf|2dr:|
0

O<u<t

t
+o(e>2E/0 [82(0) + B2(0) + |XE* + X, %] dr)

t
< CU E[sup |X, — X,i|2i| dr +a(8)2i|.
0 u=<r

The result follows from Gronwall’s lemma.

https://doi.org/10.1239/aap/1377868539 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1377868539

798 S. AAZIZI

Finally, we can now state the main result of this section.
Theorem 2.2. Under the space (2, ¥, P),

1. there exists a unique pair (Y, V) € 8% x H? which solves the BSDE

T T
Vi=gXr)+ | f(Or)dr— / V, M (dr, de), 2.5
t 1

where © := (X, Y, [ p(e)Vev(de)),

2. for a fixed & > 0, there exists a unique triplet (Y¢, Z%, U%) € B2 solution to the BSDE

YE = g(X5 )+/ f(@g)dr—/ ZE AW, — // Uf(e)M(dr,de),  (2.6)
t

with ©f := (X¢,Y%, T®) and I'¢ := fEs p(e)U¢(e)ev(de).

Moreover, if sup, . E|V; |2 < oo then there exists a constant C p such that
Erre (Y, V)? < Cpo(e)*. 2.7)

Remark 2.1. Observe that

[sup Y, — Y|+ E|:sup

t<T t<T

//VM(de dr)

2
—/ Zfdw,—// U? (e)M (de, dr) }
0 0 JE;

< Er(Y, V)
<o (8)2.
This clearly shows the convergence of the approximated scheme (1.3) to BSDE (1.1).

Proof of Theorem 2.2. Existence and uniqueness of the solutions of BSDEs (2.5) and (2.6)
has already been proved; see, e.g. [4].

We are now going to prove inequality (2.7). Define §Y := Y — Y and Apply 1t6’s formula
to |8Y|? to obtain

T T
|5Yt|2+f Zfzdr—i-/ / (Uf(e)—Vr)2m(de)dr
t
= 1g(X7) — g(XS)® + 0 (&) f Vzdr—/ 5Y, 75 AW,
t

T
+ 2/ 8Y,(f(©,) — f(©%)dr + 2/ [(8Y,- + V)2 — 8Y2 1M (de, dr)
t t E¢

T
— z/ / [(8Y,- + Ui (e) — V;)? — 8Y2 1M (de, dr).
t E.
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Taking the expectation on both sides of the above equality yields
T T
]E|:8Yt2 + / zZ8%dr + / / (U (e) — V;)*m(de) dr]
t t E.

T T
= IE[Ig(XT) —g(Xp)I? +U(8)2/ V2 dr +2/ 8Y,(f(©,) — f(®f))dr]-
1 t

From Lemma 2.1, the Lipschitz property of g, and Jensen’s inequality we obtain
T T

E[|8Y,|2 + f Z°%dr + / (UE(e) — V,)*m(de) dr}

t t JE;

T
< c(a(s>2 + KE/ BY)(1X, — XE| + |8, ) dr
1
T
+ KIE/ |:(5Y,)/ ple)elUE(e) — Vr|v(de)] dr
' E;

T
+KIE[ |:(6Yr)/ p(e)Vrev(de)i| dr>.
t E¢

Using the fact that ab < aa’ + b? /a for some o > 0, we obtain
T T
ﬂz[wm2 +/ |Z¢ 1% dr +/ / (Ut (e) — V,)*m(de) dr]
t t E.
T K T
< C<0(8)2 +K(1+a®+y*+ nz)Ef 18Y, |2 dr + —2Ef X, — X2 dr
t o t
K T 2778 2
+ ﬁE p(e)°|U,; (e) — V.|“m(de) dr
+ JE,

K_ (T 21,2
+ SE p(e)*Vim(de)dr ),
n t Jo<le|<e

where o and y are two constants taken such that K /o> = K3 /y? = % We then obtain
T T
E[ww + / 75 dr + f / (UE (&) — Vi) Pm(de) dr}
t t JEg

T
< C<0(8)2 + (K +2K* + 2KK2)E/ |3Y,|2dr>.
t
Using Gronwall’s lemma, we deduce that
ElY, — Y{|* < Cpo(e)*.
Substituting this estimate into the previous upper bound, we obtain
T T
]E/ |Z¢ % dr +IE/ / (Ut (e) — V;)*m(de) dr < Co(¢)%.
0 0 JE;

It follows that

T T
E|5Y;)? +]E/ |z 12 dr + IE/ / (Ut (e) — V;) m(de) dr < Co(e)%.
0 0 JE.
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Now using the Burkholder—Davis—Gundy inequality, we have

T
Esup |8, +E/ |Z¢ | dr +Ef (Ut (e) — V) m(de) dr < Co(e)>. (2.8)
0 JE.

t<T

2
+ sup

t<T

It follows by the Burkholder—Davis—Gundy inequality and (2.8) that
t 1 t t
E[sup| zde,—/ V,dR,|2] §C2E|:sup / AR\A / V, dR,
t<T JO 0 t<T | JO 0

T T
< Cz]E[/ |Z¢ 1> dr + 0(82)/ V2 dri|
0 0

T
<E / |ZE 1> dr + Cao(e2). (2.9)
0

]

The result now follows by combining (2.8) and (2.9).

3. Forward-backward Euler scheme

In this section we first present the discrete-time solution (X¢,Y¢, Z¢ T'!) of (1.3) by
(X™me, yme, zZme8 1¢), defined by induction in (3.1) below, and then show the convergence
of (X™¢, Y™&, Z™¢ T™¥) to the solution of (1.2).

Let us recall some definitions and notation. For each t € [#;, t;11), we define

B tit1 _ lit1
Z,=nE[/ Zsds :| Ft=nE|:/ I'yds J’Tti],
ti t

_ tit1 _ tit1
e = nE[/ Z¢ ds 37,} e = nE[/ ¢ ds 31;]
t; t;

The processes Zt,. and f‘li (respectively ZZ’E and f‘Z’g) can be interpreted as the best

and

approximations of Z; and I';, (respectively Z,’f,’e and FZ”S). We know from Bouchard and
Elie [5] that FBSDE (2.5) has a backward Euler scheme that takes the form

xtl+1_x"f+ b(X"8)+o(s)AWl+1+ i B(X )M (de, (1, ti41)), (3.1a)
Z"* = nEIY AWy | 7], | (3.1b)
ng_nE[ m/ ple)M(de, (ti. ti+1]) ' ?} (3.1c)

=RV | F A+ = f(X;fg Yo T, (3.1d)

1

3.1. Forward Euler scheme

In order to explicitly compute the constant which appears before the rate of convergence of
the Euler scheme, we introduce a continuous-time version of the Euler scheme. We first define
the function ¢ for each ¢t € [0, T'] as

¢ :=max{t;, i =0,....,n |6 <t},
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for which we associate

XP0 = X000+ b(X0) (= @) + o () BXGHD Wy — Wep)

+ | BXLHMde, (1, ')
E¢ !
It could be written as
t t t
XM= 5(0+/ b()_(;’);f)erro(e)/ ﬁ(f(;;f)dWrJr/ B(Xy )M (de,dr). (3.2)
0 r 0 r 0JE, 4

Lemma 3.1. Under hypothesis (2.2), we have

—ne /P
supE[ sup |X;" |p] < oo.
n=1 Lte[0,T]

Proof. The proof straightforwardly follows from Jensen’s inequality, the Burkholder—Davis—
Gundy inequality, and Gronwall’s lemma.

Lemma 3.2. Under hypothesis (2.2), we have

- - 1/p
max IE[ sup |X;"€—X;;g|”] pr(l—i—o(a))n_l/z.

Osi=n=1" Lielt; 111
Proof. By Jensen’s inequality and the convexity of the application x > ||x||”, we have

sup | X — X3FlP

telti,tit1]
tit1 _ _ -
< c(n—f’/2+1 f [|b(xg;f)|f’ +o ()P BX)" + f |/3(Xg;f)e|/’v(de):| dr).
4 r r Ee r
From hypotheses (2.2) and Lemma 3.1, we obtain

_ _ tiy _
E[ sup X! — Xg;gv’] < c<n1’/2+‘ / ca+a +o(s)P)1E|X;f|P)dr)
tel ti

fistiy1]

<C +a(e)P)n P2,

Theorem 3.1. Under hypothesis (2.2), we have

E[ sup |X° — )'(,"’EF] <Cp(l+o(e)n 2,
tel0,T]

Proof. Using the same argument as Lemma 3.2, we obtain

t
E[sup X — XS|”] < CEU X0 — X7 ds]
0 S

s<t
t
< C,,EU 1X55 = XPEP X0 — X|P ds]
1%,
t
< c,,((l +o(e)n 2 +/ ]E[sup X X,|1’] ds>.
0 r<s

Using Gronwall’s lemma concludes the proof.
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Remark 3.1. Since the estimation of Lemma 3.1 is uniform with respect to €, we can write

IE[ sup X7 — )_(tn’8|2] <C,n 2
1€[0,T]

3.2. Backward Euler scheme

In this subsection we prove the main result of the section. However, we first need to compute
the approximation error

— - - _ 1/2
Err, (Y€, Z°, %) 1= {lsggEan — TR 12 = 2 T = T |
We should note that the rate of convergence of the approximated BSDE depends wholly
on the rate of convergence of the approximated scheme of the forward stochastic differential
equation (FSDE). Thus, by adapting the argument of [5] and using Remark 3.1, we easily prove
that
Err, (Y, Z°,T%) < Con™ /2 (3.3)

converges to 0 as the discretization step 7/n tends to 0. This means that the discretization
scheme (3.1) achieves the optimal convergence rate n~!/2. The regularity of Z® and I'® has
been studied in the L2 sense in [5] when the terminal value is a functional of the forward
diffusion.
Our aim in this subsection is to compute the approximation-discretization error between
E?M)(Y, V) :=supE[|Y, — Y/"*|*] + supE

BSDEs (1.2) and (3.1), and to show that
t t _
/ V. dR, —/ ZEdw,
t<T t<T 0 0

o LA R (3.4)

2

converges to 0 as (e, n) — (0, 00).
The first main result of this paper is the following.

Proposition 3.1. Under hypotheses (2.2) and (2.3), the approximation-discretization error
defined in (3.4) is bounded by

Ert(.e)(Y, V) < Co(n™ V2 + o (e)). (3.5)

This means that -
Errg, (Y, V) — 0 as (n,e) — (0,0).

Proof. From (3.4), Jensen’s inequality, and the Burkholder—-Davis—Gundy inequality, we
have

Ert (e (Y, V)2 < C (supEnn — Y 1Y =Y P14+ I = T3, + I0F = D913,

t<T
t t
/VrdRr—/ Z8 dw,
0 0

It follows from Holder’s inequality that

2
+supE

t<T

+1z° - Z"ﬁnzz).

1/2
/ pe)e(V, — Ut (e)v(de) < K( f (v, — Uf(e))2m<de)) V(Ee)'2.
X E,

E¢
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Recall that v(E,;) < oo so that v almost surely has only a finite number of big jumps on
[0, T]. Combining the two last inequalities with (3.3) leads to
- t t
Err(,.¢) (Y, V)% < c(n—l + supE[|Y; — Y{[*] + supE f V. dR, —f Z, dW,
t<T t<T 0 0

T T
+/ / E|V, |>m(de) dr —I—E[f / U (e) — V,|>m(de) dr]).
0 JE® 0 JE,

By Theorem 2.2 we obtain

2

Ertn.e) (Y, V) < C(n™ % 45 (e)).

Remark 3.2. In the general case, as we neglect the small jumps, the Brownian part in (1.3)
disappears. In this case assertion (3.5) can be replaced by

Err(u,e) (Y. V) < Cn™'/2.

4. A discrete scheme via Malliavin derivatives

In this section we generalize the new discrete scheme recently introduced by Hu ef al. [16]
from a general BSDE to our framework of decoupled FBSDEs with jumps. To this end, we
use the Malliavin derivatives of Y to derive the discrete scheme. We first fix a regular grid
w:={t; :=iT/n, i =0,...,n}on[0, T]and approximate the FSDE X? in (1.3) by its Euler
scheme X"¢ already defined in (3.1).

It is hard to prove the existence and convergence of Malliavin derivatives of X", To avoid
this problem, we can instead consider the continuous-time version of the Euler scheme defined
in (3.2).

The Malliavin derivatives of the continuous-time version of Euler scheme for 6 < s almost
everywhere are

1 t
DgX"* = / Oxb(X ") Do Xyt dr + / / 3 B(X ") Do Xy M (de, dr)
9 r r 0 Eg r r
t
Fa@BE) +o) [ oD aw,
9 r T
t t
Dg’e)_(?"g:/ Dgyeb(}_(f’s)dr—f—// D oB(X*)M(de, dr)
0 0 JE,

- t _
+BXL) + 0 (e) /9 Dy, B(X1) dW,.

We introduce some additional assumptions.
(A1) f(t,y,y) does not depend on x.
(A2) The first derivatives of b, 8, and g form a K-Lipschitz function:
10b(x) — db(Y)[ + 9B (x) — aB(Y)| +19g(x) — dg(Y)| = K|x — yI.

(A3) f(t,y,y) is linear with respect to ¢, y, and y. Moreover, there exist three bounded
functions f1, f>, and f3 such that

f y,u) = fi) + Oy + f(0O)y.
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Assumption 4.1. For2 < p < q/2, the following assertions hold.

1. The generator f has continuous and uniformly bounded first- and second-order partial
derivatives with respect to x, y, and y .

2. Foreach (x,y,y) € R3, 8, f(©), 9y f(®), and 3, f (®) belong to "2 and satisfy
T q/2
sup E(f |D98,~f(®r)|2dr> < o0,
0

0<6<T
T q/2
sup  sup 1E</ |DMD98,~f(®,)|2dr> < 0,
0<60<T O0<u<T OVu

where i := x,y,y. There exists a constant K > 0 such that, for any e € (R — {0}),
tel0, T],and0<0,u<t<T,

E|Dgg(X1) — Dug(X7)I? < K6 — ul?/?, “.1)
E|Dg,e8(X1) — Dueg(X1)I” < K16 — ul/?, 4.2)
T p/2
E(/ 1Dy f(©,) — Duf(®r>|2dr> < K6 —ul"?, (4.3)
t
T 5 p/2 5
E(/ [Dg.e f(©Or) — Dy f(O)] dr) <Ko —ulP?. (4.4)
t
Lemma 4.1. Under the Lipschitz continuity of b and B, we have, for any g > 1,
sup supE[ sup ||D9)_(t"’£||2q] < 00, sup supIE[ sup ||D9’e)_(;”£||2‘7] < 00.
0<6<T n>1 0<t<T 0<60<T n>1 0<t<T

Proof. See Appendix A.
We now derive the following theorem.

Theorem 4.1. Under assumption (A2), the Lipschitz continuity of b and B, and, forany p > 2,
we have

_ 1/p
IE[ sup |DgX® — D@X:l’8|p:| < Cpn ', 4.5)
1€[0,T]

E[ sup |Dg.o Xt — Dy X”|P] < Cpn 2.
t€[0,T]

Proof. Using the Burkholder—Davis—Gundy inequality, Jensen’s inequality, Remark 3.1, and
Lemma 4.1, we obtain

IE[ sup |Dp X — D@X?’EV’]
s€[0,7]

SCPE[/I
I,

p/2
+o<e>1’(/ 9. BX ) Dy X — 8x,3(Xf)D(9Xf|2dr>

)4
dr

0xb(Xyi ) Do Xy — d:b(X,) Dy X

v(de) dr

3xB(X ") Do X! Bxﬂ(XS)DQXS

+o@PIBXG") — ﬂ(Xé)lp]
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= CpEM [ Do X7 |"118xb(X}) — 8cb(XOIP + 18:B(X)) — 9:B(Xgi)IP] dr
+ /0 1Dax: - Do Xy IP110xb(X )17 + [8: B (X P 1 dr
+o(e)P|Xy — X§|P}
< CpE[n”/z + /Z sup |DgXE — DgX™¢|P dr:|.
0 uef0,r]

We conclude by using Gronwall’s lemma. Following the same arguments, we prove the second
assertion.

Now we derive the discrete scheme using the expressions of Z¢ and U* as the trace of the
Malliavin derivatives of Y. From (5.2) and (5.4), the two Malliavin derivatives DgY; and Dg . Y;
could be expressed as

T
DeY/ = E[St,raxg(X’%)DQX’; +/ &, 0x f(OF) Dy XE dr
t

J’tz], (4.6)

T
De,eYtE = E[EETDG,eg(X%) + f Sﬁrag,ng’eXf dr
t

5‘7], 4.7

where

r 1
&, = exp{ / (ayﬂ@f,) -3 /E ayf2<®f,)p2(e)m<de>) du
t &

] ayf(@)f,)p(e)M(de,du)},
¢ JE.

r 1 r _
&, = exp{ / (aa,u—zaé,u f pz(e)m(de))du+ / / ae,ume)M(de,du)},
‘ E, t JE.

and . . .
ag.r = SO, + Do.cO,) = 1(O) Dy o XE+Dp o Yr+Dp o Tr 20
"7 Dy XE + Dy oY, + Dy L, reXitPulrt Do 0}
Thus, we define our discrete scheme fori =n —1,...,1,0and ¢ € [, t;+1) by induction,
i.e.
YO =EIY + (O )AL | Fil, (4.82)
" = [8?73 n0xg (XD, X

+ Z 8I;+1 fk+laxf(®gcfl)Dtl th+1Atk

37,} (4.8b)

ryf = E[/ p(e)[ i D, 8(X7°)
E,

+Z€,’f+”l @ Dy, thHAtk]v(de) 3?,} (4.8¢)
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with terminal conditions
=X, 2 = o@ns(REOBRE),
and Uy = g(X7" + B(XT) — (X7,

where, forany 0 <i < j <n,

j-1 Tk+1 1
&y = exp{z /, (ay @) — 3 /E 3, f2(®;§f)p2(e)m(de)> dr
k=i Yk ¢
J-l Tk+1 _
+> f f dy F(©*)p(e)M (de, dr)},
k=i Y Y Ee

=l e 1
8:;’1 = exp{Z/ (ag:i[k — Ea"’géymk/ ,oz(e)m(de)> dr
178 E,

k=i

J-1 Tk+1 _
+ Z/ / agy, pe)M(de, dr)},
k=i Y Y Ee

and
n,e n,e n,e
ne . f(@tk + D9y€®tk ) — f(®fk ) cne ne ne
0.t * DQ,eXZ;eDQ,eY;n’g + Dg’el-w;’;sé‘ {De,eX,k +D0,6Y1k +D(-),ertk #0}

ry* ::/ Uy ep(e)v(de),
E

t:3

with ©° = (r, X;°, ¥;°, %), We are going to compute the discretization error of our
discrete scheme and prove the convergence. We recall the expression of the error between the

solutions of (1.3) and (4.8):
Err, (Y%, Z8, T4)P = Eomax Y =Y 5P +Z8 — Z2 8|12 + |0 — TP
<i<n 1 1 1 1 1 1
Here )" = [ E, p(e)U;gv(de). We also recall the expression for the discretization-

approximation error between (1.2) and (4.8):

n—1

T
Err, (Y, V)= max sup E[|Y, — V] —HE’/ V,dR, — Zz;j’fAW,,.
0 L
=0

<i<
O<i<n telti,tiv1l

2

n=loeng
+ Z/ EIT, — I}¢)2 dr.
i=0 Yl

We conclude this section with the following theorems.

Theorem 4.2. Under Assumption 4.1, we assume the existence of a constant L3 > 0 such that
_ < Lalpy — 11112
|f(t2, y,u) — f(t1, y, w)| < L3lta — 1]/~

Then there exists a positive constant C independent of n such that

Errl (Y€, Z8,T¢) < CpnP/?1oen=p/2, (4.9)
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Proof. We adapt the proof of Theorem 5.2 of [16]. Leti =n —1,...,1,0.
Step 1: show that E[supg;, 18Z;°|’] < Cpn'~P. Define

821" =Zy, — Z;°.
Combining (4.6) and (4.8),
8Z;°| < [E[&,,70:8(X7) Dy, X5 — &, 0: (X7 ) Dy X7 | 7,1
= [E[&;,,7([9:8(X5) — dxg(XF)ID, X7 + 0. 8(X)[Dy, X5 — Dy X7°1)
+ 0, (X7 ) Dy X7 (6.1 — €71 | 71l
From Lemma 4.1, inequality (4.5), and assumption (A2),

E nep =n.e\P/(P—=Dy\p—1 e Snienp
sup [6Z;"|P < (E{ sup D, X7y [E(xg(X7) — 9xg (X7 )"]

0<i<n O<i<n
+ E@g (X" D) (E[ sup 1D, X5 — D, X317
0<i<n
+E[ sup Blong (K30, K5 67 — 61 | 71|
<i<n

< Cp<n_p/2 +E sup |1,~|P).

0<i<n
Using the fact that [e¥ —e”| < (e* +e”)|x — y|, combined with assumption (A3), we obtain
ti+1,tn

I < CE[(DtiX;’Est,.,r + &1 )

X

T 1 T _
/ <f2(f')—§ /E [fa(r)]2p2<e)m(de>)dr+ / /E () pe)M(de, dr)
t; & t; &

n—-l1 Tkt1 _
- > / f f(r)p(e)M (de, dr)
k=it170k  Ee

n—I/

k=i+1"%

5]
Liti 1 5 2

/ [fz(r) —3 L) p (e)m(de)} dr
ti E.

)

_ B T 1 T
|D[,.X';~Eef,.,T|s|Dt,.x’;’£|’exp{ / fow du — / / 3@ p(@m(de) du
ti i JEe

Te+1 1 2 2
(fz(r) t5 /E [f3(r)]°p (e)m(de)) dr

It follows that

Ii =< CE[DTiX;"S(gthT + gg-flatn)

lit1 _
+ / /E F5(r)p(e)H (de, dr)
t &

Again, using assumption (A.3), we have

T
+f/Eﬁ(u)p(e)M(de,du)}
14 €

T
§C( sup |D9)_(';‘8|) sup exp /f F3(w)p(e)M(de, du) ).
0<60<T 0<t<T t E¢
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Similarly, we have

T
|D, X7°16 < C( sup |D9)_(;’€|)< sup exp{/ / f3(w)p(e)M (de, du)}).
t JE.

0<6<T 0<t<T

For any r > 0, we have, by Holder’s inequality and Proposition 5.1,

T r
]E( sup exp{/ f3(r)p(e)117[(de,dr)}>
t JE;

0<t<T

T B 172
< E(exp{Zr /0 fa(r)p(e)M(de, dr)})
E¢

' 1/2
XE( sup exp{—2r// fg(r)p(e)]\_l(de,dr)})
0<t<T 0JE,
T
§E<exp{r2// f3(r)p2(e)m(de)dr})
0 JE,

t 1/2
X E( sup exp{—Zr// f3(r)p(e)M(de,dr)})
0<t<T 0JE,

< Q.

Thus, for p’ € (p, q/2),

. » T B p
E sup IV < CIE( sup |Dtl.X'T"8|> ( sup exp{/ / f3(u),o(e)M(de,du)})
t E.

O<i=n—1 0=<0=<T 0<t<T

+ sup

0<i<n—1

tiyl 1 tiy1
X [ sup / | f2(r)|dr + 3 sup / ; [f3(r)]2p2(e)m(de) dr
ti 1 e
li+1 _
/ f3(r)p(e)M(de, dr)
t Es
< C[E( sup | Dy X7

0<i<n-—1 0<i<n-—1
i|1’
0<0<T

T _ 2pp'/(p'=p)p' /2(p"—p)
X [E( sup exp{/ / f3(t)p(e)M(de,du)}> :|
0<t<T t JEe

li+1 P’
X [IE sup (/ |f2(r)|dr>
0<i<n—1\Jg

tiyl P
+E sup ( / / [f3(r>]2p2(e)m(de)dr>
t; E,

0<i<n—1

)21917’/(1?’—17)] p'/2(p'=p)

+E sup

0<i<n—1

<Cl + L+ LP'7.

p’:|p/p’

tit1 _
/ f3(r)p(e)M(de, dr)
1 E;

‘We first estimate /3.
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By Holder’s inequality for r > 1, Jensen’s inequality, and the Burkholder—Davis—Gundy

inequality,
rp’} p/rp'

rp’)ﬁ/ rp’

13‘"/[/:|:E sup

0<i<n—1

§E< >

0<i<n—1

ti+1
pr( > E‘/,/E | f3(r)1? p*(e)m(de) dr

0<i<n-—1

tip1 _
/ /E f3(r)p(e)M(de, dr)
ti &

lit+1 _
f S3(r)p(e)M(de, dr)
1 Es

< Cpnp/rp’—Pﬂ_
For small enough 7, we take r = 2logn/p’. Then
1311/17, < CnP/2logn—p/2

and
E[l; + L]P/P < Cpn™P.

Consequently,

E sup |(SZn’E|p <C np/210gn—p/2
4 - P :
0<i<n

rp’/Z)p/ rp’

(4.10)

Step 2: show that Esupy_;, [T} |P < Cpn'~P, where T** =T, — I'"*. In fact,

P
E sup [8T;°|P =E sup

0<i<n 0<i<n

/ p(e)8U;; ;v (de)
E;

< C,E sup / pP(e)I8U;E1Pv(de)

0<i<n o
< C,E sup |8U, ;|”.
0<i<n

However, following exactly the same arguments as in step 1, we can prove that

E sup [8U;"¢|P < CnP/2loen=p/2

0<i<n

and that
E sup [8T,|P < CnP/2loen=r/2,

0<i<n

Step 3: show that E supy; -, |8Y,:l’8|" < Cn'~P. We have

n—1
Yt = E[g(ff’;'a) + ) O )AL
k=i+1

Jc'l‘i}a
n]

n—1

Y,f=1E[g(X%)+ PG\
k=i+1
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Hence, by again adapting the argument of [ 16] to our setting, we have, fori =n—1,n-2,...,0,

d

D sE[ 3 IFO8) — F(O, AL+ [REC| + (58"
k=i+1

where §g™¢(X{) = g(X5) — g(X7°) and

IRI| = ‘/ F©)dr — Z FOL )AL,

k=i+1
Forj=n—-1,n-2,...,i,
|5Y”I<]E[ Z IF(OF) = f(Oy DA+ sup |RyF|+ |8¢™° (X7 )I‘fz]}
k=it1 0<t<T

Since we know from [16] that E supy -, .1 |R P < Cpn=? 2 , combining this with the standard
estimate of §X"¢, and the Lipschitz property of the generator f, we have

E sup |8Y" £1p

0<j<n

14
§CE|:< Z |f(O,k+] _f(®tk+1)|Atk) + sup |RZ’5|P+|3gn,s(XT)|Pi|

k=i+1 0<t=T
n p n
§CE[< Z |55(;}f|mk> +<Z |8Y,Z’S|Atk) (Z |87 |Atk>
k=i+1 k=i+1 k=i+1
+ sup IRZ’£I”+|5g"’8(XT)|”}
0<t<T

< C{(T —t)PE sup [8Y}°|P + (nP/2l0EnP/2 4 nf’/z)}.
i+1<k<T

Using similar recursive methods as in Theorem 4.2 of [16], we obtain the estimate

E sup |8V | < C, nP/?logn=p/2 (4.12)

0<j<n
Finally, combining (4.10)—(4.11) and (4.12) completes the proof.
The second main result of this paper is summarized in the following theorem.

Theorem 4.3. Under the same assumptions as in Theorem 4.2, we have

Err, o (Y, V)% < C(o(e)* 4 n'/lo27— 1),

Proof. Foranyi =n—1,n—2,...,0, observe that
max sup E[|YS —¥/°%]
0=i=n teft;,141]
<Crmax sup E[Yf —Y,* + Y, — Y, >+ 1Y, — ¥,"° .

<y <
0<i=n ref,141]

https://doi.org/10.1239/aap/1377868539 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1377868539

FBSDEs driven by pure jump Lévy processes 811

Combining (2.7) and (4.9) with Remark 2.1 applied to our setting, we have
max  sup E[|Yf —¥,"°*] < C(o(e)* +n'/lo2n 1), (4.13)

O<i=n relt;, tiy1 ]
Combining (2.7) and (4.10) we obtain

n—1

Vi dR, — ) Z;F AW,
[ vear %

i=0

2
E

T T
/ V,dR, — / Z¢ dW,
0 0

-1 tiy1
> [z -zaw,
ti

<C<E

+E

)

< C(o(g)> + n'/loen=1y, (4.14)

Arguing as above, we obtain

Z/ E|T, — “|2d;<2/ E[|I; — T§1? + |Tf — TE 1 + [T — I7°) 21 de.

From (2.7), (5.6) below, and (4.11), we have

nl

fi+! _n.E ’ _T1¢€12 1/logn—1
EIl, — I} °*dt < [ E[T, — TE1dr + Cn
ti 0

T
c(/ / E|V, — U¢(e)*m(de) dr
0o JE,
T
+f/ 1E|V,|2m(de)dr+n1/l°g”—1>
0 JE®

< C(o(g)? 4 n'/loen=1y, (4.15)
Combining (4.13), (4.14), and (4.15) yields the required results.

Remark 4.1. The importance of the above scheme lies in its adeptness to a BSDE when the
generator does not depend on the terminal value of a forward equation. Consider the following
BSDE driven by a pure jump Lévy process:

T T
=$+/ f(r7 Yra/ P(e)vrev(d€)> dr—f VrM(dl’, d@) (416)
t E t
We approximate this process by

T T T
=& -|-/ f(r, f/f / p(e)V,ev(de)) dr — / Zdes — / / 0f(e)M(dr, de).
t E, t

We now propose the following discrete-time scheme, defined by terminal values Y =£,
ZnS—DTf andU —Dng

Yo = BV + FOL ) At | 7,1, (4.17a)
n—1

F= B[ 6 D 6 O D i on | 7 | @
k=i
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n—1
fre = E[/ P&, Dok + > & o Dy Xyt A ]v(de) }‘,l.], (4.17¢)
Ee k=i

with (:)Zf = (r, I?,n’g, f‘,':(’g). Under the same assumptions as in Theorem 4.2, we prove the
convergence of scheme (4.17) to BSDE (4.16). Moreover, we obtain the upper bound

T n—1 2
max sup K[, —th"£|2]+IE‘/ Ve dR, = Y Zit AW,
0 .
i=0

0=i=n e, 14]

=l any
+ Z/ E|T, — I° 2 dr
i=0 vl

S C(G(8)2 + nl/logn—l)_

5. Malliavin calculus for FBSDEs

For ease of notation, we shall denote throughout this section the process (X¢, Y¢, Z%, I'?)
by (X, Y, Z,T).

In this section we study some regularity properties of the solution (X, Y, Z, I"). We recall
system (1.3) using the new notation:

t t t
Xi =Xo+f b(Xr)dr+f B(X)o(e) AW, +// B(X,-)M(dr, de),
0 0 0JE, 5.1)

T T T
Y, = g(X7) + / F(©)dr — / 2, dW, — / / Un (o)l (dr. de).
t t t JE,

In fact, there are many methods to develop Malliavin calculus for Lévy processes. In this paper
we opt for the approach of Sol€ ef al. [22], based on a chaos decomposition in terms of multiple
stochastic integrals with respect to the random measure M. Adopting the notation of [11], we
will recall the suitable canonical space we adapt to our setting.

We start by introducing some additional notation and definitions. We assume that the
probability space (2, ¥, P) is the product of two canonical spaces: (Qw x Q, Fw x F,
Pw xP,,) and the filtration IF = (#;);¢[0, 7], the canonical filtration completed for P (for details
concerning this construction, see Section 2 of [11]).

We consider the finite measure ¢ defined on [0, T] x R by

q(B) =/ dt+f e*v(de) dt, B e B(0,T] x R),
B(0) !

where B(0) = {r € [0, T]; (¢t,0) € B}, B = B—B(0), and the random measure Q € [0, T]xR
is defined by

Q0(B) :/ dw; +/ ep(de, de), B € B8([0, T] x R).
B(0) !

For n € N and a simple function 4,, = 1g, x...x g, With pairwise disjoints sets £, ..., E, €
B([0, T] x R), we define

In(hn) = / h((tls el)v DR (tns en))Q(dtls del) e Q(dtnv den)-
([0, TTxR)"
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We also define the following spaces.
° IL2T 4 »(R), the space of product measurable deterministic functions z: ([0, T] x R)" —

R éafisfying ||h||]i2 < 00, where
T.q.n

||h||[2L2 = / |h((t1’el)’-~-’(tn’en))|2Q(dtla dep) - - - q(dty, dey).
([0, T1xR)"

T.q.,n

e D'2(R) denotes the space of F-measurable random variables H € L2(R) with the
representation H = )_° I, (h,) and satisfying

00
2
E nn! ||hy ”]L2 < 00.
T.q,n
n=0

e LL12(R) denotes the space of product measurable and F-adapted processes G: 2 x R —
R satisfying

E[ f 1Gs. y)Pq (ds. dy)] < o,
[0, T]xR

G(s, y) € DV2(R), for ¢ almost every (s, y) € [0, T] x R,
E[/ |D; .G (s, y)|2q(ds,dy)q(dt,dz)i| < o0.
([0, T1xR)2

This space is endowed with the norm

IGIIF 1, = E[/[O 1 O y>|2q<ds,dy>}
N X

+ E[ / D12 G (s, y)Pq(ds, dy)q(dr, dz)}.
([(),T]XR)2

We should mention that the derivative D; o coincides with D;, the classical Malliavin
derivative with respect to Brownian motion.
To study the regularity of Z and U, we shall also introduce the following assumption.

Assumption 5.1. For any A > 0 and q > 1, we consider three progressive measurable
processes {a; }o<i<T, {Brlo<i<7 and {y:}o<i<T Such that

T
Eexp{k[ (8- + yr2) dr} < 00, sup E[loy|? + |y1]7] < o0.
0 0<t<T
Proposition 5.1. Under Assumption 5.1, the discontinuous semimartingale &;,

d& = & B, dr + gtytf p(e)M(de, dt),

Eg¢

has the following properties.
1. Esupy,<7 &' < oo foranyn € R.

2. The process Z; := 8;1 satisfies the linear stochastic differential equation

dz,
Z;

Moreover, we have, for any p > 2, E|Z;, — Z|P < C|t — s|P.

= (—ﬁ, +y? /E pz(e)m(de)> dt — y, /E p(e)M(de, dr).
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Proof. We could write & as

t t
& =exp{/ (,Br — lf yrzpz(e)m(de)> dr—l—// vrp (€)M (de, dr)}.
0 2 JE, 0JE,

Under Assumption 5.1, we get the first assertion. The second assertion is deduced from the
first assertion, Holder’s inequality, and the Burkholder—Davis—Gundy inequality.

The following theorem constitutes the main tool used to prove Theorem 5.3 below.

Theorem 5.1. Suppose that & X1 and fOT a, Dy X, dr are in M24_ The linear BSDE
T
Yt—g(XT)XT+ [arX + B Y + 1T, ]dr—/ Z, dw,
t

/f U, (e)M(dr, de), 0<r=<T,

has a unique solution (Y, Z, U) and there exists a constant C > 0 such that
E|Y, — Yi|? < C|t —s|P/* foralls,t €0, T].
Proof. Applying 1t6’s formula to &;Y;, we obtain

Then

d(&Y) = —&oy Xrdt + &Z, dW, + & | (Yiyip(e) + Us(e))M(de, dr).
T
Y = ]E|:8t,Tg(XT)XT +/ & rar X, dr
t
where &, = Z,&;.

E.
)
For0 <s <t < T, we have

ElY; — Y|? < 3?7 'EIE[&.78(X7) X7 | F1]1— El&.78(X1) X7 | FI”
T
~‘7‘vt:| - E|:/ 8‘v,rarXr dr $Yi|
s
=3I + D).

By adapting the argument of Theorem 2.3 of [16] and recalling Remark 5.1, we can
immediately show that I} < C|t — s|?/?> and I, < C|t — s|P/?.

T P
+ SP_IE‘E[f & o, X, dr
t

5.1. Malliavin calculus on the FSDE

In this section we recall some well-known properties of FSDEs concerning the Malliavin
derivatives of the solution of an FSDE with jumps, stated in [20] for the case of stochastic
differential equations without jumps and in [21] for the case of a Lévy process. The following
theorem can be found in [21].

Theorem 5.2. Let X be the solution of FSDE (5.1). Then, for all t € [0, T] and (0,¢) €
[0, T] x (R\ {0}), the Malliavin derivatives of X satisfy

t t
Dy X, Z/ 0:b(X;) Dy X dr+f/ 8xﬂ(Xr)D9XrM(dra de)
0 0 JEg

t
+ o (¢)B(Xp) +o(a)/ 0xB(X,)Dg X, dW,, 0<6<r=T,
6
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and

t t
Dy . X: =/ Dy ¢b(Xy) dr—i—// Dy B(X;)M(dr, de)
6 0 JE;

t
+ B(Xe) +o(s)f Do of(X,)dW,, 0<6<i<T.
0

Forall 6 > t, we have Dg . X; = Do X; = 0 almost surely.

Remark 5.1. Using standard arguments as in the proof of Lemma 4.1, we can prove the
following a priori estimates:

sup E[ sup DgX,] < 00,

0<0<T ‘“0<t<T
sup E[ sup DQ,EX,] < 00,
0<6<T, ecR* 0<t<T

sup  sup IE[ sup DuDgX,] < 00,
O<u<T 0=0<T “0=<t<T

sup sup E[ sup DuDg,eXt] < 0.
0<u<T 0<O<T, ecR* 0<t<T

5.2. Malliavin calculus on the BSDE

In this section we recall some results of Malliavin derivatives applied to BSDEs, established
in [13] and [11], in order to generalize the result of Theorem 2.6 of [16].

Theorem 5.3. Suppose that Assumption 4.1 holds. There exists a unique solution {(Y;, Z;,
Ui (e))}o<t<T, ee(®—1{0)) to BSDE (5.1) such that the following assertions hold.

1. The first version of the Malliavin derivative (DgY;, Do Z;, DoU;(€))0<6,<T, ec®—{0}) Of
the solution (Y;, Z;, U (€))0<t<T, ee®R—{0}) Satisfies the linear BSDE

T T
DoY, = d,4(X1) Do X1 + f £ @) dr — / Doz, AW,
t t
T -
—/ DoU,(e)M(dr.de), 0<6 <t<T, (5.2)
¢t JE,

where f9 (®) := 0y f(®)Dg X, +0y f(®O)DgY,+0, f(®)DgT',. Moreover, (D, Y;)o<i<T
is a version of (Z;)o<i<r:

Z; = D;Y; almost surely. (5.3)
2. The second version of the Malliavin derivative

(Do,: Y1, Do zZt, Do, Ur(€))o<p,i<T, (e,2)c(R—{0})?
of the solution (Y, Z;, U;(2))o<t<T, ze(R—(0}) Satisfies the linear BSDE

T
Dy..Y: = g(X1 + Do X1) — g(X1) + / LF(©, + Dy2Oy) — F(O,)]dr
t

T T
—/ Dg,zz,dwr—/ / Dy U, (e)M(dr, de), 0<0<r<T.
t t Es
(5.4)
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Moreover, (D; o Y1)o<i<T, ec®R—{0}) is a version of (U;(2))o<i<T, ze®R—{0})~
U(z) = D; .Y almost surely.
For (0,e) € [0,T] x R,
Dy .Yy = Dg..Z; = Dy Ui (z) =0, 0<tr<#, (e,z) e Rx (R—{0}).
3. There exists a constant C > 0 such that, for all s,t € [0, T],
E|Z, — Zs|P < C|t — s|P/?, (5.5)
E|T, — Ty < Clt — s|P/2. (5.6)

Proof. The proof of the existence and uniqueness of the solution is similar to that of [13,
Proposition 5.3]and [11, Theorem 4.1]. We therefore focus our attention on proving inequalities
(5.5) and (5.6).

We first prove that E|Z, — Z,|? < C|t — s|P/?. From (5.3) we have

Zy — Zg = D;Y; — DyYs.
Then
E|Z, — Zs|? < EID/Y: — DsYi|? + E|DsY, — DsYs|P.

Step 1: estimate E|D,Y; — D;Y;|P. From Lemma B.1, (5.2), and assumptions (4.1)—(4.3),

we obtain

T
E|D,Y; — DsY;|” +E</ |DZ, — Dszr|2dr>
t

T p/2
+]E<// |D,U,(e)—DSU,(e)lzm(de)dr>
t JEg

< CE(ID:g(X71) — Dsg(X1)I")

p/2

T p/2
+CE</ |th(r,Xr,Yerr)_Dsf(rersYr,Ferdr)
1

<Clt —s|P/?. (5.7)
Step 2: estimate E|DgY; — DyYg|P. We recall the expression for &;:

t t
8;=exp{ | (ﬁr—l / yfp%e)m(de)) ar+ [ [ mo@ite, dr)}.
0 2 JE, 0JE,

Define B, = 9y f(©,) and y, = 9, f(©,). Forany 0 <6 <t < T, we have

t —_
Dest:a{ fe /E Py f (O Dy X, + yy () Dy¥y + by £(©,) Dy, 10 (de, dr)
.
+ fe / [Bay £(©,) — p2()r By £ (©)1Dg X,m(de) dr
Je
+ [ [ 0@ = ey r@1DYmae)

t
+ fe /E [ayyf(car)—p%e)yrawf(@»]DeFrm(de)dr}.

By induction on the chain rule,

Do f2(©) = fX(O + Dy .0) — f2(O).
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Using this in the above equality, we obtain

t
Dp.& =& (exp{ f [ay f(©, + DpoO,) — 0, f(©,)
6

! 2@, f(O, + Dg.o0,))* — y2Im(de) | d
B Egp y r 0,eVr Y, im(de r

t
+vop(e) + /efE p(&)dy f(O, + DpO;) — v, 1M (de, dr)} - 1>-

From Proposition 5.1, Assumption 4.1, Holder’s inequality, and the Burkholder—Davis—Gundy
inequality, we can show that, for any p < ¢,

sup E sup |Dg.&|” < oc. (5.8)
0€[0,T],ecR 6<t<T

Now, by the Clark—Ocone formula (see [14]) applied to &7 Do X T,

T
ErDg X1 = E(E7 Do XT) +/ E[D,(&rDeXT) | F1dW,;
0

T
+ / / E[D,.(€r Dy X1) | F 17 (dr, de)
0 &

T T
=E(ErDyX7) +/ uf dw, +/ / vﬁEM(dr, de),
0 0 JE.

where
ul :=E[D,Er Dy X1 + & D, Dy X7 | F71,

v, == E[D, .8 DyX1 + Er Dy.e Do X1 + Dy o€ Dy e Do X1 | F71.

Thus, it remains to prove that

sup sup |u/|P <oo and  sup sup |vﬁe|p < oo.
0€[0,T1r€[0,T] 0€[0,T] re[0,T], ecR

By Holder’s inequality,
E'”f,elp = E”E[Dr,egTD@XT + 8TDr,el)QAXT + Dr,e(c;TDr’eDQXT | ff“}“p
< 37" N (E|Dy. & DyX1|” + E|€ Dy.e Dy X1|” + E|D; €7 Dye Dy X11")
< 3P—1((E|Dr’egr|M/(q—p))(q—p)/q (E|D9Xr|q)”/q
+ (E|&r |Pq/((1*P))((1*P)/q (E|Dr,eD9XT|q)p/q
+ (E|Dr,687|pq/(q_p))(q_p)/q (E|D,.o Do X7 |6])P/q).
Combining (5.8) and Remark 5.1, we deduce that supyc(o 71 SUP, (0,77, ecR |vﬁelp < oo.

Following the same arguments we conclude that supgcpo 77 SUP,¢o0, 77 WP < co. Asa
consequence, &7 Dy X7 belongs to M>?. Therefore, by Theorem 5.1 we conclude that

E|DsY, — DyY,|” < Cl|t — s|P/2. (5.9)
Now, combining (5.7) and (5.9), we finally obtain, for some constant C > 0,

E|Z; — Zs|P = E|DsY, — DsY;|P < Clt — s|P/2.
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We now prove that E|T; — I';|? < C|t — s|P/%. By Holder’s inequality,

14
E|l, — TP =E

/E () (Ui (e) — Uy (e))v(de)

p—1
sE[(/ |Ut(e>—Us(e>|”v<de)>(/ |p<e)|1’/“’—“v(de)> }
E. E;

< C/ E|U;(e) — Us(e)|Pv(de)
E¢

= [ BID.o ~ Doy v(de)
E¢

=< C/ EHDI,EYI - Ds,eYt|p + |Ds,eYt - Ds,eYs|p]V(de)-
E¢

Step 3: we prove that E|D, .Y; — D; Y|P < Clt — s|P/2. Under assumptions (4.2) and
(4.4), and using Lemma B.1, we obtain

T 5 p/2
IE:|l)z‘,eYt - Ds,eYtlp + E(/ |Dt,le - Ds,ezr| d}")
t

T p/2
+E</ f |D,,eUr<e)—Ds,eUr<e>|2v(de)dr>
: JE,

< CE[|D;,.8(X1) — Dy eg(X1)|"]
T /2
+CE<f |Dt,ef(r7 Y,, Ur)_Ds,ef(r, Y, Ur)|2dr>
t

<Clt —s|P/?.

Step 4: we prove that E|Ds .Y, — Dy . Ys|P < C|t — s|P/2. We can write BSDE (5.4) as
T T
De,eYt = G(XT)DQ,eXT +/ a9,r[D9,eXr + DG,eYr + DQ,eFr] dr — / DG,le dWw;
t t

T
—/f Dy .Uy (e)M(dr, de), (5.10)
t JE,

where
gX1 + Dy X1) — g(XT)
G(X7) = : 1 ,
(X1) DooXr {Dg .o X170}
f(O, + Dy .0O) — f(O,)

DG,eXr + DG,eYr + DG,eFr

a@,r = {Dﬁ,exr+D9.eYr+D9,err7é0}‘

Then, from the Lipschitz continuity of f, we have supy_, .7 El|ag ¢|” < 0o. It remains to show
that & Dy . X belongs to M 2.7, Again, by the Clark—Ocone formula applied to &7 Dy . XT,

T
€1 Do X1 = E(61 Do) + / E[D, (67 Dp.cX1) | F]dW,
0
T
+ / / E[D, (61 Do X1) | F1M(dr, de)
0 JE,

T T
= E(Er Dy X7) + / 7 dw, + / f 3 W (dr, de),
0 0 JE;

https://doi.org/10.1239/aap/1377868539 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1377868539

FBSDEs driven by pure jump Lévy processes 819

with
i) :=EID,&r Do, X1 + €7Dy Do o X1 | 721,
596 = IE[Dr,eSTI)Q,eXT + 8TDr,eD(J,eXT + Dr,egTDr,eDG,eXT | ‘(Fr]

Following the same argument as in step 2 and using Remark 5.1, we prove that

~0 ~0
sup  E[li,|” + |v; 7] < oo.
0€[0,T],ecR

Therefore, &7 Dy . X1 belongs to M. Finally, we once again apply the result of Theorem 5.1
to BSDE (5.10) to obtain

E|D; Y, — Dy Ys| < Clt — s|P/2.
The result then follows.

Appendix A. Proof of Lemma 4.1

By Jensen’s inequality,

- N 2p
sup | Dy X" < 32771 sup / 3:b (X3 Do Xy dr
O<s<t O<s<t 0
2p
+3%71 sup o (e) / 0uB(X ) Do X AW,
f<s<t
_ 2p
432771 sup // 0. B(X5") Dy X3 M (de, dr)
f<s<t .

+3 o (@) BXG )P

Taking the expectation of both sides and using Holder’s inequality, we obtain

p
E[ sup Do X1 < € ( [/ Do X g ||2Pdr}+E[/ | Do XG dr}

0<s<t

+ E[ / Do Xy 1% dr} + Ena(e)mz’@)ﬂﬂ)
0

< U 1Dg X ¢ ||2Pdr}+3>

< C<EU sup ||D9X¢,1 1?7 dr:| + B>,
0 0<u<r

where B := E[supy,7 IB(X%)|1*P]. Since the constant C does not depend on 6 and n,
we conclude by Gronwall’s lemma that E[supy, <7 ||D9X ¢|1>P] is bounded and, therefore,
SUPg<g<7 SUP,=1 Elsups—, <7 [ Do X" ||?F] is finite.

By the same arguments, we prove that

sup supIE[ sup ||D9,e)_(;"€||21’] < 00.
0<0<Tn=1 Lo<i<T
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Appendix B. A priori estimates

Lemma B.1. Let& € LY9(2), andlet f : Q x [0, T] x R x L2(E, E,V;R) > Rbe P x B x
B(L*(E, &, v; R)) measurable, satisfy EfOT | £(t,0,0)2dr < oo, and be uniformly Lipschitz
with respect to (y, z) such that, for some constant K > 0, we have

[ f(&, y1,ur1) — f&, y2, u2)| < K(Iy1 — 2l + llur — uzll)

forall y1,y2, € Randuy,uy € L%(E, &, v; R). Then, there exists a unique triple (Y, Z,U) €
B2 solution to BSDEs (1.3). Moreover, for q > 2, we have the following a priori estimate:

T q/2 T
E[ sup |Y,|‘1]+E</ |z,|2> —HE[/ / |U,(e)|qv(de)dt]
0<t<T 0 0 JE
T q/2
§C<E|$|q —HE(/ |f(t,0,0)|2dt) ) (B.1)
0

Proof. The existence and uniqueness of solutions to BSDEs with jumps was proved in [4],
and estimate (B.1) is a direct consequence of Proposition 2.2 in the same reference, with

(f'. @) =(0,0).

Acknowledgements

The author thanks the anonymous referee for his/her very constructive comments to improve
the presentation of this paper. He is deeply grateful to Professor Bruno Bouchard for fruitful
discussions concerning Section 2 and Section 3. Finally, the author thanks Dr Rachid Belfadli
for helpful suggestions to improve the readability of the paper.

References

[1] APPLEBAUM, D. (2004). Lévy Processes and Stochastic Calculus (Camb. Stud. Adv. Math. 93). Cambridge
University Press.
[2] ASMUSSEN, S. AND RoOsINSKI, J. (2001). Approximations of small jumps of Levy processes with a view towards
simulation. J. Appl. Prob. 38, 482-493.
[3] BALLY, V. AND PAGES, G. (2003). Error analysis of the optimal quantization algorithm for obstacle problems.
Stoch. Process. Appl. 106, 1-40.
[4] BARLES, G., BUCKDAHN, R. AND PARDOUX, E. (1997). Backward stochastic differential equations and integral-
partial differential equations. Stoch. Stoch. Reports 60, 57-83.
[5] BoucHARD, B. AND ELIE, R. (2008). Discrete-time approximation of decoupled forward-backward SDE with
jumps. Stoch. Process. Appl. 118, 53-75.
[6] BoucHARD, B. AND Touzi, N. (2004). Discrete-time approximation and Monte-Carlo simulation of backward
stochastic differential equations. Stoch. Process. Appl. 111, 175-206.
[7] BRIAND, P,, DELYON, B. AND MEMIN, J. (2001). Donsker-type theorem for BSDEs. Electron. Commun. Prob. 6,
1-14.
[8] CHEVANCE, D. (1997). Numerical methods for backward stochastic differential equations. In Numerical Methods
in Finance, eds L. C. G. Rogers and D. Talay, Cambridge University Press, pp. 232-244.
[9] CLEMENT, E., LAMBERTON, D. AND PROTTER, P. (2002). An analysis of a least squares regression method for
American option pricing. Finance Stoch. 6, 449-472.
[10] CoQUET, F., MACKEVICIUS, V. AND MEMIN, J. (1998). Stability in D of martingales and backward equations
under discretization of filtration. Stoch. Process. Appl. 75, 235-248.
[11] DELONG, L. AND IMKELLER, P. (2010). On Malliavin’s differentiability of BSDEs with time delayed generators
driven by Brownian motions and Poisson random measures. Stoch. Process. Appl. 120, 1748-1775.
[12] DoucLas, J., JrR., MA, J. AND PROTTER, P. (1996). Numerical methods for forward-backward stochastic
differential equations. Ann. Appl. Prob. 6, 940-968.
[13] EL Karoul, N., PENG, S. AND QUENEZ, M. C. (1997). Backward stochastic differential equations in finance.
Math. Finance 7, 1-71.

https://doi.org/10.1239/aap/1377868539 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1377868539

FBSDEs driven by pure jump Lévy processes 821

[14]
[15]
[16]
[17]
[18]
[19]
[20]

[21]
[22]

Es-SEBAlY, K. AND TUDOR, C. A. (2008). Lévy processes and Itd6 Skorokhod integrals. Theory Stoch. Process.
14, 10-18.

Fustwara, T. AND KuNITA, H. (1985). Stochastic differential equations of jump type and Lévy processes in
diffeomorphism group. J. Math. Kyoto Univ. 25, 71-106.

Hu, Y., NUALART, D. AND SONG, X. (2011). Malliavin calculus for backward stochastic differential equations
and application to numerical solutions. Ann. Appl. Prob. 21, 2379-2424.

KOHATSU-HIGA, A. AND TANKOV, P. (2010). Jump-adapted discretization schemes for Levy-driven SDEs. Stoch.
Process. Appl. 120, 2258-2285.

LEMOR, J. P, GOBET, E. AND WARIN, X. (2006). Rate of convergence of an empirical regression method for
solving generalized backward stochastic differential equations. Bernoulli 12, 889-916.

MaA, J., PROTTER, P. AND YONG, J. M. (1994). Solving forward-backward stochastic differential equations—a
four step scheme. Prob. Theory Relat. Fields 98, 339-359.

NUALART, D. (1995). The Malliavin Calculus and Related Topics. Springer, New York.

PETROU, E. (2008). Malliavin calculus in Lévy spaces and applications to finance. Electron. J. Prob.13,852-879.
SoLE, J. L., UTzET, E. AND VIVES, J. (2007). Canonical Lévy process and Malliavin calculus. Stoch. Process.
Appl. 117, 165-187.

https://doi.org/10.1239/aap/1377868539 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1377868539

	1 Introduction and summary
	2 Approximation of decoupled FBSDEs driven by pure jump Lévy processes
	2.1 Approximation scheme

	3 Forward--backward Euler scheme
	3.1 Forward Euler scheme
	3.2 Backward Euler scheme

	4 A discrete scheme via Malliavin derivatives
	5 Malliavin calculus for FBSDEs
	5.1 Malliavin calculus on the FSDE
	5.2 Malliavin calculus on the BSDE

	A Proof of Lemma 4.1
	B A priori estimates
	Acknowledgements
	References

