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Abstract
We generalise Quasi-Linear Means by restricting to the tail of the risk distribution and show that this
can be a useful quantity in risk management since it comprises in its general form the Value at Risk, the
Conditional Tail Expectation and the Entropic Risk Measure in a unified way. We then investigate the fun-
damental properties of the proposed measure and show its unique features and implications in the risk
measurement process. Furthermore, we derive formulas for truncated elliptical models of losses and
provide formulas for selected members of such models.
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1. Introduction
Two of the most prominent risk measures which are also extensively used in practice are Value
at Risk and Conditional Tail Expectation. Both have their pros and cons and it is well known that
Conditional Tail Expectation is the smallest coherent (in the sense of Artzner et al. (1999)) risk
measure dominating the Value at Risk (see e.g. Föllmer & Schied, 2016: Theorem 4.67). Though in
numerical examples the Conditional Tail Expectation is often much larger than the Value at Risk,
given the same level α. In this paper we present a class of risk measures which includes both the
Value at Risk and the Conditional Tail Expectation. Another class with this property is the Range
Value at Risk, introduced in Cont et al. (2010) as a robustification of Value at Risk and Conditional
Tail Expectation. Our approach relies on the generalisation of Quasi-Linear Means. Quasi-Linear
Means can be traced back to Bonferroni (1924: p. 103) who proposed a unifying formula for differ-
ent means. Interestingly he motivated this with a problem from actuarial sciences about survival
probabilities (for details see also Muliere & Parmigiani, 1993: p. 422).

The Quasi-Linear Mean of a random variable X, denoted by ψU(X), is for an increasing,
continuous function U defined as

ψU (X)=U−1 (E [U (X)])

whereU−1 is the generalised inverse ofU (see e.g. Muliere & Parmigiani, 1993). IfU is in addition
concave, ψU(X) is a Certainty Equivalent. If U is convex ψU(X) corresponds to the Mean Value
Risk Measure (see Hardy et al., 1952). We take the actuarial point of view here, i.e. we assume
that the random variable X is real-valued and represents a discounted net loss at the end of a fixed
period. This means that positive values are losses whereas negative values are seen as gains. A well-
known risk measure which is obtained when taking the exponential function in this definition is
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the Entropic Risk Measure which is known to be a convex risk measure but not coherent (see e.g.
Müller, 2007; Tsanakas, 2009).

In this paper, we generalise Quasi-Linear Means by focusing on the tail of the risk distribution.
The proposed measure quantifies the Quasi-Linear Mean of an investor when conditioning on
outcomes that are higher than its Value at Risk. More precisely it is defined by

ραU(X) :=U−1
(
E
[
U(X)|X ≥VaRα(X)

])
whereVaRα is the usual Value at Risk.We call it Tail Quasi-LinearMean (TQLM). It can be shown
that when we restrict to concave (utility) functions, the TQLM interpolates between the Value at
Risk and the Conditional Tail Expectation. By choosing the utility function U in the right way, we
can be close to either the Value at Risk or the Conditional Tail Expectation. Both extreme cases
are also included when we plug in specific utility functions. The Entropic Risk Measure is also a
limiting case of our construction. Though in general not being convex, the TQLM has some nice
properties. In particular, it is still manageable and useful in applications. We show the application
of TQLM risk measures for capital allocation, for optimal reinsurance and for finding minimal
risk portfolios. In particular, within the class of symmetric distributions we show that explicit
computations lead to analytic closed-forms of TQLM.

In the actuarial sciences there are already some approaches to unify risk measures or premium
principles. Risk measures can be seen as a broader concept than insurance premium principles,
since the latter one is considered as a “price” of a risk (for a discussion, see e.g. Goovaerts et al.,
2003; Furman & Zitikis, 2008). Both are in its basic definition mappings from the space of ran-
dom variables into the real numbers, but the interesting properties may vary with the application.
In Goovaerts et al. (2003) a unifying approach to derive risk measures and premium princi-
ples has been proposed by minimising a Markov bound for the tail probability. The approach
includes among others the Mean Value principle, the Swiss premium principle and Conditional
Tail Expectation.

In Furman & Zitikis (2008), weighted premiums have been introduced where the expecta-
tion is taken with respect to a weighted distribution function. This construction includes e.g.
the Conditional Tail Expectation, the Tail Variance and the Esscher premium. This paper also
discusses invariance and additivity properties of these measures.

Further, the Mean Value Principle has been generalised in various ways. In Bühlmann et al.
(1977), these premium principles have been extended to the so-called Swiss Premium Principle
which interpolates with the help of a parameter z ∈ [0, 1] between the Mean Value Principle and
the Zero-Utility Principle. Properties of the Swiss Premium Principle have been discussed in De
Vylder & Goovaerts (1980). In particular, monotonicity, positive subtranslativity and subadditiv-
ity for independent random variables are shown under some assumptions. The latter two notions
are weakened versions of translation invariance and subadditivity, respectively.

The so-called Optimised Certainty Equivalent has been investigated in Ben-Tal & Teboulle
(2007) as a mean to construct risk measures. It comprises the Conditional Tail Expectation and
bounded shortfall risk.

The following section provides definitions and preliminaries on risk measures that will serve as
necessary foundations for the paper. Section 3 introduces the proposed risk measure and derives
its fundamental properties. We show various representations of this class of risk measures and
prove for concave functionsU (under a technical assumption) that the TQLM is bounded between
the Value at Risk and the Conditional Tail Expectation. Unfortunately the only coherent risk mea-
sure in this class turns out to be the Conditional Tail Expectation (this is maybe not surprising
since this is also true within the class of ordinary Certainty Equivalents, see Müller, 2007). In
Section 4 we consider the special case when we choose the exponential function. In this case we
call ραU Tail Conditional Entropic Risk Measure and show that it is convex within the class of
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comonotone random variables. Section 5 is devoted to applications. In the first part we discuss
the application to capital allocation. We define a risk measure for each subportfolio based on our
TQLM and discuss its properties. In the second part we consider an optimal reinsurance problem
with the TQLM as target function. For convex functions U we show that the optimal reinsurance
treaty is of stop-loss form. In Section 6, the proposed risk measure is investigated for the family of
symmetric distributions. Some explicit calculations can be done there. In particular, there exists
an explicit formula for the Tail Conditional Entropic Risk Measure. Finally, a minimal risk port-
folio problem is solved when we consider the Tail Conditional Entropic Risk Measure as target
function. Section 7 offers a discussion to the paper.

2. Classical Risk Measures and Other Preliminaries
We consider real-valued continuous random variables X :�→R defined on a probability space
(�,F , P) and denote this set by X . These random variables represent discounted net losses at the
end of a fixed period, i.e. positive values are seen as losses whereas negative values are seen as
gains. We denote the (cumulative) distribution function by FX(x) := P(X ≤ x), x ∈R. Moreover,
we consider increasing and continuous functions U :R→R (in case X takes only positive or
negative values, the domain ofU can be restricted). The generalised inverseU−1 of such a function
is defined by

U−1(x) := inf{y ∈R :U(y)≥ x}
where x ∈R. With

L1 := {X ∈X : X is a random variable with E[X]<∞}
we denote the space of all real-valued, continuous, integrable random variables. We now recall
some notions of risk measures. In general, a risk measure is a mapping ρ : L1 →R∪ {∞}. Of
particular importance are the following risk measures.

Definition 2.1. For α ∈ (0, 1) and X ∈ L1 with distribution function FX we define

(a) the Value at Risk of X at level α as VaRα(X) := inf{x ∈R : FX(x)≥ α},
(b) the Conditional Tail Expectation of X at level α as

CTEα(X) :=E[X|X ≥VaRα(X)].

Note that for continuous random variables the definition of Conditional Tail Expectation is
the same as the Average Value at Risk, the Expected Shortfall or the Tail Conditional Expectation
(see Chapter 4 of Föllmer & Schied (2016) or Denuit et al. (2006)). Below we summarise some
properties of the generalised inverse (see e.g. McNeil et al., 2005: A.1.2).

Lemma 2.2. For an increasing, continuous function U with generalised inverse U−1 it holds the
following:

(a) U−1 is strictly increasing and left-continuous.
(b) For all x ∈R+, y ∈R, we have U−1 ◦U(x)≤ x and U ◦U−1(y)= y.
(c) If U is strictly increasing on (x − ε, x) for an ε > 0, we have U−1 ◦U(x)= x.

The next lemma is useful for alternative representations of our risk measure. It can be directly
derived from the definition of Value at Risk.
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Lemma 2.3. For α ∈ (0, 1) and any increasing, left-continuous function f :R→R it holds
VaRα( f (X))= f

(
VaRα(X)

)
.

In what follows we will study some properties of risk measures ρ : L1 →R∪ {∞}, like

(i) law-invariance: ρ(X) depends only on the distribution FX ;
(ii) constancy: ρ(m)=m for allm∈R+;
(iii) monotonicity: if X ≤ Y , then ρ(X)≤ ρ(Y);
(iv) translation invariance: form ∈R, it holds ρ(X +m)= ρ(X)+m;
(v) positive homogeneity: for λ≥ 0 it holds that ρ(λX)= λρ(X);
(vi) subadditivity: ρ(X + Y)≤ ρ(X)+ ρ(Y);
(vii) convexity: for λ ∈ [0, 1], it holds that ρ(λX + (1− λ)Y)≤ λρ(X)+ (1− λ)ρ(Y).

A risk measure with the properties (iii)–(vi) is called coherent. Note that CTEα(X) is not necessar-
ily coherent whenX is a discrete random variable, but is coherent ifX is continuous. Also note that
if ρ is positive homogeneous, then convexity and subadditivity are equivalent properties. Next we
need the notion of the usual stochastic ordering (see e.g. Müller & Stoyan, 2002).

Definition 2.4. Let X, Y be two random variables. Then X is less than Y in usual stochastic order
(X ≤st Y) if E[ f (X)]≤E[ f (Y)] for all increasing f :R→R, whenever the expectations exist. This
is equivalent to FX(t)≥ FY(t) for all t ∈R.

Finally we also have to deal with comonotone random variables (see e.g. Definition 1.9.1 in
Denuit et al. (2006));

Definition 2.5. Two random variables X, Y are called comonotone if there exists a random vari-
able Z and increasing functions f , g :R→R such that X = f (Z) and Y = g(Z). The pair is called
countermonotone if one of the two functions is increasing, the other decreasing.

3. Tail Quasi-Linear Means
For continuous random variables X ∈X and levels α ∈ (0, 1) let us introduce risk measures of the
following form.

Definition 3.1. Let X ∈X , α ∈ (0, 1) and U an increasing, continuous function. The TQLM is
defined by

ραU(X) :=U−1
(
E
[
U(X)|X ≥VaRα(X)

])
(1)

whenever the conditional expectation inside exists and is finite.

Remark 3.2. (a) It is easy to see that U(x)= x leads to CTEα(X).
(b) The Quasi-Linear Mean ψU(X) is obtained by taking limα↓0 ραU (X).

In what follows we will first give some alternative representations of the TQLM. By definition
of the conditional distribution, it follows immediately that we can write

ραU(X)=U−1

(
E
[
U(X)1{X≥VaRα(X)}

]
P(X ≥VaRα(X))

)
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where P(X ≥VaRα(X))= 1− α for continuousX. Moreover, when we denote by P̃( · )= P( · |X ≥
VaRα(X)) the conditional probability given X ≥VaRα(X), then we obtain

ραU (X)=U−1
(
Ẽ
[
U(X)

])
(2)

Thus, ραU (X) is just the Quasi-Linear Mean of X with respect to the conditional distribution. In
order to get an idea what the TQLM measures, suppose that U is sufficiently differentiable. Then
we get by a Taylor series approximation (see e.g. Bielecki & Pliska, 2003) that

ραU (X)≈ CTEα(X)− 1
2
�U(CTEα(X))TVα (X) (3)

with �U(x)= −U ′′(x)
U ′(x) being the Arrow–Pratt function of absolute risk aversion and

TVα (X) :=Var (X|X ≥VaRα (X))=E[(X − CTEα(X))2|X>VaRα(X)] (4)
being the tail variance of X. If U is concave �U ≥ 0 and TVα is subtracted from CTEα . If U is
convex �U ≤ 0 and TVα is added, penalising deviations in the tail. In this sense ραU (X) is approx-
imately a Lagrange-function of a restricted optimisation problem, where we want to optimise the
Conditional Tail Expectation under the restriction that the tail variance is not too high.

The following technical assumption will be useful:

(A) There exists an ε > 0 such that U is strictly increasing on (VaRα(X)− ε,VaRα(X)).

Obviously assumption (A) is satisfied if U is strictly increasing on its domain which should
be satisfied in all reasonable applications. Economically (A) states that at least shortly before the
critical level VaRα(X) our measure strictly penalises higher outcomes of X. Under assumption (A)
we obtain another representation of the TQLM.

Lemma 3.3. For all X ∈ X , increasing continuous functions U and α ∈ (0, 1) such that (A) is
satisfied we have that

ραU (X)=U−1
(
CTEα(U(X))

)

Proof. We first show that under (A) we obtain
{X ≥VaRα(X)} = {U(X)≥VaRα(U(X))}

Due to Lemma 2.3 we immediately obtain
{X ≥VaRα(X)} ⊂ {U(X)≥U(VaRα(X))} = {U(X)≥VaRα(U(X))}

On the other hand, we have with Lemma 2.2 b),c) that
U(X)≥VaRα(U(X))⇒X ≥U−1 ◦U(X)≥U−1 ◦U(VaRα(X))=VaRα(X)

which implies that both sets are equal.
Thus, we get that

E
[
U(X)|X ≥VaRα(X)

]=E
[
U(X)|U(X)≥VaRα(U(X))

]= CTEα(U(X))
which implies the statement.

Next we provide some simple yet fundamental features of the TQLM. The first one is rather
obvious and we skip the proof.

Lemma 3.4. For any X ∈X , the TQLM and the Quasi-Linear Mean ψU are related as follows:
ραU (X)≥ψU(X)
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The TQLM interpolates between the Value at Risk and the Conditional Tail Expectation in case
U is concave. We will show this in the next theorem under our assumption (A) (see also Figure 1):

Theorem 3.5. For X ∈X and concave increasing functions U and α ∈ (0, 1) such that (A) is
satisfied, we have that

VaRα(X)≤ ραU (X)≤ CTEα(X)
Moreover, there exist utility functions such that the bounds are attained. In case U is convex and
satisfies (A) and all expectations exist, we obtain

ραU (X)≥ CTEα(X)

Proof. Let U be concave. We will first prove the upper bound. Here we use the representation of
ραU (X) in (2) as a Certainty Equivalent of the conditional distribution P̃. We obtain with the Jensen
inequality

Ẽ[U(X)]≤U(Ẽ[X])=U(CTEα(X)) (5)
Taking the generalised inverse of U on both sides and using Lemma 2.2(a) and (b) yield

ραU(X)≤U−1 ◦U(CTEα(X))≤ CTEα(X)
The choice U(x)= x leads to ραU (X)= CTEα(X).

For the lower bound first note that
U(VaRα(X))≤E

[
U(X)|X ≥VaRα(X)

]
Taking the generalised inverse of U on both sides and using Lemma 2.2(c) yield

VaRα(X)=U−1 ◦U(VaRα(X))≤ ραU (X)
Defining

U(x)=
{

x, x≤VaRα(X)
VaRα(X), x>VaRα(X)

yields

U−1(x)=
{

x, x≤VaRα(X)
∞, x>VaRα(X)

and we obtain
E
[
U(X)|X ≥VaRα(X)

]=U(VaRα(X))
Taking the generalised inverse of U on both sides and using Lemma 2.2(c) yield

ραU (X)=U−1 ◦U(VaRα(X))=VaRα(X)
which shows that the lower bound can be attained. If U is convex, the inequality in (5) reverses.

Next we discuss the properties of the TQLM. Of course when we choose U in a specific way,
we expect more properties to hold.

Theorem 3.6. The TQLM ραU has the following properties:

(a) It is law-invariant.
(b) It has the constancy property.
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Figure 1. Relation between the TQLM, the
CTE, the Certainty Equivalent and the expecta-
tion in case the utility function U is concave.

(c) It is monotone.
(d) It is translation-invariant within the class of functions which are strictly increasing if and only

if U(x)= −e−γ x , γ > 0, or if U is linear.
(e) It is positive homogeneous within the class of functions which are strictly increasing if and only

U(x)= 1
γ
xγ , x> 0, γ �= 0 or U(x)= ln (x) or U is linear.

Proof. (a) The law-invariance follows directly from the definition of ραU and the fact that VaRα
is law-invariant.

(b) Form ∈R we have that VaRα(m)=m and thus P̃= P which implies the statement.
(c) We use here the representation

ραU (X)=U−1

(
E
[
U(X)1{X≥VaRα(X)}

]
1− α

)

Thus it suffices to show that the relation X ≤ Y implies E
[
U(X)1{X≥VaRα(X)}

]≤
E
[
U(Y)1{Y≥VaRα(Y)}

]
. Since we are only interested in the marginal distributions of X and Y ,

we can choose X = F−1
X (V), Y = F−1

Y (V) with same random variable V which is uniformly
distributed on (0, 1). We obtain with Lemma 2.2

X ≥VaRα(X)⇔ F−1
X (V)≥VaRα(F−1

X (V))⇔ F−1
X (V)≥ F−1

X
(
VaRα(V)

)
⇔ F−1

X (V)≥ F−1
X
(
α
)⇔V ≥ α

The same holds true for Y . Since X ≤ Y , we obtain F−1
X ≤ F−1

Y , and thus

E
[
U(X)1{X≥VaRα(X)}

] = E
[
F−1
X (V)1{V≥α}

]
≤ E

[
F−1
Y (V)1{V≥α}

]=E
[
U(Y)1{Y≥VaRα(Y)}

]
which implies the result.

(d) Since we have the representation

ραU (X)=U−1
(
Ẽ
[
U(X)

])
(6)

this statement follows fromMüller (2007: Theorem 2.2). Note that we can work here with one
fixed conditional distribution since {X ≥VaRα(X)} = {X + c≥VaRα(X + c)} for all c ∈R.

(e) As in (d) this statement follows from Müller (2007: Theorem 2.3). Note that we can work
here with one fixed conditional distribution since {X ≥VaRα(X)} = {λX ≥VaRα(λX)} for all
λ> 0.
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Remark 3.7. The monotonicity property of Theorem 3.6 seems to be obvious, but it indeed may
not hold if X and Y are discrete. One has to be cautious in this case (see also the examples given
in Bäuerle & Müller (2006)). The same is true for the Conditional Tail Expectation.

Theorem 3.8. If ραU is a coherent risk measure, then it is the Conditional Tail Expectation Measure
ραU (X)= CTEα (X) .

Proof. As can be seen from Theorem 3.6, the translation invariance and homogeneity proper-
ties hold simultaneously if and only if U is linear, which implies that ραU is the Conditional Tail
Expectation.

4. Tail Conditional Entropic Risk Measure
In case U(x)= 1

γ
eγ x, γ �= 0, we obtain a conditional tail version of the Entropic Risk Measure. It

is given by

ραU (X)=
1
γ
logE[eγX |X ≥VaRα(X)] (7)

In this case we write ραγ instead of ραU , since U is determined by γ . For α ↓ 0 we obtain in the
limit the classical Entropic Risk Measure. We call ραγ (X) Tail Conditional Entropic Risk Measure
and get from (3) the following approximation of ραγ (X): If γ �= 0 is sufficiently close to zero, the
conditional tail version of the Entropic Risk Measure can be approximated by

ραγ (X)≈ CTEα (X)− γ

2
TVα (X)

i.e. it is a weighted measure consisting of Conditional Tail Expectation and Tail Variance (see (4)).
Another representation of the Tail Conditional Entropic Risk Measure is for γ �= 0 given by

(see e.g. Bäuerle & Rieder, 2015; Ben-Tal & Teboulle, 2007)

ραγ (X)= inf
Q�P̃

(
EQ[X]+ 1

γ
EQ

(
log

dQ
dP̃

))

where P̃ is again the conditional distribution P( · |X ≥VaRα(X)). The minimising Q∗ is attained
at

Q∗(dz)= eγ zP̃(dz)∫
eγ yP̃(dy)

According to Theorem 3.6, we cannot expect the Tail Conditional Entropic Risk Measure to be
convex. However, we obtain the following result.

Theorem 4.1. For γ > 0, the Tail Conditional Entropic Risk Measure is convex for comonotone
random variables.

Proof. First note that the Tail Conditional Entropic Risk Measure has the constancy property and
is translation invariant. Thus, using Theorem 6 in Deprez & Gerber (1985) it is sufficient to show
that g ′′(0; X, Y)≥ 0 for all comonotone X, Y where

g(t; X, Y)= ραγ (X + t(Y − X)), t ∈ (0, 1)

SinceX and Y are comonotone, we can write them asX = F−1
X (V), Y = F−1

Y (V) with same random
variable V which is uniformly distributed on (0, 1). Thus we get with Lemma 2.2 (compare also
the proof of Theorem 3.6(c))
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X ≥VaRα(X)⇔ F−1
X (V)≥VaRα(F−1

X (V))⇔ F−1
X (V)≥ F−1

X
(
VaRα(V)

)
⇔ F−1

X (V)≥ F−1
X
(
α
)⇔V ≥ α

The same holds true for Y and also for X + t(Y − X)= (1− t)X + tY = (1− t)F−1
X (V)+ tF−1

Y (V)
since it is an increasing, left-continuous function of V for t ∈ (0, 1). Thus all events on which we
condition here are the same:

{X ≥VaRα(X)}={Y ≥VaRα(Y)}={X + t(Y − X)≥VaRα(X + t(Y − X))}={V ≥ α}
Hence we obtain

g ′(t; X, Y)= E
[
(Y − X)eγ (X+t(Y−X))1[V≥α]

]
E
[
eγ (X+t(Y−X))1[V≥α]

]
and

g ′′(0; X, Y)= γ

⎧⎨
⎩E

[
(Y −X)2eγX1[V≥α]

]
E
[
eγX1[V≥α]

] −
(
E
[
(Y − X)eγX1[V≥α]

]
E
[
eγX1[V≥α]

]
)2
⎫⎬
⎭

This expression can be interpreted as the variance of (Y −X) under the probability measure

dP′

dP
= eγX1[V≥α]

E
[
eγX1[V≥α]

]
and is thus greater or equal to zero which implies the statement.

5. Applications
In this section, we show that the TQLM is a useful tool for various applications in risk
management.

5.1 Capital allocation
Firms often have the problem of allocating a global risk capital requirement down to subportfolios.
One way to do this is to use Aumann–Shapley capital allocation rules. For convex risk measures,
this is not an easy task and has e.g. been discussed in Tsanakas (2009). A desirable property in this
respect would be that the sum of the capital requirements for the subportfolios equals the global
risk capital requirement. More precisely, let (X1, X2, . . . , Xn) be a vector of n random variables
and let S= X1 +X2 + · · · + Xn be its sum. An intuitive way to measure the contribution of Xi
to the total capital requirement, based on the TQLM, is by defining (compare for instance with
Landsman & Valdez (2003)):

ραU (Xi|S) :=U−1 (E [U (Xi) |S≥VaRα (S)])

This results in a capital allocation rule if

ραU (S)=
n∑

i=1
ραU (Xi|S) (8)

It is easily shown that this property is only true in a special case.

Theorem 5.1. The TQLM of the aggregated loss S is equal to the sum of TQLM of the risk sources
Xi, i= 1, 2, . . . , n, i.e. (8) holds for all random variables Xi, i= 1, 2, . . . , n, if and only if U is linear.
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In general we cannot expect (8) to hold. Indeed for the Tail Conditional Entropic RiskMeasure
we obtain that in case the losses are comonotone, it is not profitable to split the portfolio in
subportfolios, whereas it is profitable if two losses are countermonotone.

Theorem 5.2. The Tail Conditional Entropic Risk Measure has for γ > 0 and comonotone Xi,
i= 1, . . . , n the property that

ραγ (S)≥
n∑

i=1
ραγ (Xi|S)

In case n= 2 and X1, X2 are countermonotone, the inequality reverses.

Proof. As in the proof of Theorem 4.1, we get for comonotone X,Y that X = F−1
X (V), Y = F−1

Y (V)
with same random variable V which is uniformly distributed on (0, 1) and that

X + Y ≥VaRα(X + Y)⇔V ≥ α
Thus with S= X + Y

1
1− α

E

[
eγ (X+Y)1[S≥VaRα(S)]

]
= 1

1− α
E

[
eγ (F

−1
X (V)+F−1

Y (V))1[V≥α]
]

= Ẽ

[
eγF

−1
X (V)eγF

−1
Y (V)

]
≥ Ẽ

[
eγF

−1
X (V)

]
Ẽ
[
eγF

−1
Y (V)

]
= 1

1− α
E

[
eγX1[S≥VaRα(S)]

] 1
1− α

E

[
eγY1[S≥VaRα(S)]

]
since the covariance is positive for comonotone random variables. Here, as before P̃ is the con-
ditional distribution given by dP̃

dP = 1
1−α 1[V≥α]. Taking 1

γ
log on both sides implies the result

for n= 2. The general result follows by induction on the number of random variables. In the
countermonotone case the inequality reverses.

5.2 Optimal reinsurance
TQLM risk measures can also be used to find optimal reinsurance treaties. In case the random
variable X describes a loss, the insurance company is able to reduce its risk by splitting X into two
parts and transferring one of these parts to a reinsurance company. More formally a reinsurance
treaty is a function f :R+ →R+ such that f (x)≤ x and f as well as Rf (x) := x − f (x) are both
increasing. The reinsured part is then f (x). The latter assumption is often made to rule out moral
hazard. In what follows let

C = { f :R+ →R+| f (x)≤ x ∀x ∈R+ and f , Rf are increasing}
be the set of all reinsurance treaties. Note that functions in C are in particular Lipschitz-
continuous, since Rf increasing leads to f (x2)− f (x1)≤ x2 − x1 for all 0≤ x1 ≤ x2. Of course the
insurance company has to pay a premium to the reinsurer for taking part of the risk. For sim-
plicity we assume here that the premium is computed according to the expected value premium
principle, i.e. it is given by (1+ θ)E[ f (X)] for θ > 0 and a certain amount P> 0 is available for
reinsurance. The aim is now to solve

min
f

ραU
(
Rf (X)

)
s.t. (1+ θ)E[ f (X)]= P, f ∈ C (9)

This means that the insurance company tries to minimise the retained risk, given the amount
P is available for reinsurance. Problems like this can e.g. be found in Gajek & Zagrodny (2004).
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A multi-dimensional extension is given in Bäuerle & Glauner (2018). In what follows we assume
that U is strictly increasing, strictly convex and continuously differentiable, i.e. according to (3)
large deviations in the right tail of Rf (X) are heavily penalised. In order to avoid trivial cases, we
assume that the available amount of money for reinsurance is not too high, i.e. we assume that

P< (1+ θ)E[(X −VaRα(X))+]
The optimal reinsurance treaty is given in the following theorem. It turns out to be a stop-loss

treaty.

Theorem 5.3. The optimal reinsurance treaty of problem (9) is given by

f ∗(x)=
{

0, x ≤ a
x− a, x> a

where a is a positive solution of (1+ θ)E[(X − a)+]= P.

Note that the optimal reinsurance treaty does not depend on the precise form of U , i.e. on the
precise risk aversion of the insurance company.

Proof. First observe that z �→E[(X − z)+] is continuous and decreasing. Moreover, by assump-
tion P< (1+ θ)E[(X −VaRα(X))+]. Thus by the mean-value theorem there exists an a>
VaRα(X) such that (1+ θ)E[(X − a)+]= P. Since U−1 is increasing, problem (9) is equivalent
to

min E

[
U(Rf (X))1[Rf (X)≥VaRα(Rf (X))]

]
s.t. (1+ θ)E[ f (X)]= P, f ∈ C

Since f ∈ C we have by Lemma 2.3 that VaRα(Rf (X))= Rf (VaRα(X)), and since Rf is non-
decreasing we obtain

{X ≥VaRα(X)} ⊂ {Rf (X)≥ Rf (VaRα(X))=VaRα(Rf (X))}
On the other hand, it is reasonable to assume that f (x)= 0 for x ≤VaRα(X) since this probability
mass does not enter the target function which implies that Rf (x)= x for x≤VaRα(X) and thus

{Rf (X)≥ Rf (VaRα(X))=VaRα(Rf (X))} ⊂ {X ≥VaRα(X)}
In total we have that

{Rf (X)≥VaRα(Rf (X))} = {X ≥VaRα(X)}
Hence, we can equivalently consider the problem

min
f

E
[
U(Rf (X))1[X≥VaRα(X)]

]
s.t. (1+ θ)E[ f (X)]= P, f ∈ C

Next note that we have for any convex, differentiable function g :R+ →R+ that
g(x)− g(y)≥ g ′(y)(x − y), x, y≥ 0

Now consider the function g(z) :=U(x − z)1[x≥VaRα(X)] + λz for fixed λ :=U ′(a)> 0 and fixed
x ∈R+. By our assumption g is convex and differentiable with derivative

g ′(z)= −U ′(x − z)1[x≥VaRα(X)] + λ

Let f ∗ be the reinsurance treaty defined in the theorem and f ∈ C any other admissible reinsurance
treaty. Then

E
[
U(X − f (X))1[X≥VaRα(X)] −U(X − f ∗(X))1[X≥VaRα(X)] + λ( f (X)− f ∗(X))

]≥
≥E

[(−U ′(X − f ∗(X))1[X≥VaRα (X)] + λ
)
( f (X)− f ∗(X))

]
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Rearranging the terms and noting that E[ f (X)]=E[ f ∗(X)], we obtain

E
[
U(X − f (X))1[X≥VaRα(X)]

]+E

[(
U ′(X − f ∗(X))1[X≥VaRα(X)] − λ

)
( f (X)− f ∗(X))

]
≥

≥E
[
U(X − f ∗(X))1[X≥VaRα(X)]

]
The statement follows when we can show that

E

[(
U ′(X − f ∗(X))1[X≥VaRα(X)] − λ

)
( f (X)− f ∗(X))

]
≤ 0

We can write

E

[(
U ′(X − f ∗(X))1[X≥VaRα (X)] − λ

)
( f (X)− f ∗(X))

]
=E

[
1[X≥a]

(
U ′(X − f ∗(X))1[X≥VaRα (X)] − λ

)
( f (X)− f ∗(X))

]+
+E

[
1[X<a]

(
U ′(X − f ∗(X))1[X≥VaRα(X)] − λ

)
( f (X)− f ∗(X))

]
In the first case we obtain for X ≥ a by definition of f ∗ and λ (note that a>VaRα(X)):

U ′(X − f ∗(X))1[X≥VaRα (X)] − λ=U ′(a)− λ= 0
In the second case we obtain for X< a that f (X)− f ∗(X)= f (X)≥ 0 and since U ′ is increasing:

U ′(X − f ∗(X))1[X≥VaRα(X)] − λ≤ λ1[X≥VaRα(X)] − λ≤ 0
Hence the statement is shown.

6. TQLM for Symmetric Loss Models
The symmetric family of distributions is well known to provide suitable distributions in finance
and actuarial science. This family generalises the normal distribution into a framework of flexible
distributions that are symmetric. We say that a real-valued random variable X has a symmetric
distribution, if its probability density function takes the form

fX(x)= 1
σ
g

(
1
2

(
x −μ

σ

)2
)
, x ∈R (10)

where g (t)≥ 0, t ≥ 0, is the density generator of X and satisfies
∞∫
0

t−1/2g(t)dt<∞

The parameters μ ∈R and σ 2 > 0 are the expectation and the scale parameter of the distribution,
respectively, and we write X� S1

(
μ, σ 2, g

)
. If the variance of X exists, then it takes the form

V (X)= σ 2
Zσ

2

where

σ 2
Z = 2

∞∫
0

t2g
(
1
2
t2
)
dt<∞

For the sequel, we also define the standard symmetric random variable Z� S1
(
0, 1, g

)
and a

cumulative generator G(t), first defined in Landsman & Valdez (2003), that takes the form

G(t)=
∞∫
t

g(v)dv
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with the condition G(0)<∞. Special members of the family of symmetric distributions are as
follows:

(a) The normal distribution, g(u)= e−u/
√
2π ,

(b) Student’s t-distribution g(u)= 
(m+1
2 )


(m/2)
√
mπ

(
1+ 2u

m
)−(m+1)/2 with m> 0 degrees of

freedom,
(c) Logistic distribution, with g (u)= ce−u/

(
1+ e−u)2 where c> 0 is the normalising

constant.

In what follows, we will consider the TQLM for this class of random variables.

Theorem 6.1. Let X� S1(μ, σ 2, g). Then, the TQLM takes the following form

ραU (X)= ραŨ (Z) (11)

where Ũ(x)=U(σx +μ).

Proof. For the symmetric distributed X, we have

ραU (X)=U−1

(
E
[
U(X)1{X≥VaRα(X)}

]
1− α

)

Now we obtain

E
[
U(X)1{X≥VaRα(X)}

]= ∫ ∞

VaRα(X)
U(x)

1
σ
g

(
1
2

(
(
x −μ

σ

)2
)
dx

=
∫ ∞

VaRα (X)−μ
σ

U(σz +μ)g
(
1
2
z2
)
dz =

∫ ∞

VaRα(Z)
Ũ(z)g

(
1
2
z2
)
dz

=E
[
Ũ(Z)1{Z≥VaRα (Z)}

]
where Ũ(x)=U(σx +μ). Hence the statement follows.

For the special case of Tail Conditional Entropic Risk Measures, we obtain the following result.

Theorem 6.2. Let X� S1(μ, σ 2, g). The moment generating function of X exists if and only if the
Tail Conditional Entropic Risk Measure satisfies

ραγ (X)=μ+ σρασγ (Z)<∞

Proof. For a function U , we obtain:

E

[
U(X)1[X≥VaRα(X)]

]
=
∫ ∞

VaRα(X)
U(x)

1
σ
g

(
1
2

(
x −μ

σ

)2)
dx

=
∫ ∞

VaRα (X)−μ
σ

U(σy+μ)g
(
1
2
y2
)
dy

Plugging in U(x)= 1
γ
eγ x yields

E

[
U(X)1[X≥VaRα(X)]

]
= 1
γ
eγμ

∫ ∞
VaRα (X)−μ

σ

eγσyg
(
1
2
y2
)
dy
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Hence it follows that

ραγ (X)=
1
γ

{
γμ+ log

( ∫ ∞
VaRα (X)−μ

σ

eγσyg
(1
2
y2
)
dy
)

− log (1− α)
}

=μ+ σ
1
γ σ

log
( ∫ ∞

VaRα(Z)
eγσyg

(1
2
y2
)
dy
)

+ σ
log (1− α)

σγ

=μ+ σρασγ (Z)
Also note that ραγ (X)<∞ is equivalent to the existence of the moment generating function.

In the following theorem, we derive an explicit formula for the Tail Conditional Entropic Risk
Measure for the family of symmetric loss models. For this, we denote the cumulant function
of Z by κ (t) := logψ

(− 1
2 t

2), where ψ is the characteristic generator, i.e. it satisfies E[eitX]=
eitμψ( 12 t

2σ 2).

Theorem 6.3. Let X� S1(μ, σ 2, g) and assume that the moment generating function of X exists.
Then the Tail Conditional Entropic Risk Measure is given by

ραγ (X)=μ+ γ−1κ (γ σ)+ log
(
FY (VaRα (Z))

1− α

)−1/γ

Here FY
(
y
)
is the cumulative distribution function of a random variable Y with the density

fY
(
y
)= eγσy

ψ
(− 1

2γ
2σ 2

)g (1
2
y2
)
, y ∈R

and FY is its tail distribution function.

Proof. From the previous theorem, we have that ραγ (X)=μ+ σρασγ (Z), where Z� S1(0, 1, g).
Then, from Landsman et al. (2016), the conditional characteristic function of the symmetric
distribution can be calculated explicitly, as follows:

E

[
eγσZ|Z ≥VaRα (Z)

]
=

∞∫
VaRα(Z)

eγσ zg
( 1
2z

2) dz
1− α

Observing that the following relation holds for any characteristic generator ψ of g (see, for
instance Landsman et al., 2016; Dhaene et al., 2008)

a∫
−∞

eγσ zg
(
1
2
z2
)
dz =ψ

(
−1
2
γ 2σ 2

)
FY (a), a ∈R

we conclude that

E

[
eγσZ|Z ≥VaRα (Z)

]
=ψ

(
−1
2
γ 2σ 2

)
FY (VaRα (Z))

1− α

and finally,
ραγ (X)=μ+ σρασγ (Z)

=μ+ γ−1
[
logψ

(
−1
2
γ 2σ 2

)
+ log

FY (VaRα (Z))
1− α

]

=μ+ γ−1κ (γ σ)+ log
(
FY (VaRα (Z))

1− α

)−1/γ

where κ (γ σ)= logψ
(− 1

2γ
2σ 2) is the cumulant of Z.
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Example 6.4. Normal distribution. For X�N1(μ, σ 2), the characteristic generator is the expo-
nential function, and we have

ψ

(
−1
2
t2
)

= e
1
2 t

2
(12)

This leads to the following density of Y

fY(y)= eγσy−
1
2γ

2σ 2 1√
2π

e−
1
2 y

2
(13)

= φ
(
y− γ σ

)
where φ is the standard normal density function. Then, the Tail Conditional Entropic Measure is
given by

ραγ (X)=μ+ γ

2
σ 2 + log

(
�
(
�−1(α)− γ σ

)
1− α

)−1/γ

Here �,� are the cumulative distribution function and the tail distribution function of the
standard normal distribution, respectively.

Remark 6.5. The formulas of Theorems 6.1 and 6.3 can be specialised to recover existing for-
mulas for the Conditional Tail Expectation, the Value at Risk and the Entropic Risk Measure of
symmetric distributions. More precisely, we obtain from Theorem 6.3 that

CTEα(X) = lim
γ↓0 ρ

α
γ (X)= lim

γ↓0

[
μ+ γ−1κ (γ σ)+ log

(
FY (VaRα (Z))

1− α

)−1/γ ]

= μ+ σ
Ḡ( 12VaRα(Z)

2)
1− α

where the first limγ↓0 γ−1κ (γ σ)= 0 using L’Hopital’s rule and the second limit is the stated
expression by again using L’Hopital’s rule. This formula can e.g. be found in Landsman et al.
(2016) Corollary 1. The Entropic Risk Measure can be obtained by

lim
α↓0 ρ

α
γ (X)=μ− γ−1κ (γ σ)

and for the Value at Risk we finally get with Theorem 6.1 and using

U(x)=
{

x, x≤VaRα(X)
VaRα(X), x>VaRα(X)

that

VaRα(X)=μ+ σVaRα(Z)

Thus our general formulas comprise several important special cases.

6.1 Optimal portfolio selection with Tail Conditional Entropic Risk Measure
The concept of optimal portfolio selection is dated back toMarkowitz (1952) and de Finetti (1940),
where the optimisation of the mean–variance measure provides a portfolio selection rule that
calculates the weights one should give to each investment of the portfolio in order to get the
maximum return under a certain level of risk. In this section, we examine the optimal portfolio
selection with the TQLMmeasure for the multivariate elliptical models. The multivariate elliptical
models of distributions are defined as follows.

https://doi.org/10.1017/S1748499519000113 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499519000113


Annals of Actuarial Science 185

Let X be a random vector with values in Rn whose probability density function is given by (see
for instance Landsman & Valdez (2003))

fX(x)= 1√|�|gn
(
1
2
(x− μ)T�−1(x− μ)

)
, x∈Rn (14)

Here gn (u), u≥ 0, is the density generator of the distribution that satisfies the inequality
∞∫
0

tn/2−1gn(t)dt<∞

where μ ∈Rn is the expectation of X and � is the n× n positive definite scale matrix, where, if
exists, the covariance matrix of X is given by

Cov (X)= σ 2
Z
n
�

and we write X� En(μ,�, gn). For n= 1 we get the class of symmetric distributions discussed in
the previous section. For a large subset of the class of elliptical distributions, such as the nor-
mal, Student’s t, logistic and Laplace distributions, for X� En(μ,�, gn) and π ∈Rn be some
non-random vector, we have that πTX� E1(πTμ, πT�π , g), g := g1. This means that the lin-
ear transformation of an elliptical random vector is also elliptically distributed with the same
generator gn reduced to one dimension. For instance, in the case of the normal distribution
gn (u)= e−u/ (2π)n/2 , then g (u) := g1 (u)= e−u/ (2π)1/2 .

In modern portfolio theory, the portfolio return is denoted by R := πTX, where it is often
assumed that X�Nn(μ,�) is a normally distributed random vector of financial returns.

Theorem 6.6. Let X� En(μ,�, gn). Then, the Tail Conditional Entropic Risk Measure of the
portfolio return R= πTX is given by

ραγ (R)= πTμ +
√

πT�πρα
γ
√

πT�π
(Z)

Proof. From the linear transformation property of the elliptical random vectors, and using
Theorem 6.2, the theorem immediately follows.

Using the same notations and definitions as in Landsman &Makov (2016), we define a column
vector of n ones, 1 and 11 as a column vector of (n− 1) ones. Furthermore, we define the n× n
positive definite scale matrix� with the following partition:

� =
(
�11 σ 1

σT
1 σnn

)

Here�11 is an (n− 1)× (n− 1)matrix, σ 1 = (σ1n, . . . , σn−1n)
T and σnn is the (n, n) component

of �, and we also define a (n− 1)× (n− 1)matrix Q,

Q=�11 − 11σT
1 − σ11T1 + σnn111T1

which is also positive definite (see again Landsman&Makov, 2016).We also define the (n− 1)× 1
column vector

� =μn11 − μ1
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where μ1 := (μ1,μ2, . . . ,μn−1)
T . In what follows, we consider the problem of finding the

portfolio with the least ραγ for fixed α and γ :

min
π

ραγ (R) s.t.
n∑
i=1

πi = 1 (15)

The solution is given in the next theorem.

Theorem 6.7. Let X� En(μ,�, gn) be a random vector of returns, and let R= πTX be a portfolio
return of investments X1,X2, . . . , Xn. Then, the optimal solution to (15) is

π∗ = ϕ1 + r∗ϕ2

if

r · s1
(

�TQ−1 �· r2 +
(
1T�−11

)−1
)

= 1/2

has a unique positive solution r∗. Here

ϕ1=
(
1T�−11

)−1
�−11,

ϕ2 =
(
�TQ−1,−1T1Q

−1�
)T

and s1 = ds(t)/dt, s (t)= t2ραt2γ (Z).

Proof. We first observe by Theorem 6.6 that the minimisation of ραγ (R) is achieved when min-
imising πTμ + √

πT�πρα
γ
√

πT�π
(Z). Then, using Theorem 3.1 in Landsman & Makov (2016)

(see also Landsman et al., 2018) the statement immediately follows.

7. Discussion
The TQLM is a measure which focuses on the right tail of a risk distribution. In its general
definition, it comprises a number of well-known risk measures like Value at Risk, Conditional
Tail Expectation and Entropic Risk Measure. Thus, once having the results about the TQLM, we
are able to specialise them to other interesting cases. It is also in line with the actuarial concept of
a Mean Value principle. Moreover, we have shown that it is indeed possible to apply the TQLM
in risk management and that it yields computationally tractable results.
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