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The discontinuous Petrov–Galerkin (DPG) method is a Petrov–Galerkin finite ele-
ment method with test functions designed for obtaining stability. These test functions
are computable locally, element by element, and are motivated by optimal test func-
tions which attain the supremum in an inf-sup condition. A profound consequence
of the use of nearly optimal test functions is that the DPG method can inherit the sta-
bility of the (undiscretized) variational formulation, be it coercive or not. This paper
combines a presentation of the fundamentals of the DPG ideas with a review of the
ongoing research on theory and applications of the DPG methodology. The scope of
the presented theory is restricted to linear problems on Hilbert spaces, but pointers to
extensions are provided. Multiple viewpoints to the basic theory are provided. They
show that the DPG method is equivalent to a method which minimizes a residual
in a dual norm, as well as to a mixed method where one solution component is an
approximate error representation function. Being a residual minimization method,
the DPG method yields Hermitian positive definite stiffness matrix systems even for
non-self-adjoint boundary value problems. Having a built-in error representation, the
method has the out-of-the-box feature that it can immediately be used in automatic
adaptive algorithms. Contrary to standard Galerkin methods, which are uninformed
about test and trial norms, the DPG method must be equipped with a concrete test
norm which enters the computations. Of particular interest are variational formu-
lations in which one can tailor the norm to obtain robust stability. Key techniques
to rigorously prove convergence of DPG schemes, including construction of Fortin
operators, which in the DPG case can be done element by element, are discussed in
detail. Pointers to open frontiers are presented.
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1. Introduction
In variational methods, approximate solutions are sought in ‘trial’ spaces, while
equations are enforced using ‘test’ spaces. Methods with different trial and test
spaces are referred to as Petrov–Galerkin (PG) formulations. A classical result
on such methods, restated below in Theorem 1.1, provides the following useful
insight for designing Petrov–Galerkin methods: while one must choose trial spaces
with good approximation properties, test spaces may be chosen solely for stabil-
ity. Leveraging this insight, discontinuous Petrov–Galerkin (DPG) methods were
originally conceived (Demkowicz and Gopalakrishnan 2010, 2011b) as Petrov–
Galerkin methods that obtain stability automatically by local test space design
using discontinuous functions. The goal of this review is to provide an introduc-
tion to these methods and present selected recent advances. We review established
DPG techniques, give a few new avenues to existing results, and also present a few
new results. We describe the mathematical foundations for the popular features that
make the DPG method a powerful tool for solving boundary value problems, in-
cluding the ease with which automatic adaptivity can be enabled and stable solvers
for complex problems can be built.

Let us begin by describing a standard difficulty in PG formulations of boundary
value problems that the DPG method addresses. The ‘wellposedness’ (or continu-
ous dependence of solutions on data) of PG formulations need not automatically
yield stability of their discretizations, unlike coercive Galerkin formulations. In
simpler formulations with equal trial and test spaces, once wellposedness of the
variational formulation (usually set in infinite-dimensional Sobolev spaces) is es-
tablished through coercivity, stability of the computable Galerkin discretization
(using finite-dimensional subspaces) follows. The situation for non-coercive PG
methods is more complicated.
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To make it precise, we introduce the following setting we shall use throughout
this review (and a few departures from it will be announced with ample warning).
Let 𝑋 and 𝑌 denote two Hilbert spaces over the complex field C. Let 𝑌 ∗ denote
the space of continuous antilinear (or conjugate-linear) functionals on 𝑌 and let
𝑏(·, ·) : 𝑋 × 𝑌 → C denote a continuous sesquilinear form. A wellposedness
formulation is such that

for any ℓ ∈ 𝑌 ∗, there is a unique 𝑥 ∈ 𝑋 satisfying
𝑏(𝑥, 𝑦) = ℓ(𝑦) for all 𝑦 ∈ 𝑌 . (1.1)

By the well-known theory of mixed systems (Babuška 1971, Brezzi 1974, Ern and
Guermond 2021, Nečas 1962), we know that (1.1) holds if and only if there is a
𝛾 > 0 such that

inf
0≠𝑧∈𝑋

sup
0≠𝑦∈𝑌

|𝑏(𝑧, 𝑦)|
∥𝑧∥𝑋∥𝑦∥𝑌

≥ 𝛾, and (1.2a)

{𝑦 ∈ 𝑌 : 𝑏(𝑧, 𝑦) = 0 for all 𝑧 ∈ 𝑋} = {0}, (1.2b)

or equivalently

inf
0≠𝑦∈𝑌

sup
0≠𝑧∈𝑋

|𝑏(𝑧, 𝑦)|
∥𝑦∥𝑌 ∥𝑧∥𝑋

≥ 𝛾, and (1.3a)

{𝑧 ∈ 𝑋 : 𝑏(𝑧, 𝑦) = 0 for all 𝑦 ∈ 𝑌 } = {0}. (1.3b)

For a computationally realizable Petrov–Galerkin method, one uses finite-dimen-
sional subspaces 𝑋ℎ ⊂ 𝑋 and 𝑌ℎ ⊂ 𝑌 of equal dimension, dim(𝑋ℎ) = dim(𝑌ℎ).
Here ℎ is a subscript related to the finite dimension. Letting

∥𝑏∥ = sup
0≠𝑥∈𝑋

sup
0≠𝑦∈𝑌

|𝑏(𝑥, 𝑦)|
∥𝑥∥𝑋∥𝑦∥𝑌

,

a classical result of Babuška (see Babuška 1971, Babuška, Aziz, Fix and Kellogg
1972 or Xu and Zikatanov 2003) can be stated as follows.

Theorem 1.1. In the above setting of Hilbert spaces 𝑋,𝑌 and finite-dimensional
subspaces 𝑋ℎ ⊂ 𝑋 , 𝑌ℎ ⊂ 𝑌 satisfying dim(𝑋ℎ) = dim(𝑌ℎ), suppose (1.1), (1.2) or
(1.3) hold. If, in addition, there exists a 𝛾ℎ > 0 such that

inf
0≠𝑧ℎ∈𝑋ℎ

sup
0≠𝑦ℎ∈𝑌ℎ

|𝑏(𝑧ℎ, 𝑦ℎ)|
∥𝑦ℎ∥𝑌

≥ 𝛾ℎ, (1.4)

then there is a unique 𝑥ℎ ∈ 𝑋ℎ satisfying

𝑏(𝑥ℎ, 𝑦ℎ) = ℓ(𝑦ℎ) for all 𝑦ℎ ∈ 𝑌ℎ (1.5)
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and

∥𝑥 − 𝑥ℎ∥𝑋 ≤ ∥𝑏∥
𝛾ℎ

inf
𝑧ℎ∈𝑋ℎ

∥𝑥 − 𝑧ℎ∥𝑋 . (1.6)

The theorem clarifies the above-mentioned difficulty in inheriting discrete sta-
bility from the wellposedness of the variational problem. Specifically, the standard
difficulty in the analysis of Petrov–Galerkin discretizations of the form (1.5) is that
the inf-sup condition (1.2a) does not generally imply the discrete inf-sup condition
(1.4). Hence, unlike coercive forms 𝑏(·, ·), it is easy to obtain unstable PG meth-
ods even when the variational equation (1.1) is wellposed. A second important
observation is that in Theorem 1.1, the test space 𝑌ℎ is absent from the error es-
timate (1.6). It only appears in the inf-sup condition (1.4), which is responsible for
stability. The approximation rates are determined by the trial space 𝑋ℎ in (1.6).
Letting the trial space carry the burden of achieving good approximation properties
liberates the test space from it. The takeaway is that we can focus solely on stability
when designing test spaces. Hence techniques to design discrete subspaces 𝑌ℎ that
guarantee the discrete inf-sup condition (1.4), with 𝛾ℎ independent of the finite
dimension, are useful.

The next section (Section 2) provides such a technique through the concept
of optimal test functions which attain the supremum in an inf-sup condition. In
Section 3 we shall see that DPG methods can equivalently be thought of as methods
that minimize a residual in a non-standard norm, as well as a non-standard mixed
method with an approximate error representation as a discrete solution component.
One of the key steps that enable local computation of the optimal test functions
is a reformulation of the boundary value problem using a test space of functions
which have no continuity constraints across elements. Such spaces are often
referred to as ‘broken’ spaces and the process is akin to ‘hybridization’. We will
see these terms again when the test space localization technique is introduced
precisely in Section 4. Next, we address the usual practice of computing the
optimal test functions inexactly. The loss of optimality in the stability constant and
techniques to regain discrete stability despite the inexact computation are topics
covered in Section 5. The key ingredient there is a local Fortin operator. The built-
in error estimator contained in all DPG methods is then described in Section 6.
The wide scope of applicability of DPG methods becomes clearer in Section 7,
where we show how to accomplish the above-mentioned localization through a
reformulation in broken graph spaces of very general partial differential equations
(PDE). Application of optimal test functions to create enhanced time integrators is
the subject of Section 8. Duality arguments, certain drawbacks in applying them
to DPG methods, a dual DPG* method, and application to estimating error in goal
functionals are briefly discussed in Section 9. Section 10 contains a collection of
remarks on ongoing efforts to incorporate DPG techniques into nonlinear boundary
value problems, a research area where the last word seems yet to be written. We
conclude in Section 11 with pointers to further works whose details could not be
included in this paper.
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2. Optimal test spaces
Is it possible to find a test space 𝑌ℎ for which the exact inf-sup condition (1.2a)
implies the discrete inf-sup condition (1.4)? We begin with a simple and affirmative
answer in Proposition 2.2 below. This then gives rise to an ‘ideal Petrov–Galerkin
method’, a precursor to the DPG method.

Given any trial space 𝑋ℎ, we define its optimal test space for the continuous
sesquilinear form 𝑏(·, ·) : 𝑋 × 𝑌 → C by

𝑌
opt
ℎ

= 𝑇(𝑋ℎ), (2.1)

where 𝑇 : 𝑋 → 𝑌 , a ‘trial-to-test operator’, is defined by

(𝑇𝑧, 𝑦)𝑌 = 𝑏(𝑧, 𝑦) for all 𝑦 ∈ 𝑌, 𝑧 ∈ 𝑋. (2.2)

Equation (2.2) uniquely defines a𝑇𝑧 for any given 𝑧 ∈ 𝑋 by the Riesz representation
theorem. We shall call𝑇𝑧 an optimal test function because it solves the optimization
problem stated next.

Proposition 2.1 (Optimizer). For any 𝑧 ∈ 𝑋 , the maximum of

𝑓𝑧(𝑦) = |𝑏(𝑧, 𝑦)|/∥𝑦∥𝑌
over all non-zero 𝑦 ∈ 𝑌 is attained at 𝑦 = 𝑇𝑧.

Proof. Rewriting 𝑓𝑧 using (2.2), duality in Hilbert spaces implies

sup
0≠𝑦∈𝑌

𝑓𝑧(𝑦) = sup
0≠𝑦∈𝑌

|(𝑇𝑧, 𝑦)𝑌 |
∥𝑦∥𝑌

= ∥𝑇𝑧∥𝑌 .

Moreover, 𝑓𝑧(𝑇𝑧) = ∥𝑇𝑧∥𝑌 .

Proposition 2.2 (Exact inf-sup condition =⇒ Discrete inf-sup condition). If the
inf-sup condition (1.2a) holds with some 𝛾 > 0, then the discrete inf-sup condition
(1.4) holds with some 𝛾ℎ ≥ 𝛾 > 0 when we set 𝑌ℎ = 𝑌opt

ℎ
.

Proof. For any 𝑧ℎ ∈ 𝑋ℎ, letting

𝑠1 = sup
0≠𝑦∈𝑌

|𝑏(𝑧ℎ, 𝑦)|
∥𝑦∥𝑌

, 𝑠2 = sup
0≠𝑦ℎ∈𝑌opt

ℎ

|𝑏(𝑧ℎ, 𝑦ℎ)|
∥𝑦ℎ∥𝑌

,

it is obvious that 𝑠1 ≥ 𝑠2. To prove that 𝑠1 ≤ 𝑠2, since 𝑠1 = ∥𝑇𝑧ℎ∥𝑌 by Proposi-
tion 2.1,

𝑠1 = ∥𝑇𝑧ℎ∥𝑌 =
|(𝑇𝑧ℎ, 𝑇 𝑧ℎ)𝑌 |

∥𝑇𝑧ℎ∥𝑌
≤ sup
𝑦ℎ∈𝑌opt

ℎ

|(𝑇𝑧ℎ, 𝑦ℎ)𝑌 |
∥𝑦ℎ∥𝑌

= sup
𝑦ℎ∈𝑌opt

ℎ

|𝑏(𝑧ℎ, 𝑦ℎ)|
∥𝑦ℎ∥𝑌

= 𝑠2,

so 𝑠1 = 𝑠2. Hence the discrete inf-sup condition (1.4) holds with 𝛾ℎ ≥ 𝛾.

Definition 2.3. For any trial subspace 𝑋ℎ ⊂ 𝑋 , the ideal Petrov Galerkin (IPG)
method finds 𝑥ℎ ∈ 𝑋ℎ solving

𝑏(𝑥ℎ, 𝑦ℎ) = ℓ(𝑦ℎ) for all 𝑦ℎ ∈ 𝑌opt
ℎ
, (2.3)
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where 𝑌opt
ℎ

⊂ 𝑌 is computed using the 𝑌 -inner product by (2.1)–(2.2).

Theorem 2.4 (Quasioptimality). If (1.3) holds, then the IPG method (2.3) is
uniquely solvable for 𝑥ℎ and

∥𝑥 − 𝑥ℎ∥𝑋 ≤ ∥𝑏∥
𝛾

inf
𝑧ℎ∈𝑋ℎ

∥𝑥 − 𝑧ℎ∥𝑋, (2.4)

where 𝑥 is the unique exact solution of (1.1).

Proof. We apply Theorem 1.1. To verify that 𝑇 is injective, suppose 𝑇𝑧 = 0.
Then, by (2.2), we have 𝑏(𝑧, 𝑦) = 0 for all 𝑦 ∈ 𝑌 , so (1.3b) implies that 𝑧 = 0. Thus
dim(𝑋ℎ) = dim(𝑌opt

ℎ
).

Next, since (1.3) implies (1.2), the other inf-sup condition,

𝛾∥𝑧∥𝑌 ≤ sup
0≠𝑦∈𝑌

|𝑏(𝑧, 𝑦)|
∥𝑦∥𝑌

for all 𝑧 ∈ 𝑋, (2.5)

holds with the same constant 𝛾. Hence Proposition 2.2 shows that the discrete
inf-sup condition (1.4) holds with the same constant, so Theorem 1.1 gives the
result.

Example 2.5 (𝐿2 least-squares). Suppose 𝛺 ⊂ R𝑁 , 𝑁 ≥ 1, is an open set and
𝐴 : 𝑋 → 𝐿2(𝛺)𝑚 is a continuous bijective linear operator (where, as before, 𝑋 is
some Hilbert space). Then, setting 𝑌 = 𝐿2(𝛺)𝑚, the problem of finding a 𝑢 ∈ 𝑋
such that 𝐴𝑢 = 𝑓 , for any given 𝑓 ∈ 𝑌 , can be put into a variational formulation by
setting

𝑏(𝑢, 𝑣) = (𝐴𝑢, 𝑣)𝑌 , ℓ(𝑣) = ( 𝑓 , 𝑣)𝑌 . (2.6)

Then (2.2) implies that 𝑇𝑢 = 𝐴𝑢, so 𝑌opt
ℎ

= 𝐴𝑋ℎ. Hence (2.3) reduces to

(𝐴𝑥ℎ, 𝐴𝑧ℎ)𝑌 = ( 𝑓 , 𝐴𝑧ℎ)𝑌 for all 𝑧ℎ ∈ 𝑋ℎ,

that is, for this example, the IPG method of (2.3) coincides with the standard 𝐿2(𝛺)-
based least-squares method, which has been well studied (Bochev and Gunzburger
2009, Cai, Lazarov, Manteuffel and McCormick 1994). Not all DPG methods are
𝐿2 least-squares methods. But as we will see in the next section, all DPG methods
minimize a residual in some norm, not necessarily the 𝐿2-norm.

Note that Theorem 2.4 gives an error estimate for the 𝐿2 least-squares method
(2.6), since its assumptions are readily verified. Indeed, by the injectivity of 𝐴, any
𝑧 ∈ 𝑋 satisfying 𝑏(𝑧, 𝑦) = 0 for all 𝑦 ∈ 𝐿2(𝛺) yields 𝐴𝑧 = 0, which implies that
𝑧 = 0. Also,

sup
0≠𝑧∈𝑋

|(𝐴𝑧, 𝑦)𝑌 |
∥𝑧∥𝑋

≥ |(𝑦, 𝑦)𝑌 |
∥𝐴−1𝑦∥𝑋

≥ 𝛾∥𝑦∥𝑌 ,

with 𝛾 = ∥𝐴−1∥−1, so (1.3) holds. Hence the error estimate (2.4) holds.
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Example 2.6 (A one-dimensional boundary value problem). Letting 𝛺 = (0, 1),
the unit interval in R, and 𝑓 ∈ 𝐿2(𝛺), consider the boundary value problem to find
𝑢(𝑥) satisfying

𝑢′ = 𝑓 in 𝛺, (2.7a)
𝑢(0) = 0, (2.7b)

for some given 𝑓 ∈ 𝐿2(𝛺). This fits into the framework of Example 2.5 and yields
the variational form (2.6) with 𝐴𝑢 = 𝑑𝑢/𝑑𝑥 ≡ 𝑢′, 𝑋 = {𝑢 ∈ 𝐻1(𝛺) : 𝑢(0) = 0},
𝑚 = 1 and 𝑌 = 𝐿2(𝛺) (and it is easy to prove that 𝐴 : 𝑋 → 𝑌 is a bijection).

A different variational formulation for (2.7) can be obtained if we integrate by
parts after multiplying (2.7a) by a test function. Then, using (2.7b) and letting the
unknown value 𝑢(1) to be a separate variable �̂�1, to be determined, we have

−
∫ 1

0
𝑢𝑣′ + �̂�1𝑣(1) =

∫ 1

0
𝑓 𝑣.

Grouping the trial variable into 𝑧 = (𝑢, �̂�1), set

𝑏(𝑧, 𝑣) ≡ 𝑏( (𝑢, �̂�1), 𝑣) = �̂�1𝑣(1) −
∫ 1

0
𝑢𝑣′, ℓ(𝑣) =

∫ 1

0
𝑓 𝑣. (2.8)

Set the spaces and their norms by

𝑋 = 𝐿2(𝛺) × R, 𝑌 = 𝐻1(𝛺),
∥𝑧∥2

𝑋 ≡ ∥(𝑢, �̂�1)∥2
𝑋 = ∥𝑢∥2

𝐿2(𝛺) + |�̂�1 |2, ∥𝑣∥2
𝑌 = ∥𝑣′∥2

𝐿2(𝛺) + |𝑣(1)|2.

By Sobolev inequality, ∥𝑣∥𝑌 is equivalent to the standard 𝐻1(𝛺)-norm. With these
settings, it is easy to prove that (1.3) holds with

𝛾 = ∥𝑏∥ = 1. (2.9)

One can also easily calculate the trial-to-test operator by analytically solving
(2.2) for this example: for any 𝑧 = (𝑢, �̂�1) ∈ 𝑋 ,

𝑇𝑧 ≡ 𝑇(𝑢, �̂�1) = �̂�1 +
∫ 1

𝑥

𝑢(𝑠) 𝑑𝑠. (2.10)

This implies that letting 𝑃𝑝(𝛺) denote the space of polynomials of degree at most
𝑝, restricted to 𝛺, and setting the discrete trial space to 𝑋ℎ = 𝑃𝑝(𝛺) × R, we have

𝑌
opt
ℎ

= 𝑃𝑝+1(𝛺).

The solution 𝑥ℎ = (𝑢ℎ, �̂�1,ℎ) of the resulting IPG method, in view of Theorem 2.4
and (2.9), is interesting in that 𝑢ℎ equals the 𝐿2(𝛺)-projection of 𝑢 onto 𝑃𝑝(𝛺).
In the general case, although one cannot expect the method to deliver the best
𝐿2-approximation from the trial space, the solution is the best approximation in
some norm, as will be proved in the next section.
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Bibliographical notes. The material of this section is based on Demkowicz and
Gopalakrishnan (2011b). Sequels by Demkowicz, Gopalakrishnan and Niemi
(2012a) and Zitelli et al. (2011) developed the theme further. A prequel by Dem-
kowicz and Gopalakrishnan (2010) focused solely on the transport equation (not
discussed in the review) and used a test space consisting of parts of analytically
solvable optimal test functions.

3. Minimization and other viewpoints
The ideal Petrov–Galerkin method (2.3) admits two equivalent reformulations, one
as a least-squares method that minimizes the residual in a non-standard dual norm,
and another as a mixed Galerkin method (with the same trial and test spaces)
solving an associated min-max for a saddle point.

Let 𝑅𝑌 : 𝑌 → 𝑌 ∗ denote the standard Riesz map defined by (𝑅𝑌 𝑦)(𝑣) = (𝑦, 𝑣)𝑌 ,
for all 𝑦 and 𝑣 in 𝑌 . Here and throughout, the inner product of 𝑌 is denoted by
(·, ·)𝑌 . It is well known to be invertible and isometric:

∥𝑅𝑌 𝑦∥𝑌 ∗ = ∥𝑦∥𝑌 . (3.1)

Let 𝐵 : 𝑋 → 𝑌 ∗ be the operator generated by the form 𝑏(·, ·), i.e. 𝐵𝑥(𝑦) = 𝑏(𝑥, 𝑦)
for all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 . Since the defining equation of 𝑇 , namely (2.2), can be
rewritten using this notation as 𝑅𝑌𝑇𝑧 = 𝐵𝑧, we see that

𝑇 = 𝑅−1
𝑌 ◦ 𝐵. (3.2)

3.1. Equivalent characterization as a residual minimizer

Definition 3.1. On the trial space, we define an energy norm of 𝑧 ∈ 𝑋 by |||𝑧 |||𝑋 ≔

∥𝑇𝑧∥𝑌 . Clearly, by Proposition 2.1,

|||𝑧 |||𝑋 = ∥𝑇𝑧∥𝑌 = sup
0≠𝑦∈𝑌

|𝑏(𝑧, 𝑦)|
∥𝑦∥𝑌

.

This is indeed a norm if (1.2a) holds due to easily seen norm equivalence

𝛾∥𝑧∥𝑋 ≤ |||𝑧 |||𝑋 ≤ ∥𝑏∥∥𝑧∥𝑋 for all 𝑧 ∈ 𝑋.

Theorem 3.2 (Residual minimization). Suppose (1.1) holds. Then the follow-
ing are equivalent statements for any given 𝑥ℎ in 𝑋ℎ.

(a) The 𝑥ℎ is the unique solution of the IPG method (2.3).
(b) The 𝑥ℎ is the best approximation to 𝑥 from 𝑋ℎ in the sense that

|||𝑥 − 𝑥ℎ |||𝑋 = inf
𝑧ℎ∈𝑋ℎ

|||𝑥 − 𝑧ℎ |||𝑋 .

(c) The 𝑥ℎ minimizes the residual in the following sense:

𝑥ℎ = arg min
𝑧ℎ∈𝑋ℎ

∥ℓ − 𝐵𝑧ℎ∥𝑌 ∗ .
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Proof. (a) ⇐⇒ (b) By definition of the IPG method, 𝑥ℎ solves (2.3) if and only
if 𝑏(𝑥 − 𝑥ℎ, 𝑦ℎ) = 0 for all 𝑦ℎ ∈ 𝑌opt

ℎ
. By the definition of the optimal test space,

this is equivalent to

𝑏(𝑥 − 𝑥ℎ, 𝑇 𝑧ℎ) = 0 for all 𝑧ℎ ∈ 𝑋ℎ,
which, in turn, is equivalent to

(𝑇(𝑥 − 𝑥ℎ), 𝑇 𝑧ℎ)𝑌 = 0 for all 𝑧ℎ ∈ 𝑋ℎ,
due to (2.2). The result follows since (𝑇 ·, 𝑇 ·)𝑌 is the inner product generating the
|||·|||𝑋-norm.

(b) ⇐⇒ (c) In view of (3.2),

|||𝑥 − 𝑧ℎ |||𝑋 = ∥𝑇(𝑥 − 𝑧ℎ)∥𝑌 = ∥𝑅−1
𝑌 𝐵(𝑥 − 𝑧ℎ)∥𝑌 .

Hence, by the isometry of the Riesz map (3.1), item (b) holds if and only if

∥𝐵(𝑥 − 𝑥ℎ)∥𝑌 ∗ = inf
𝑧ℎ∈𝑋ℎ

∥𝐵(𝑥 − 𝑧ℎ)∥𝑌 ∗ ,

which, since ℓ = 𝐵𝑥, is the same as (c).

3.2. Equivalent characterization as a mixed formulation

Definition 3.3. Let 𝑥 be as in (1.1) and let 𝑥ℎ solve (2.3). Following earlier
terminology, the Riesz representation of the residual, namely 𝜀 = 𝑅−1

𝑌
(ℓ − 𝐵𝑥ℎ), is

often called the error representation (function). Clearly,

∥𝜀∥𝑌 = ∥𝑅−1
𝑌 𝐵(𝑥 − 𝑥ℎ)∥𝑌 = ∥𝑇(𝑥 − 𝑥ℎ)∥𝑌 = |||𝑥 − 𝑥ℎ |||𝑋,

that is, the 𝑌 -norm of 𝜀 measures the error in the energy norm. Note that 𝜀 is the
unique element of 𝑌 satisfying

(𝜀, 𝑦)𝑌 = ℓ(𝑦) − 𝑏(𝑥ℎ, 𝑦) for all 𝑦 ∈ 𝑌 . (3.3)

Theorem 3.4 (Mixed Galerkin reformulation). The following are equivalent
statements.

(a) 𝑥ℎ ∈ 𝑋ℎ solves the IPG method (2.3).
(b) 𝑥ℎ and 𝜀 solve the mixed formulation

(𝜀, 𝑦)𝑌 + 𝑏(𝑥ℎ, 𝑦) = ℓ(𝑦) for all 𝑦 ∈ 𝑌, (3.4a)
𝑏(𝑧ℎ, 𝜀) = 0 for all 𝑧ℎ ∈ 𝑋ℎ . (3.4b)

(c) 𝜀 and 𝑥ℎ form the saddle point of 𝐿(𝑦, 𝑧) = 1
2 ∥𝑦∥

2
𝑌
− ℓ(𝑦) + 𝑏(𝑧, 𝑦) on 𝑌 × 𝑋ℎ,

𝐿(𝜀, 𝑥ℎ) = min
𝑦∈𝑌

max
𝑧∈𝑋ℎ

𝐿(𝑦, 𝑧).

Proof. (a) =⇒ (b) Equation (3.4a) is the same as (3.3), so we only need to prove
(3.4b). To this end,

𝑏(𝑧ℎ, 𝜀) = (𝑇𝑧ℎ, 𝜀)𝑌 = (𝑇𝑧ℎ, 𝑅−1
𝑌 (ℓ − 𝐵𝑥ℎ))𝑌 = (𝑇𝑧ℎ, 𝑇(𝑥 − 𝑥ℎ))𝑌 ,
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which, being the conjugate of 𝑏(𝑥 − 𝑥ℎ, 𝑇 𝑧ℎ), vanishes.
(b) =⇒ (a) Since (3.4a) implies 𝑏(𝑥ℎ, 𝑦ℎ) = ℓ(𝑦ℎ) − (𝜀, 𝑦ℎ)𝑌 for all 𝑦ℎ ∈ 𝑌opt

ℎ
, it

suffices to prove that (𝜀, 𝑦ℎ)𝑌 = 0 for all 𝑦ℎ ∈ 𝑌opt
ℎ

. Any 𝑦ℎ ∈ 𝑌opt
ℎ

is of the form
𝑦ℎ = 𝑇𝑧ℎ for some 𝑧ℎ ∈ 𝑋ℎ, so

(𝜀, 𝑦ℎ)𝑌 = (𝑇𝑧ℎ, 𝜀)𝑌 = 𝑏(𝑧ℎ, 𝜀) = 0

by (3.4b).
(b) ⇐⇒ (c) This follows from classical results on mixed methods (see e.g.

Brezzi and Fortin 1991, Ch. II) or duality theory (see e.g. Ekeland and Témam
1999, Ch. VI).

3.3. Optimal test norm and another trial-to-test operator

We have seen in Theorem 3.2(b) that the ideal PG method produces the best
approximation in the energy norm |||·|||𝑋 (defined in Definition 3.1). In practice, one
may want the best approximation in a given trial space norm, say ∥ · ∥𝑋. Is it possible
to engineer a test space norm such that the solution is the best approximation in a
wanted trial space norm? The simple answer in the affirmative is provided by the
optimal test norm, introduced below in the context of a generalized duality pairing.

We write the duality pairing in any Hilbert space 𝑌 as either

𝑓 (𝑦) or ⟨ 𝑓 , 𝑦⟩𝑌 . (3.5a)

Both denote the action of some 𝑓 ∈ 𝑌 ∗ on a 𝑦 ∈ 𝑌 . The duality pairing satisfies

∥ 𝑓 ∥𝑌 ∗ = sup
0≠𝑦∈𝑌

|⟨ 𝑓 , 𝑦⟩𝑌 |
∥𝑦∥𝑌

and ∥𝑦∥𝑌 = sup
0≠ 𝑓 ∈𝑌 ∗

|⟨ 𝑓 , 𝑦⟩𝑌 |
∥ 𝑓 ∥𝑌 ∗

. (3.5b)

Definition 3.5. Analogous to the energy norm |||·|||𝑋 in Definition 3.1, we define
the optimal test norm ||||𝑦 ||||𝑌 of any 𝑦 in the test space 𝑌 by

||||𝑦 ||||𝑌 = sup
0≠𝑧∈𝑋

|𝑏(𝑧, 𝑦)|
∥𝑧∥𝑋

. (3.6)

This is obviously a norm when (1.3) holds. We shall refer to a generic sesquilinear
form 𝑏(·, ·) : 𝑋 × 𝑌 → C as a generalized duality pairing if

|||𝑧 |||𝑋 = ∥𝑧∥𝑋 and ||||𝑦 ||||𝑌 = ∥𝑦∥𝑌 (3.7)

hold for all 𝑧 ∈ 𝑋 and 𝑦 ∈ 𝑌 . This terminology is motivated by the standard duality
pairing 𝑏(·, ·) = ⟨·, ·⟩𝑌 in the case 𝑋 = 𝑌 ∗, where (3.5) implies

∥𝑧∥𝑋 = sup
0≠𝑦∈𝑌

|𝑏(𝑧, 𝑦)|
∥𝑦∥𝑌

and ∥𝑦∥𝑌 = sup
0≠𝑧∈𝑋

|𝑏(𝑧, 𝑦)|
∥𝑧∥𝑋

, (3.8)

a pair of identities equivalent to (3.7). One of the pair implies the other, as shown
shortly.
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Let 𝐵 : 𝑋 → 𝑌 ∗ denote the operator generated by 𝑏(·, ·) by ⟨𝐵𝑧, 𝑦⟩𝑌 = 𝑏(𝑧, 𝑦) for
all 𝑧 ∈ 𝑋, 𝑦 ∈ 𝑌 . Identifying the bidual 𝑌 ∗∗ with 𝑌 , the adjoint 𝐵∗ : 𝑌 → 𝑋∗ of 𝐵
satisfies

(𝐵∗𝑦)(𝑧) = 𝑏(𝑧, 𝑦) for all 𝑧 ∈ 𝑋, 𝑦 ∈ 𝑌 . (3.9)

Using the Riesz maps in 𝑋 and 𝑌 , we then immediately have

𝑏(𝑧, 𝑦) =
(
𝑅−1
𝑌 𝐵𝑧, 𝑦

)
𝑌
=
(
𝑧, 𝑅−1

𝑋 𝐵
∗𝑦
)
𝑋
, 𝑧 ∈ 𝑋, 𝑦 ∈ 𝑌 . (3.10)

This readily implies the twin identities

|||𝑧 |||𝑋 = ∥𝑅−1
𝑌 𝐵𝑧∥𝑌 , ||||𝑦 ||||𝑌 = ∥𝑅−1

𝑋 𝐵
∗𝑦∥𝑋 (3.11)

for all 𝑧 ∈ 𝑋 and 𝑦 ∈ 𝑌 , by the definitions of energy norm and optimal test norm.
Now we show that one may equivalently shorten the definition of the generalized
duality pairing by omitting one of the two equalities in (3.7).

Proposition 3.6. The identity |||𝑧 |||𝑋 = ∥𝑧∥𝑋 holds for all 𝑧 ∈ 𝑋 if and only if
||||𝑦 ||||𝑌 = ∥𝑦∥𝑌 for all 𝑦 ∈ 𝑌 . Therefore, whenever either equality holds, we have
∥𝑏∥ = 1 and 𝛾 = 1.

Proof. If |||𝑧 |||𝑋 = ∥𝑧∥𝑋 for all 𝑧 ∈ 𝑋 , then (3.6) and (3.11) imply

||||𝑦 ||||𝑌 = sup
0≠𝑧∈𝑋

|𝑏(𝑧, 𝑦)|
∥𝑧∥𝑋

= sup
0≠𝑧∈𝑋

|(𝑅−1
𝑌
𝐵𝑧, 𝑦)𝑌 |

∥𝑅−1
𝑌
𝐵𝑧∥𝑌

.

The last supremum equals ∥𝑦∥𝑌 since 𝑅−1
𝑌
𝐵 : 𝑋 → 𝑌 is a bijection. The converse

is proved similarly using the other identity in (3.11). The last assertion on ∥𝑏∥ and
𝛾 immediately follows from (3.8).

Clearly one direction of Proposition 3.6 answers the question posed at the begin-
ning of this subsection. If we use the optimal test norm for𝑌 , then the energy norm
coincides with the given ∥ · ∥𝑋-norm, and Theorem 3.2(b) shows that the solution
of the IPG method is guaranteed to be the best approximation in the given 𝑋-
norm. However, as we shall see later, the optimal test norm is often not practically
computable easily in the multi-dimensional examples we have in mind.

Next, we contrast the previously introduced trial-to-test operator which produces
optimal test functions with an earlier trial-to-test operator given in Barrett and
Morton (1984). To this end, let us introduce an adaptation of their ideas to our
current Petrov–Galerkin setting. (They used equal trial and test spaces.) We define
the ‘Barrett–Morton trial-to-test operator’ 𝑇BM : 𝑋 → 𝑌 by

𝑏(𝑤,𝑇BM𝑧) = (𝑤, 𝑧)𝑋 for all 𝑤, 𝑧 ∈ 𝑋. (3.12)

Using the inverse of 𝐵∗, an equivalent characterization of 𝑇BM is

𝑇BM = (𝐵∗)−1 ◦ 𝑅𝑋 .
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Comparing (3.12) with (2.2), we find two different trial-to-test mappings. The
difference between our 𝑇 = 𝑅−1

𝑌
◦ 𝐵 (see (3.2)) and 𝑇BM is illustrated in the

following diagram:

𝑋 𝑌 ∗

𝑋∗ 𝑌

𝐵

𝑅𝑋

𝐵∗

𝑅𝑌

which is not commutative in general, and which further clarifies that 𝑇 ≠ 𝑇BM in
general.

Analogous to the IPG method of Definition 2.3, we can now consider a similar
method using 𝑇BM in place of 𝑇 . Using any given trial subspace 𝑋ℎ ⊂ 𝑋 , consider
finding 𝑥BM

ℎ
∈ 𝑋ℎ that solves

𝑏
(
𝑥BM
ℎ , 𝑦ℎ

)
= ℓ(𝑦ℎ) for all 𝑦ℎ = 𝑇BM𝑧ℎ, 𝑧ℎ ∈ 𝑋ℎ . (3.13)

Subtracting this equation from (1.1) and substituting𝑤 = 𝑥−𝑥ℎ and 𝑧 = 𝑧ℎ in (3.12),
we learn that

0 = 𝑏
(
𝑥 − 𝑥BM

ℎ , 𝑇
BM𝑧ℎ

)
=
(
𝑥 − 𝑥BM

ℎ , 𝑤ℎ
)
𝑋

for all 𝑤ℎ ∈ 𝑋ℎ .

This implies the remarkable property that the solution 𝑥BM
ℎ

∈ 𝑋ℎ of the method
(3.13) equals the 𝑋-orthogonal projection of the exact solution 𝑥 and explains the
potential interest in the method (3.13). However, inverting 𝐵∗ to compute test
space basis functions is generally too expensive. In contrast, we will show in later
sections that the inversion of 𝑅𝑌 to compute𝑇 can be realized locally if the problem
is reformulated adequately.

Nevertheless, at this point it is useful to note one scenario where 𝑇 and 𝑇BM

coincide. This occurs when 𝑏 is a generalized duality pairing.

Proposition 3.7. If ∥𝑧∥𝑋 = |||𝑧 |||𝑋 for all 𝑧 ∈ 𝑋 , then 𝑇 = 𝑇BM.

Proof. By (3.11), |||𝑧 |||𝑋 = ∥𝑅−1
𝑌
𝐵𝑧∥𝑌 = ∥𝑇𝑧∥𝑌 . Hence, whenever ∥𝑧∥𝑋 = |||𝑧 |||𝑋

for all 𝑧 ∈ 𝑋 , by polarization, we have

(𝑤, 𝑧)𝑋 = (𝑇𝑤,𝑇𝑧)𝑌 = 𝑏(𝑤,𝑇𝑧) for all 𝑧, 𝑤 ∈ 𝑋,

where we have used (2.2) in the last equality. Comparing this with (3.12), we find
that 𝑏(𝑤,𝑇𝑧) = 𝑏(𝑤,𝑇BM𝑧) for all 𝑤, 𝑧 ∈ 𝑋 . Hence 𝑇 = 𝑇BM by (1.2b).

Thus, when 𝑏 is a generalized duality pairing, the IPG method coincides with
the method (3.13) and the discrete solution equals the 𝑋-orthogonal projection of
the exact solution.

Example 3.8. It can be easily seen that the bilinear form 𝑏 in (2.8) of Example 2.6
is a generalized duality pairing. Hence the analytically solved expression for 𝑇 ,
given there in (2.10), coincides with 𝑇BM.
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Bibliographical notes. The interpretation of the IPG method as a residual min-
imization method was pointed out in Demkowicz and Gopalakrishnan (2011b,
eq. (2.13)). The minimization of residual in dual norms was also the theme in
many previous works such as Bramble, Lazarov and Pasciak (1997) and Bramble
and Pasciak (2004), where the dual norm was replaced by a preconditioner action.
Where the DPG methods depart from these works, as will be clear from the next
section, is in the localization of the dual-norm computation through hybridization.
The interpretation of the DPG method as a mixed Galerkin method has parallels
in Cohen, Dahmen and Welper (2012). Theorems 3.2 and 3.4 can be seen in
Gopalakrishnan (2013), Bouma, Gopalakrishnan and Harb (2014) and Demkowicz
and Gopalakrishnan (2017). More recently, a substantial generalization of such
theorems to a Banach space setting was achieved by Muga and van der Zee (2020).
Optimal test norms were introduced in Zitelli et al. (2011). Generalized duality
pairings and non-trivial examples of them in the context of certain trace spaces can
be found in Demkowicz (2018). Proposition 3.7 connects our optimal test function
idea to the old concepts of Barrett and Morton (1984). There is a considerable lit-
erature in pursuit of making their idea more computationally feasible, e.g. Barbone
and Harari (2001), Celia, Russell, Ismael and Ewing (1990), Demkowicz and Oden
(1986b,a), Loula, Hughes and Franca (1987) and Loula and Fernandes (2009). We
instead switch course in the next section to pursue localization of the computation
of our trial-to-test operator 𝑇 .

4. Ideal DPG methods
In this and the next section, we define DPG methods. Throughout, the boundary
value problems considered are posed on an open bounded domain 𝛺 ⊂ R𝑁 with
Lipschitz boundary. We further assume that 𝛺 is partitioned into disjoint open
subsets 𝐾 (called elements), forming the collection 𝛺ℎ (called mesh), such that the
union of �̄� for all 𝐾 ∈ 𝛺ℎ is �̄�. We assume that the element boundaries 𝜕𝐾 are
Lipschitz so we can apply trace theorems on them in specific applications. The
shape of the elements is unimportant in this section. Let 𝑌 (𝐾) denote a Hilbert
space of some space of functions on an element 𝐾 , with inner product (·, ·)𝑌 (𝐾).

Definition 4.1. An ideal DPG method is an IPG method (as in Definition 2.3)
where 𝑌 is set to the Cartesian product of Hilbert spaces 𝑌 (𝐾), that is,

𝑌 =
∏
𝐾∈𝛺ℎ

𝑌 (𝐾), (4.1)

endowed with the inner product

(𝑦, 𝑣)𝑌 =
∑︁
𝐾∈𝛺ℎ

(𝑦𝐾 , 𝑣𝐾 )𝑌 (𝐾) for all 𝑦, 𝑣 ∈ 𝐾, (4.2)

where 𝑦𝐾 denotes the 𝑌 (𝐾)-component of any 𝑦 in the Cartesian product (4.1).
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Our interest in using such a product space for the test variable is the resulting
localization of the trial-to-test operator 𝑇 . Note that to compute a basis for the
optimal test space, we must solve (2.2) to compute 𝑇𝑧 for each 𝑧 in a basis of 𝑋ℎ.
That equation, (𝑇𝑧, 𝑦)𝑌 = 𝑏(𝑧, 𝑦), decouples into independent equations on each
element, if 𝑌 has the form (4.1). Localization of 𝑇 refers to the fact that the part
of 𝑇𝑧 on an element 𝐾 , namely (𝑇𝑧)𝐾 , can be computed, independently of other
elements, by solving

((𝑇𝑧)𝐾 , 𝑦𝐾 )𝑌 (𝐾) = 𝑏(𝑧, 𝑦𝐾 ) for all 𝑦𝐾 ∈ 𝑌 (𝐾). (4.3)

The adjective discontinuous in the name ‘DPG’ refers to the fact that test functions
in 𝑌 of the form (4.1) admit discontinuous functions with no continuity constraints
across element interfaces. For example, in many applications, we set 𝑌 to

𝐻1(𝛺ℎ) ≔ {𝑣 ∈ 𝐿2(𝛺) : 𝑣 |𝐾 ∈ 𝐻1(𝐾) for all 𝐾 ∈ 𝛺ℎ},

which can be identified with the Cartesian product

𝐻1(𝛺ℎ) ≡
∏
𝐾∈𝛺ℎ

𝐻1(𝐾), (4.4)

and contains functions that are discontinuous across element interfaces. Collo-
quially, we say that 𝐻1(𝛺ℎ) is a broken Sobolev space, obtained by breaking the
inter-element continuity constraints of𝐻1(𝛺). DPG methods are built using broken
Sobolev spaces as test spaces.

Example 4.2 (Laplace equation: primal DPG formulation). Let 𝑓 ∈ 𝐿2(𝛺) and
𝑢 satisfy

−Δ𝑢 = 𝑓 in 𝛺, (4.5a)
𝑢 = 0 on 𝜕𝛺. (4.5b)

The standard variational formulation for this problem finds 𝑢 in �̊�1(𝛺) such that

(grad 𝑢, grad 𝑣)𝛺 = ( 𝑓 , 𝑣)𝛺 for all 𝑣 ∈ �̊�1(𝛺). (4.6)

A different variational formulation is obtained if we multiply (4.5a) by a possibly
discontinuous test function 𝑦 ∈ 𝐻1(𝛺ℎ) (defined in (4.4)) and integrate by parts,
element by element. On a single element 𝐾 ∈ 𝛺ℎ, we have∫

𝐾

grad 𝑢 · grad 𝑦 −
∫
𝜕𝐾

(𝑛 · grad 𝑢)𝑦 =
∫
𝐾

𝑓 𝑦. (4.7)

The integral over 𝜕𝐾 must be interpreted as a duality pairing in 𝐻1/2(𝜕𝐾) if 𝑢
is not sufficiently regular. Recalling our notation for duality pairing in (3.5) and
letting 𝑛 · grad 𝑢 be an independent unknown denoted by 𝑞𝑛, we now derive a
Petrov–Galerkin formulation. To state it precisely, we use the following notation:

(𝑟, 𝑠)ℎ =
∑︁
𝐾∈𝛺ℎ

(𝑟, 𝑠)𝐾 , ⟨ℓ, 𝑤⟩ℎ =
∑︁
𝐾∈𝛺ℎ

⟨ℓ, 𝑤⟩𝐻1/2(𝜕𝐾), (4.8)
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where (·, ·)𝐷 , for any domain 𝐷, denotes the 𝐿2(𝐷)-inner product and ⟨ℓ, ·⟩𝐻1/2(𝜕𝐾)
denotes the action of a conjugate linear functional ℓ ∈ 𝐻−1/2(𝜕𝐾) on a function in
𝐻1/2(𝜕𝐾). Define the element-by-element trace operator

tr𝑛 : 𝐻(div, 𝛺) →
∏
𝐾∈𝛺ℎ

𝐻−1/2(𝜕𝐾), tr𝑛 𝑟 |𝜕𝐾 = 𝑟 · 𝑛|𝜕𝐾 . (4.9)

Here and throughout, 𝑛 denotes the unit outward normal vector of a domain under
consideration, which is usually clear from the context, e.g. above 𝑛 is the outward
unit normal on each element boundary 𝜕𝐾 . (On an interior interface shared by two
elements 𝐾±, the 𝑛 from 𝐾± will have opposite signs.) We endow the image of the
trace map with a quotient norm,

𝐻−1/2(𝜕𝛺ℎ) = range(tr𝑛),
∥𝑟𝑛∥𝐻−1/2(𝜕𝛺ℎ) = inf

𝑞∈tr−1
𝑛 {𝑟𝑛 }

∥𝑞∥𝐻(div,𝛺),
(4.10)

where the infimum is over the preimage

tr−1
𝑛 {𝑟𝑛} = {𝑞 ∈ 𝐻(div, 𝛺) : tr𝑛(𝑞) = 𝑟𝑛}.

Since the element boundary traces of 𝑛 · grad 𝑢 appearing in (4.7) are in
𝐻−1/2(𝜕𝛺ℎ), we now have a trial space to place the interface variables. Given
a 𝑟𝑛 ∈ 𝐻−1/2(𝜕𝛺ℎ), note that for any 𝑣 ∈ 𝐻1(𝛺ℎ),

⟨𝑟𝑛, 𝑣⟩ℎ = ⟨𝑛 · 𝑟, 𝑣⟩ℎ
for all 𝑟 ∈ 𝐻(div, 𝛺) with tr𝑛(𝑟) = 𝑟𝑛. The interior values of 𝑟 are not seen by
the right-hand side. When 𝑟 · 𝑛 is sufficiently smooth on each element interface,
one can give an intrinsic characterization by orienting each interface; see (5.16) of
Example 5.5.

With this notation, we can now give the Petrov–Galerkin formulation obtained
by summing up (4.7) over all 𝐾 ∈ 𝛺ℎ. Set

𝑋 = �̊�1(𝛺) × 𝐻−1/2(𝜕𝛺ℎ), 𝑌 = 𝐻1(𝛺ℎ).

Then the PG formulation finds (𝑢, 𝑞𝑛) ∈ 𝑋 satisfying

(grad 𝑢, grad 𝑣)ℎ − ⟨𝑞𝑛, 𝑣⟩ℎ = ( 𝑓 , 𝑣)𝛺 for all 𝑣 ∈ 𝑌 . (4.11)

This is a ‘hybrid’ form of the standard formulation (4.6). Although it is different
from the primal hybrid formulation of Raviart and Thomas (1977b), there are a
number of common features, including the use of the quotient norm of the type
(4.10). Since the test space𝑌 = 𝐻1(𝛺ℎ) is a product space as in Definition 4.1, this
formulation, provided we verify its wellposedness (which is done below), admits
the construction of an ideal DPG method with localized optimal test space, known
as the primal DPG method for the Laplace equation.

Processes that arrive at reformulations of a problem using spaces of discontinu-
ous functions and new interface variables have traditionally been referred to as

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000102
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 25 Jul 2025 at 19:50:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000102
https://www.cambridge.org/core


308 L. Demkowicz and J. Gopalakrishnan

hybridization; see e.g. Raviart and Thomas (1977b), Brezzi and Fortin (1991) or
Cockburn and Gopalakrishnan (2004). We have used the adjective ‘hybrid’ in the
above example following this tradition. To analyse hybrid formulations like those
of Example 4.2, we formulate a result in a general setting. Let 𝑋0, �̂� , and 𝑌 denote
Hilbert spaces over C, put 𝑋 = 𝑋0 × �̂� , and let 𝑏0 : 𝑋0 ×𝑌 → C and �̂� : �̂� ×𝑌 → C
denote continuous sesquilinear forms. Then

𝑌0 = {𝑦 ∈ 𝑌 : �̂�(𝑥, 𝑦) = 0 for all 𝑥 ∈ �̂�} (4.12a)

is a closed subspace of 𝑌 . Suppose there are positive constants 𝛾0 and �̂� such that

𝛾0∥𝑥∥𝑋0 ≤ sup
0≠𝑦∈𝑌0

|𝑏0(𝑥, 𝑦)|
∥𝑦∥𝑌

for all 𝑥 ∈ 𝑋0, and (4.12b)

�̂� ∥𝑥∥�̂� ≤ sup
0≠𝑦∈𝑌

|�̂�(𝑥, 𝑦)|
∥𝑦∥𝑌

for all 𝑥 ∈ �̂� . (4.12c)

Our abstraction of a hybrid formulation is based on the continuous sesquilinear
form

𝑏( (𝑥, 𝑥), 𝑦) = 𝑏0(𝑥, 𝑦) + �̂�(𝑥, 𝑦),

over 𝑋 = 𝑋0 × �̂� and 𝑌 . In examples, �̂� will be a space of interface variables (on
element boundaries) and 𝑌 will be a space admitting functions with no continuity
constraints across element boundaries. Given an ℓ ∈ 𝑌 ∗, we are interested in the
wellposedness of the hybrid problem to find 𝑥 ∈ 𝑋0 and 𝑥 ∈ �̂� satisfying

𝑏( (𝑥, 𝑥), 𝑦) = ℓ(𝑦) for all 𝑦 ∈ 𝑌, (4.13)

in relation to the problem of finding 𝑥 ∈ 𝑋0 satisfying

𝑏0(𝑥, 𝑦) = ℓ(𝑦) for all 𝑦 ∈ 𝑌0. (4.14)

Theorem 4.3 (Wellposedness of hybrid Petrov–Galerkin formulations). In the
setting of (4.12), we have

𝛾1∥(𝑥, 𝑥)∥𝑋 ≤ sup
0≠𝑦∈𝑌

|𝑏( (𝑥, 𝑥), 𝑦)|
∥𝑦∥𝑌

, (4.15)

where 𝛾1 is given by
1
𝛾2

1
=

1
𝛾2

0
+ 1
�̂�2

(
∥𝑏0∥
𝛾0

+ 1
)2
.

Moreover,

𝑍 = {𝑦 ∈ 𝑌 : 𝑏( (𝑥, 𝑥), 𝑦) = 0 for all 𝑥 ∈ 𝑋0 and 𝑥 in �̂�} and
𝑍0 = {𝑦 ∈ 𝑌0 : 𝑏0(𝑥, 𝑦) = 0 for all 𝑥 ∈ 𝑋0}

are equal:
𝑍 = 𝑍0. (4.16)
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Consequently, if 𝑍0 = {0}, then (4.13) is uniquely solvable, and furthermore, the
solution component 𝑥 from (4.13) coincides with the solution of (4.14).

Proof. To prove (4.15), noting that

∥(𝑥, 𝑥)∥2
𝑋 = ∥𝑥∥2

𝑋0
+ ∥𝑥∥2

�̂�
,

we start by bounding ∥𝑥∥𝑋0 as follows:

𝛾0∥𝑥∥𝑋0 ≤ sup
0≠𝑦0∈𝑌0

|𝑏0(𝑥, 𝑦)|
∥𝑦∥𝑌

by (4.12b)

≤ sup
0≠𝑦0∈𝑌0

|𝑏0(𝑥, 𝑦) + �̂�(𝑥, 𝑦)|
∥𝑦∥𝑌

by (4.12a)

≤ sup
0≠𝑦∈𝑌

|𝑏( (𝑥, 𝑥), 𝑦)|
∥𝑦∥𝑌

as 𝑌0 ⊆ 𝑌 .

Next, to bound ∥𝑥∥�̂�, using (4.12c),

�̂� ∥𝑥∥�̂� ≤ sup
0≠𝑦∈𝑌

|�̂�(𝑥, 𝑦)|
∥𝑦∥𝑌

= sup
0≠𝑦∈𝑌

|𝑏( (𝑥, 𝑥), 𝑦) − 𝑏0(𝑥, 𝑦)|
∥𝑦∥𝑌

≤ ∥𝑏0∥ ∥𝑥∥𝑋0 + sup
0≠𝑦∈𝑌

|𝑏( (𝑥, 𝑥), 𝑦)|
∥𝑦∥𝑌

.

Combining these bounds for ∥𝑥∥𝑋0 and ∥𝑥∥�̂�, we obtain (4.15).
To prove the remaining claims, note that since we may choose 𝑥 and 𝑥 inde-

pendently in the definition of 𝑍 , a 𝑦 ∈ 𝑌 is in 𝑍 if and only if 𝑏0(𝑥, 𝑦) = 0 for all
𝑥 ∈ 𝑋0 and �̂�(𝑥, 𝑦) = 0 for all 𝑥 ∈ �̂� . The latter holds if and only if 𝑦 ∈ 𝑌0 due
to (4.12a). Hence (4.16) follows. The unique solvability of both (4.13) and (4.14)
then follows from the equivalence of (1.2) and (1.1). Finally, restricting the test
space in (4.13) to 𝑌0 and using (4.12a), we find that its solution component 𝑥 must
also solve (4.14).

In particular examples, to apply the theorem, the main work is in verifying its
assumptions. We shall now see examples of how to do so. A one-dimensional
example is provided by a hybrid version of the formulation of Example 2.6 (using a
natural broken space). Its analysis can be found in Demkowicz and Gopalakrishnan
(2011b, § III). Here we proceed directly to the more interesting multi-dimensional
examples of Laplace and Maxwell equations.

Example 4.4 (Laplace equation: wellposedness of primal DPG formulation).
Continuing Example 4.2, we fit it into the framework above by setting

𝑋0 = �̊�1(𝛺), 𝑌0 = �̊�1(𝛺), (4.17a)
�̂� = 𝐻−1/2(𝜕𝛺ℎ), 𝑌 = 𝐻1(𝛺ℎ), (4.17b)
𝑏0(𝑢, 𝑦) = (grad 𝑢, grad 𝑦)ℎ, �̂�(𝑞𝑛, 𝑦) = ⟨𝑞𝑛, 𝑦⟩ℎ . (4.17c)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000102
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 25 Jul 2025 at 19:50:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000102
https://www.cambridge.org/core


310 L. Demkowicz and J. Gopalakrishnan

To verify (4.12a), letting

𝑌 = {𝑦 ∈ 𝐻1(𝛺ℎ) : ⟨𝑞𝑛, 𝑦⟩ℎ = 0 for all 𝑞𝑛 ∈ 𝐻−1/2(𝜕𝛺ℎ)},

we must prove that �̊�1(𝛺) = 𝑌 . Recall that 𝑞𝑛 above is always of the form
𝑛 · 𝑞 for some 𝑞 ∈ 𝐻(div, 𝛺). Let 𝑦 ∈ �̊�1(𝛺). Its zero trace implies that
⟨𝑦, 𝑞 · 𝑛⟩𝐻1/2(𝜕𝛺) = 0 for any 𝑞 ∈ 𝐻(div, 𝛺). Hence, two integrations by parts, one
element by element and the other over 𝛺, give

⟨𝑦, 𝑞 · 𝑛⟩ℎ = (𝑦, div 𝑞)𝛺 + (grad 𝑦, 𝑞)𝛺 = ⟨𝑦, 𝑞 · 𝑛⟩𝐻1/2(𝜕𝛺), (4.18)

and since the last term vanishes, 𝑦 ∈ 𝑌 , i.e. �̊�1(𝛺) ⊆ 𝑌 .
For the reverse inclusion, consider a 𝑦 ∈ 𝑌 . Note that the distributional gradient

of a 𝑦 ∈ 𝐻1(𝛺ℎ) acting on a 𝜙 in the Schwartz test space D(𝛺)𝑁 satisfies

(grad 𝑦)(𝜙) = −(𝑦, div 𝜙)𝛺 = (grad 𝑦, 𝜙)ℎ − ⟨𝑦, 𝑛 · 𝜙⟩ℎ
where we have integrated by parts, element by element. The last term vanishes by
the given condition on 𝑦. Hence grad 𝑦 ∈ 𝐿2(𝛺)𝑁 . Now integrating by parts again,
but this time over 𝛺, we find, by (4.18), that ⟨𝑦, 𝑞 · 𝑛⟩𝐻1/2(𝜕𝛺) = ⟨𝑦, 𝑞 · 𝑛⟩ℎ = 0 for
all 𝑞 ∈ 𝐻(div, 𝛺). Hence 𝑦 |𝜕𝛺 = 0 and 𝑦 ∈ �̊�1(𝛺). Thus

�̊�1(𝛺) = 𝑌 (4.19)

and (4.12a) holds.
Condition (4.12b) obviously holds, since the 𝑏0(·, ·) set in (4.17) is coercive on

𝑌0 by the Friedrichs inequality. It only remains to verify (4.12c). To do so, given a
𝑞𝑛 ∈ 𝐻−1/2(𝜕𝛺ℎ), consider 𝑞 ∈ 𝐻(div, 𝐾) and 𝑤 ∈ 𝐻1(𝐾) solving

− grad(div 𝑞) + 𝑞 = 0 in 𝐾 , 𝑛 · 𝑞 = 𝑞𝑛 on 𝜕𝐾 , (4.20)

− div(grad𝑤) + 𝑤 = 0 in 𝐾 ,
𝜕𝑤

𝜕𝑛
= 𝑞𝑛 on 𝜕𝐾 . (4.21)

The boundary value problems (4.21) and (4.20) are equivalent in the sense that
𝑤 solves (4.21) if and only if 𝑞 = grad𝑤 solves (4.20) and moreover ∥𝑤∥𝐻1(𝐾) =
∥𝑞∥𝐻(div,𝐾). It is also obvious that from among all 𝐻(div, 𝐾)-extensions of 𝑞𝑛, the
solution of (4.20) has the minimal 𝐻(div, 𝐾)-norm, so

∥𝑞𝑛∥𝐻−1/2(𝜕𝐾) = ∥𝑞∥𝐻(div,𝐾) = ∥𝑤∥𝐻1(𝐾)

= sup
0≠𝑣∈𝐻1(𝐾)

|(grad𝑤, grad 𝑣)𝐾 + (𝑤, 𝑣)𝐾 |
∥𝑣∥𝐻1(𝐾)

= sup
0≠𝑣∈𝐻1(𝐾)

|⟨𝑞𝑛, 𝑣⟩𝐻1/2(𝜕𝐾) |
∥𝑣∥𝐻1(𝐾)

, (4.22)

where we used the variational form of (4.21) in the last step. Squaring and summing
over all 𝐾 ∈ 𝛺ℎ, we find that (4.12c) holds with �̂� = 1. (More identities similar to
(4.22) appear in Theorem 4.6 below.)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000102
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 25 Jul 2025 at 19:50:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000102
https://www.cambridge.org/core


The discontinuous Petrov–Galerkin method 311

Having verified the assumptions, Theorem 4.3 now gives the inf-sup condition

∥(𝑢, 𝑞𝑛)∥�̊�1(𝛺)×𝐻−1/2(𝜕𝛺ℎ) ≲ sup
0≠𝑦∈𝐻1(𝛺ℎ)

(grad 𝑢, grad 𝑦)ℎ + ⟨𝑞𝑛, 𝑦⟩ℎ
∥𝑦∥𝐻1(𝛺ℎ)

, (4.23)

thus proving the wellposedness of the primal DPG formulation for the Laplace
equation.

Example 4.5 (Maxwell equations). We now develop and analyse a primal DPG
method for the cavity problem in electromagnetics. Let the cavity 𝛺 be an open
bounded contractible domain in R3, on the boundary of which the so-called perfect
electric conducting boundary condition is placed. Assuming that all time variations
are harmonic of frequency 𝜔 > 0, Maxwell equations in the cavity are

−𝚤𝜔𝜇𝐻 + curl 𝐸 = 0 in 𝛺, (4.24a)
−𝚤𝜔𝜖𝐸 − curl𝐻 = −𝐽 in 𝛺, (4.24b)

𝑛 × 𝐸 = 0 on 𝜕𝛺. (4.24c)

The functions 𝐸, 𝐻, 𝐽 : 𝛺 → C3 represent electric field, magnetic field and im-
posed current, respectively, and 𝚤 denotes the imaginary unit. We assume that
the electromagnetic material properties 𝜖 and 𝜇 are bounded uniformly positive
functions on 𝛺. The number 𝜔 > 0 denotes a fixed wavenumber. Eliminating 𝐻
from (4.24a) and (4.24b), we obtain the second-order (non-elliptic) equation

curl 𝜇−1 curl 𝐸 − 𝜔2𝜖𝐸 = 𝑓 , (4.25)

where 𝑓 = 𝚤𝜔𝐽. Let

𝐻(curl, 𝛺) = {𝐹 ∈ 𝐿2(𝛺)3 : curl 𝐹 ∈ 𝐿2(𝛺)3}

and let �̊�(curl, 𝛺) denote the subspace of vector fields in 𝐻(curl, 𝛺) with zero
tangential trace on 𝜕𝛺. A standard variational formulation for this problem is
obtained by multiplying (4.25) by a test function 𝐹 ∈ �̊�(curl, 𝛺), integrating by
parts and using the boundary condition (4.24c): find 𝐸 ∈ �̊�(curl, 𝛺) satisfying

(𝜇−1 curl 𝐸, curl 𝐹)𝛺 − 𝜔2(𝜖𝐸, 𝐹)𝛺 = ⟨ 𝑓 , 𝐹⟩ (4.26)

for any given 𝑓 ∈ �̊�(curl, 𝛺)′. It is well known (see Monk 2003) that (4.26) has
a unique solution for every 𝑓 ∈ �̊�(curl, 𝛺)′ whenever 𝜔 is not a resonance of the
cavity 𝛺, an assumption we place throughout this example.

The primal DPG method for the electric cavity problem is obtained by multiply-
ing (4.25) by a test function 𝐹 in the ‘broken’ space

𝐻(curl, 𝛺ℎ) =
∏
𝐾∈𝛺ℎ

𝐻(curl, 𝐾)

and integrating by parts, element by element. On a single element 𝐾 ∈ 𝛺ℎ, we get

(𝜇−1 curl 𝐸, curl 𝐹)𝐾 + (𝑛 × 𝜇−1 curl 𝐸, 𝐹)𝜕𝐾 − 𝜔2(𝜀𝐸, 𝐹)𝐾 = ( 𝑓 , 𝐹)𝐾 . (4.27)
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To set the element boundary term in the right space, a space akin to (4.10), let us
recall a few pertinent results on tangential traces on Lipschitz boundaries.

The tangential trace maps

𝐸 ↦→ tr𝐾𝑛× 𝐸 : = (𝑛 × 𝐸)|𝜕𝐾 , 𝐸 ↦→ tr𝐾⊤ 𝐸 ≔ 𝑛 × (𝐸 × 𝑛)|𝜕𝐾 ≡ 𝐸⊤ |𝜕𝐾 ,

both well-defined for smooth vectors fields 𝐸 on any mesh element 𝐾 ∈ 𝛺ℎ, can
be extended to continuous linear maps

tr𝐾𝑛× : 𝐻(curl, 𝐾) → 𝐻−1/2(divF, 𝜕𝐾), tr𝐾⊤ : 𝐻(curl, 𝐾) → 𝐻−1/2(curlF, 𝜕𝐾)

by the work of Buffa, Costabel and Sheen (2002), which contains the definitions of
the codomain spaces and the surface derivatives (divF and curlF) above. Moreover,
their results imply that the integration-by-parts formula

(curl 𝐸, 𝐹)𝐾 − (𝐸, curl 𝐹)𝐾 = (𝑛 × 𝐸, 𝐹)𝜕𝐾

for smooth vector fields 𝐸 and 𝐹 on 𝐾 can be extended to 𝐸, 𝐹 ∈ 𝐻(curl, 𝛺),
with the understanding that the right-hand side above becomes a duality pairing
⟨tr𝐾𝑛× 𝐸, tr𝐾⊤ 𝐹⟩𝐻−1/2(curlF,𝜕𝐾) between 𝐻−1/2(divF, 𝜕𝐾) and 𝐻−1/2(curlF, 𝜕𝐾). Re-
using the notation of (·, ·)ℎ and ⟨·, ·⟩ℎ in (4.8) by extending inner products to vector
fields in the obvious way and letting

⟨𝑛 × 𝐸, 𝐹⟩ℎ =
∑︁
𝐾∈𝛺ℎ

⟨tr𝐾𝑛× 𝐸, tr𝐾⊤ 𝐹⟩𝐻−1/2(curlF,𝜕𝐾),

we sum (4.27) over all 𝐾 ∈ 𝛺ℎ to obtain

(𝜇−1 curl 𝐸, curl 𝐹)ℎ + ⟨𝑛 × 𝜇−1 curl 𝐸, 𝐹⟩ℎ − 𝜔2(𝜀𝐸, 𝐹)ℎ = ( 𝑓 , 𝐹)ℎ . (4.28)

To set the interface term in the right space, we need some more machinery.
Applying the trace operators tr𝐾𝑛× and tr𝐾⊤ element by element, we define

tr𝑛× : 𝐻(curl, 𝛺) →
∏
𝐾∈𝛺ℎ

𝐻−1/2(divF, 𝜕𝐾),

(tr𝑛× 𝐸)|𝜕𝐾 = tr𝐾𝑛× 𝐸 ≡ (𝑛 × 𝐸)|𝜕𝐾 ,
(4.29)

and
tr⊤ : 𝐻(curl, 𝛺) →

∏
𝐾∈𝛺ℎ

𝐻−1/2(curlF, 𝜕𝐾),

(tr⊤ 𝐸)|𝜕𝐾 = tr𝐾⊤ 𝐸 ≡ (𝑛 × (𝐸 × 𝑛))|𝜕𝐾 .
(4.30)

Next, analogous to what we did in (4.10), we define interface spaces as the ranges
of the above trace operators, endowed with a quotient norm, namely

𝐻−1/2(divF, 𝜕𝛺ℎ) ≔ range(tr𝑛×),
∥𝑛 × �̂� ∥𝐻−1/2(divF,𝜕𝛺ℎ) ≔ inf

𝐸∈tr−1
𝑛× {𝑛×�̂� }

∥𝐸 ∥𝐻(curl,𝛺),
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and
𝐻−1/2(curlF, 𝜕𝛺ℎ) ≔ range(tr⊤),

∥�̂�⊤∥𝐻−1/2(curlF,𝜕𝛺ℎ) ≔ inf
𝐸∈tr−1

⊤ {𝐸⊤}
∥𝐸 ∥𝐻(curl,𝛺),

(4.31)

where the preimage sets are

tr−1
𝑛×{𝑛 × �̂�} = {𝐸 ∈ 𝐻(curl, 𝛺) : tr𝐾𝑛× 𝐸 = (𝑛 × �̂�)|𝜕𝐾 on each 𝐾 ∈ 𝛺ℎ}

and
tr−1

⊤ {�̂�⊤} = {𝐸 ∈ 𝐻(curl, 𝛺) : tr𝐾⊤ 𝐸 = �̂�⊤ |𝜕𝐾 on each 𝐾 ∈ 𝛺ℎ}.
Returning to (4.28), we now set 𝑛×�̂� = (𝚤𝜔)−1𝑛×𝜇−1 curl 𝐸 to be an independent

unknown on element boundaries, to be found in𝐻−1/2(divF, 𝛺ℎ). Then (4.27) leads
to the variational problem (4.13) with the following spaces and forms:

𝑋0 = �̊�(curl, 𝛺), 𝑌 = 𝐻(curl, 𝛺ℎ), (4.32a)
�̂� = 𝐻−1/2(divF, 𝜕𝛺ℎ), 𝑌0 = �̊�(curl, 𝛺), (4.32b)
𝑏0(𝐸, 𝐹) = (𝜇−1 curl 𝐸, curl 𝐹)ℎ − 𝜔2(𝜀𝐸, 𝐹)ℎ, (4.32c)
𝑏(𝑛 × �̂�, 𝐹) = 𝚤𝜔⟨𝑛 × �̂�, 𝐹⟩ℎ . (4.32d)

This is the primal DPG formulation for the Maxwell cavity problem.
To prove that this formulation is wellposed, we verify the conditions of The-

orem 4.3. It is easy to verify (4.12a) by extending the same technique we used to
prove it in Example 4.4. Condition (4.12b) follows from the previously mentioned
unique solvability of (4.26) and the equivalence of (1.1) and (1.2). Finally, condi-
tion (4.12c) follows from (4.35c) of the next theorem (Theorem 4.6) below. Hence
Theorem 4.3 gives wellposedness of the formulation (4.32).

The next result shows that the argument we used to prove (4.22) in Example 4.4
can be generalized to get other similar identities for quotient norms. Define the
broken version of 𝐻(div, 𝛺) by

𝐻(div, 𝛺ℎ) =
∏
𝐾∈𝛺ℎ

𝐻(div, 𝐾). (4.33)

Complementing already defined trace operators tr𝑛, tr𝑛× and tr⊤ (in (4.9), (4.29)
and (4.30), respectively), define standard 𝐻1 trace operator, applied elementwise,
by

tr : 𝐻1(𝛺) →
∏
𝐾∈𝛺ℎ

𝐻1/2(𝜕𝐾), (tr 𝑢)|𝜕𝐾 = 𝑢 |𝜕𝐾 , (4.34)

and let

𝐻1/2(𝜕𝛺ℎ) ≔ range(tr), ∥�̂�∥𝐻1/2(𝜕𝛺ℎ) ≔ inf
𝑢∈tr−1{�̂�}

∥𝑢∥𝐻1(𝛺),

where the quotient norm is a standard norm obtained by a ‘minimal energy ex-
tension’ as an infimum of the norm of all extensions of �̂� in the preimage set
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tr−1{�̂�} = {𝑢 ∈ 𝐻1(𝛺) : 𝑢 |𝜕𝐾 = �̂� |𝜕𝐾 }. The identity (4.35b) below shows that
this infimum equals a supremum; in fact all identities of (4.35) are of a similar
‘inf = sup’ type.

Theorem 4.6 (Interface duality). The following identities hold for any �̂�𝑛 in
𝐻−1/2(𝜕𝛺ℎ), �̂� in𝐻1/2(𝜕𝛺ℎ), 𝑛×�̂� in𝐻−1/2(divF, 𝜕𝐾), and �̂�⊤ in𝐻−1/2(curl, 𝜕𝐾):

∥�̂�𝑛∥𝐻−1/2(𝜕𝛺ℎ) = sup
0≠𝑢∈𝐻1(𝛺ℎ)

|⟨�̂�𝑛, 𝑢⟩ℎ |
∥𝑢∥𝐻1(𝛺ℎ)

, (4.35a)

∥�̂�∥𝐻1/2(𝜕𝛺ℎ) = sup
0≠𝜎∈𝐻(div,𝛺ℎ)

|⟨𝑛 · 𝜎, �̂�⟩ℎ |
∥𝜎∥𝐻(div,𝛺ℎ)

, (4.35b)

∥𝑛 × �̂� ∥𝐻−1/2(divF,𝜕𝛺ℎ) = sup
0≠𝐹∈𝐻(curl,𝛺ℎ)

|⟨𝑛 × �̂� , 𝐹⟩ℎ |
∥𝐹∥𝐻(curl,𝛺ℎ)

, (4.35c)

∥�̂�⊤∥𝐻−1/2(curl,𝜕𝛺ℎ) = sup
0≠𝐸∈𝐻(curl,𝛺ℎ)

|⟨𝑛 × 𝐸, �̂�⊤⟩ℎ |
∥𝐸 ∥𝐻(curl,𝛺ℎ)

. (4.35d)

Furthermore,

(a) 𝑣 ∈ �̊�1(𝛺) if and only if ⟨�̂�𝑛, 𝑣⟩ℎ = 0 for all �̂�𝑛 ∈ 𝐻−1/2(𝜕𝛺ℎ),

(b) 𝜏 ∈ �̊�(div, 𝛺) if and only if ⟨𝜏 · 𝑛, �̂�⟩ℎ = 0 for all �̂� ∈ 𝐻1/2(𝜕𝛺ℎ), and

(c) 𝐹 ∈ �̊�(curl, 𝛺) if and only if ⟨𝑛× �̂� , 𝐹⟩ℎ = 0 for all 𝑛× �̂� ∈ 𝐻−1/2(divF, 𝛺ℎ).

Proof. The first equality was already proved in (4.22) and the argument is similar
for all identities of (4.35). So we outline the proof of only one more, namely
(4.35c).

Given 𝑛 × �̂� in 𝐻−1/2(divF, 𝜕𝛺ℎ), its norm equals the norm of the following
minimum energy extension 𝐸 ∈ 𝐻(curl, 𝐾) satisfying

curl(curl 𝐸) + 𝐸 = 0 in 𝐾 , 𝑛 × 𝐸 = 𝑛 × �̂� on 𝜕𝐾 . (4.36)

We compare this with the inverse of a Riesz map applied to a functional generated
by 𝑛 × �̂� , namely

curl(curl 𝐹) + 𝐹 = 0 in 𝐾 , 𝑛 × (curl 𝐹) = 𝑛 × �̂� on 𝜕𝐾 . (4.37)

Note that 𝐹 solves (4.37) if and only if 𝐸 = curl 𝐹 solves (4.36). Moreover, (4.37)
implies that curl 𝐸 = −𝐹. Therefore ∥𝐸 ∥𝐻(curl,𝐾) = ∥𝐹∥𝐻(curl,𝐾) and

∥𝑛 × �̂� ∥𝐻−1/2(divF,𝜕𝐾) = ∥𝐸 ∥𝐻(curl,𝐾) = ∥𝐹∥𝐻(curl,𝐾)

= sup
0≠𝐺∈𝐻(curl,𝐾)

|(curl 𝐹, curl𝐺)𝐾 + (𝐹, 𝐺)𝐾 |
∥𝐺∥𝐻(curl,𝐾)

= sup
0≠𝐺∈𝐻(curl,𝐾)

|⟨𝑛 × �̂� , 𝐺⊤⟩𝐻−1/2(curlF,𝜕𝐾) |
∥𝐺∥𝐻(curl,𝐾)

. (4.38)
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Summing over all elements, and using(
sup

0≠𝐺∈𝐻(curl,𝛺ℎ)

|⟨𝑛 × �̂� , 𝐺⟩ℎ |
∥𝐺∥𝐻(curl,𝛺ℎ)

)2

=
∑︁
𝐾∈𝛺ℎ

(
sup

0≠𝐺∈𝐻(curl,𝐾)

|⟨𝑛 × �̂� , 𝐺⟩𝐻−1/2(curlF,𝜕𝐾) |
∥𝐺∥𝑉(𝐾)

)2
,

the identity (4.35c) is proved.
Proofs of all items (a)–(c) are similar to the previously detailed proof of (4.19),

so we omit them.

It is interesting to observe that the norm of the dual space 𝐻−1/2(curlF, 𝜕𝐾)∗
occurs in the above proof implicitly. Indeed, since the 𝐻−1/2(curlF, 𝜕𝐾)-norm in
(4.31) is the infimum of extension norms, its dual norm equals

∥𝑛 × �̂� ∥𝐻−1/2(curlF,𝜕𝐾)∗ = sup
0≠𝐺⊤∈𝐻−1/2(curlF,𝜕𝐾)

|⟨𝑛 × �̂� , 𝐺⊤⟩𝐻−1/2(curlF,𝜕𝐾) |
∥𝐺⊤∥𝐻−1/2(curlF,𝜕𝐾)

= sup
0≠𝐺∈𝐻(curl,𝐾)

|⟨𝑛 × �̂� , 𝐺⊤⟩𝐻−1/2(curlF,𝜕𝐾) |
∥𝐺∥𝐻(curl,𝐾)

,

which is the supremum in (4.38). Thus the short argument in the previous proof
also shows that

∥𝑛 × �̂� ∥𝐻−1/2(divF,𝜕𝐾) = ∥𝑛 × �̂� ∥𝐻−1/2(curlF,𝜕𝐾)∗ , (4.39)

that is, the norms of 𝐻−1/2(divF, 𝜕𝐾) and 𝐻−1/2(curlF, 𝜕𝐾)∗ are equal.

Bibliographical notes. An alternative and longer proof of the wellposedness of
the DPG formulation for the Laplace equation in Example 4.4 first appeared in
Demkowicz and Gopalakrishnan (2013), using techniques developed for a slightly
different formulation for the same equation from Demkowicz and Gopalakrishnan
(2011a). There, the adjoint inf-sup condition

∥𝑦∥𝐻1(𝛺ℎ) ≲ sup
0≠𝑢∈�̊�1(𝛺), �̂�𝑛∈𝐻−1/2(𝜕𝛺ℎ)

(grad 𝑢, grad 𝑦)ℎ + ⟨𝑞𝑛, 𝑦⟩ℎ
∥(𝑢, 𝑞𝑛)∥�̊�1(𝛺)×𝐻−1/2(𝜕𝛺ℎ)

is proved instead of (4.23). Proving the adjoint inf-sup condition is an alternative
path to wellposedness, in view of the equivalence between (1.2) and (1.3). The
shorter approach we presented in Example 4.4 is facilitated by the simple result of
Theorem 4.3. Similar results can be found in early works such as Brezzi and Fortin
(1991, p. 40), and even in other recent works, e.g. Garg, Prudhomme, van der
Zee and Carey (2014). Our discussions of Theorems 4.3, 4.6 and the Maxwell
case in Example 4.5 are drawn from Carstensen, Demkowicz and Gopalakrishnan
(2016), where further details can be found; see also Demkowicz (2018, § 4.2).
Further properties of the norms in (4.39), including intrinsic characterizations, can
be found in Buffa et al. (2002).
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5. Practical DPG methods
Even if the construction of the test space is localized in the ideal DPG method of the
previous section, a practical issue still remains. The computation of (𝑇𝑧)𝐾 in (4.3)
may require solving an infinite-dimensional problem on an element 𝐾 if 𝑌 (𝐾) is of
infinite dimension. To obtain a practical method, we must trade 𝑌 (𝐾) for a finite-
dimensional space. This section does so, provides a key general tool (Theorem 5.2)
involving Fortin operators to analyse the effect of this replacement on stability and
error estimates, and details error analyses of the practical DPG methods for Laplace
and Maxwell equations. Multiple subsections on Fortin operators show various
techniques to construct Fortin operators that satisfy certain moment conditions
needed for DPG analyses.

We start by introducing𝑌 𝑟 , a finite-dimensional subspace of𝑌 , where 𝑟 is related
to its finite dimension. To retain the localization, when 𝑌 is a Cartesian product as
in (4.1), the subspace 𝑌 𝑟 is assumed to be of a similar form,

𝑌 𝑟 =
∏
𝐾∈𝛺ℎ

𝑌 𝑟 (𝐾), 𝑌 𝑟 (𝐾) ⊆ 𝑌 (𝐾). (5.1)

In analogy with (2.2), let 𝑇𝑟 : 𝑋 → 𝑌 𝑟 be defined by

(𝑇𝑟𝑤, 𝑦)𝑌 = 𝑏(𝑤, 𝑦) for all 𝑦 ∈ 𝑌 𝑟 . (5.2)

Then (𝑇𝑟𝑤)𝐾 ∈ 𝑌 𝑟 (𝐾), the component of 𝑇𝑟𝑤 in element 𝐾 , is computed locally
within 𝐾 by

((𝑇𝑟𝑤)𝐾 , 𝑦𝐾 )𝑌 (𝐾) = 𝑏(𝑤, 𝑦𝐾 ) for all 𝑦𝐾 ∈ 𝑌 𝑟 (𝐾). (5.3)

A practical method is obtained using

𝑌 𝑟ℎ ≔ 𝑇𝑟 (𝑋ℎ)

in place of the exactly optimal test space 𝑌opt
ℎ

of (2.1).

Definition 5.1. A (practical) DPG method is a method that finds 𝑥ℎ ∈ 𝑋ℎ satis-
fying

𝑏(𝑥ℎ, 𝑦) = ℓ(𝑦) for all 𝑦 ∈ 𝑌 𝑟ℎ , (5.4)

where 𝑌 𝑟
ℎ

is computed locally using 𝑇𝑟 by (5.3) in a finite-dimensional 𝑌 𝑟 of the
product form (5.1).

5.1. A general DPG convergence theorem

In general, 𝑇𝑟 ≠ 𝑇 , and the test space in the practical DPG method, 𝑌 𝑟
ℎ
≠ 𝑌

opt
ℎ

, is
only an inexact version of the optimal test space. Hence, to obtain an error estimate
for the practical DPG method, we cannot rely on the prior theory for the ideal DPG
method. However, imposing an extra condition (see (5.5) below) gives a simple
error analysis, as shown next. The condition involves an operator 𝛱 , which we
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shall refer to as a ‘Fortin operator’, based on similar such operators in the study of
mixed methods (Brezzi and Fortin 1991).

Theorem 5.2 (Fortin operator gives DPG convergence). Suppose (1.3) holds,
𝑋ℎ ⊂ 𝑋 and 𝑌 𝑟 ⊂ 𝑌 . Assume that there is a bounded linear operator 𝛱 : 𝑌 → 𝑌 𝑟 ,
of operator norm ∥𝛱 ∥, such that for all 𝑤ℎ ∈ 𝑋ℎ and all 𝑣 ∈ 𝑌 ,

𝑏(𝑤ℎ, 𝑣 − 𝛱𝑣) = 0. (5.5)

Then the DPG method (5.4) is uniquely solvable for 𝑥ℎ and

∥𝑥 − 𝑥ℎ∥𝑋 ≤ ∥𝑏∥ ∥𝛱 ∥
𝛾

inf
𝑧ℎ∈𝑋ℎ

∥𝑥 − 𝑧ℎ∥𝑋, (5.6)

where 𝑥 is the unique exact solution of (1.1).

Proof. The proof proceeds by verifying the assumptions of Theorem 1.1. Let us
first prove that (5.5) implies that

𝑇𝑟 : 𝑋ℎ → 𝑌 𝑟 is injective. (5.7)

Indeed, if 𝑇𝑟𝑤ℎ = 0 for some 𝑤ℎ ∈ 𝑋ℎ, then by (5.2), 𝑏(𝑤ℎ, 𝑦𝑟 ) = 0 for all
𝑦𝑟 ∈ 𝑌 𝑟 , which implies that 𝑏(𝑤ℎ, 𝛱 𝑦) = 0 for all 𝑦 ∈ 𝑌 . But (5.5) then shows that
𝑏(𝑤ℎ, 𝑦) = 0 for all 𝑦 ∈ 𝑌 , so by (1.3), 𝑤ℎ = 0. Therefore we have verified that

dim(𝑌 𝑟ℎ ) = dim(𝑋ℎ).

To verify the inf-sup condition, fix an arbitrary 𝑧ℎ ∈ 𝑋ℎ, and let

𝑠0 = sup
0≠𝑦∈𝑌

|𝑏(𝑧ℎ, 𝑦)|
∥𝑦∥𝑌

, 𝑠1 = sup
0≠𝑦∈𝑌𝑟

|𝑏(𝑧ℎ, 𝑦𝑟 )|
∥𝑦𝑟 ∥𝑌

, 𝑠2 = sup
0≠𝑦∈𝑌𝑟

ℎ

|𝑏(𝑧ℎ, 𝑦𝑟ℎ)|
∥𝑦𝑟
ℎ
∥𝑌

.

The result will follow from Theorem 1.1 once we prove the discrete inf-sup condi-
tion

𝛾 ∥𝛱 ∥−1∥𝑧ℎ∥𝑋 ≤ 𝑠2. (5.8)

We proceed to bound ∥𝑧ℎ∥𝑋 using 𝑠0, then 𝑠1, and finally 𝑠2. Since (1.3) is
equivalent to (1.2), the inf-sup condition 𝛾∥𝑧ℎ∥𝑋 ≤ 𝑠0 holds. Hence (5.5) implies

𝛾∥𝑧ℎ∥𝑋 ≤ sup
0≠𝑦∈𝑌

|𝑏(𝑧ℎ, 𝑦)|
∥𝑦∥𝑌

= sup
0≠𝑦∈𝑌

|𝑏(𝑧ℎ, 𝛱 𝑦)|
∥𝑦∥𝑌

≤ sup
0≠𝑦∈𝑌

|𝑏(𝑧ℎ, 𝛱 𝑦)|
∥𝛱 ∥−1∥𝛱𝑦∥𝑌

≤ sup
0≠𝑦∈𝑌𝑟

|𝑏(𝑧ℎ, 𝑦𝑟 )|
∥𝛱 ∥−1∥𝑦𝑟 ∥𝑌

,

that is, 𝛾 ∥𝛱 ∥−1∥𝑧ℎ∥𝑋 ≤ 𝑠1. To finish the proof of (5.8), it suffices to show that
𝑠1 ≤ 𝑠2. The argument of Proposition 2.1 shows that the supremum 𝑠1 is attained
at 𝑇𝑟 𝑧ℎ, so

𝑠1 =
(𝑇𝑟 𝑧ℎ, 𝑇𝑟 𝑧ℎ)𝑌

∥𝑇𝑟 𝑧ℎ∥𝑌
≤ sup

0≠𝑦𝑟
ℎ
∈𝑌𝑟
ℎ

(𝑇𝑟 𝑧ℎ, 𝑦𝑟ℎ)𝑌
∥𝑦𝑟
ℎ
∥𝑌

= 𝑠2.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000102
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 25 Jul 2025 at 19:50:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000102
https://www.cambridge.org/core
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This shows (5.8) and finishes the proof.

Example 5.3 (Test spaces containing the optimal test functions). Consider the
DPG method obtained using

𝑌 𝑟 ⊇ 𝑌opt
ℎ
. (5.9)

Then, setting 𝛱 to 𝛱𝑌𝑟 , the 𝑌 -orthogonal projection into 𝑌 𝑟 , observe that for any
𝑧ℎ ∈ 𝑋ℎ and any 𝑦 ∈ 𝑌 ,

𝑏(𝑧ℎ, 𝑦 − 𝛱𝑌𝑟 𝑦) = (𝑇𝑧ℎ, 𝑦 − 𝛱𝑌𝑟 𝑦)𝑌 by (2.2)
= 0 since 𝑇𝑧ℎ ∈ 𝑌 𝑟 .

Hence Theorem 5.2 applies, and moreover, in (5.6) we may set ∥𝛱 ∥ = 1 since 𝛱
is an orthogonal projection. Thus the DPG solution, in this case, satisfies exactly
the same error estimate (2.4) as the ideal Petrov–Galerkin method.

More can be said by noting that (5.9) implies

𝑇𝑟𝑤 = 𝑇𝑤, 𝑤 ∈ 𝑋. (5.10)

Indeed, restricting the test functions 𝑦 in defining equation (2.2) for 𝑇𝑤 to 𝑦 = 𝑦𝑟 ∈
𝑌 𝑟 , we find that 𝑇𝑤 ∈ 𝑌 𝑟 also satisfies equation (5.2) defining 𝑇𝑟𝑤, thus proving
the equality of 𝑇𝑤 and 𝑇𝑟𝑤 stated in (5.10). It then immediately implies that the
solution of the IPG method with the optimal test space 𝑌opt

ℎ
and the solution of the

DPG method with a test space 𝑌 𝑟 satisfying (5.9) must coincide.
Since (5.9) seldom holds in practical multi-dimensional examples, typical ap-

plications of Theorem 5.2 involve more complex Fortin operators 𝛱 , as we shall
see next. Nonetheless, this discussion shows that enlarging the test space beyond
the optimal test space does not degrade stability or error estimates.

Bibliographical notes. The result of Theorem 5.2 and several of its applications, in-
cluding Fortin operators useful for analysing DPG methods for the Poisson equation
(see Example 5.5 below) and the elasticity equation (not discussed in this review),
were presented first in Gopalakrishnan and Qiu (2014). Fortin operators for DPG
analysis of plate-bending problems were given in Führer and Heuer (2019).

5.2. First example of a non-trivial DPG Fortin operator

As previously mentioned, DPG methods use test spaces of the product form (4.1),
usually obtained as broken Sobolev spaces. Construction of Fortin operators on
broken Sobolev spaces can therefore be done focusing only on one element. We
proceed to construct a local Fortin operator on the broken 𝐻1 space and use it to
analyse the primal DPG method for the Laplace example.

From now on, we assume that the mesh 𝛺ℎ is a geometrically conforming finite
element mesh of simplicial elements. Let △ 𝑗𝐾 denote the set of 𝑗-dimensional
subsimplices of an 𝑁-simplex 𝐾 . The set of mesh facets, denoted by Fℎ, is the
union of △𝑁−1𝐾 for all 𝐾 ∈ 𝛺ℎ. Let 𝑃𝑝(𝐷) denote the space of polynomials of
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degree at most 𝑝 restricted to a domain 𝐷, and let

𝑅𝑝(𝐷) = 𝑃𝑝−1(𝐷)𝑁 + 𝑥𝑃𝑝−1(𝐷) (5.11)

denote the Raviart–Thomas element (Raviart and Thomas 1977a) which generates
the finite element space

𝑅ℎ𝑝 = {𝑟 ∈ 𝐻(div, 𝛺) : 𝑟 |𝐾 ∈ 𝑅𝑝(𝐾)}. (5.12)

We shall also use the space

𝑃𝑝(𝛺ℎ) =
∏
𝐾∈𝛺ℎ

𝑃𝑝(𝐾),

often used in discontinuous Galerkin (DG) methods. Let ℎ𝐾 = diam(𝐾). We write

𝐴 ≲ 𝐵

to indicate that the inequality 𝐴 ≤ 𝐶𝐵 holds with some constant 𝐶 (whose value at
different occurrences may differ) independent of ℎ𝐾 but possibly dependent on the
shape regularity of 𝐾 and the polynomial degree 𝑝. We will prove the following
theorem shortly after indicating how it is applied in a DPG method.

Theorem 5.4 (A local Fortin operator for 𝐻1 in 𝑁 dimensions). Let 𝑣 ∈ 𝐻1(𝐾)
on an 𝑁-simplex 𝐾 and let 𝑟 = 𝑝 + 𝑁 . There is a locally constructible continuous
linear operator 𝛱 grad

𝑟 : 𝐻1(𝐾) → 𝑃𝑟 (𝐾) satisfying

(𝛱 grad
𝑟 𝑣 − 𝑣, 𝑞)𝐾 = 0 for all 𝑞 ∈ 𝑃𝑝−1(𝐾), (5.13a)

(𝛱 grad
𝑟 𝑣 − 𝑣, 𝜇)𝐹 = 0 for all 𝜇 ∈ 𝑃𝑝(𝐹), 𝐹 ∈ △𝑁−1𝐾, (5.13b)

∥𝛱 grad
𝑟 𝑣∥𝐻1(𝐾) ≲∥𝑣∥𝐻1(𝐾) for all 𝑣 ∈ 𝐻1(𝐾), (5.13c)

𝛱
grad
𝑟 𝑐 = 𝑐 for all constant functions 𝑐. (5.13d)

This result holds for all integers 𝑝 ≥ 0 with the understanding that when 𝑝 = 0,
condition (5.13a) is vacuous.

Example 5.5 (Laplace equation: discrete stability and error estimates). We
now analyse a discretization of the primal DPG formulation of Example 4.4, making
critical use of Theorem 5.4. In particular, we shall see that the moment conditions
(5.13a)–(5.13b) help us verify the Fortin property (5.5).

Recall the trial and test spaces set in (4.17). The sesquilinear form of the problem
on 𝑋 × 𝑌 with 𝑋 = 𝑋0 × �̂� = �̊�1(𝛺) × 𝐻−1/2(𝜕𝛺ℎ) and 𝑌 = 𝐻1(𝛺ℎ) is

𝑏((𝑢, 𝑞𝑛), 𝑦) = (grad 𝑢, grad 𝑦)ℎ + ⟨𝑞𝑛, 𝑦⟩ℎ . (5.14)

Recalling the Raviart–Thomas space defined in (5.12) and the element-by-element
trace operator tr𝑛 defined in (4.10), set the discrete trial space by 𝑋ℎ = 𝑋0,ℎ × �̂�ℎ,
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where

𝑋0,ℎ = {𝑤 ∈ �̊�1(𝛺) : 𝑤 |𝐾 ∈ 𝑃𝑝+1(𝐾) for all 𝐾 ∈ 𝛺ℎ}, (5.15a)
�̂�ℎ = tr𝑛

(
𝑅ℎ𝑝+1

)
, (5.15b)

𝑌ℎ = 𝑃𝑝+𝑁 (𝛺ℎ) (5.15c)

for some degree 𝑝 ≥ 0. Clearly, the above set 𝑋0,ℎ is a standard Lagrange finite
element subspace of �̊�1(𝛺) and 𝑌ℎ is a standard DG space. Also, the space �̂�ℎ set
above is a subspace of �̂� = 𝐻−1/2(𝜕𝛺ℎ) since 𝑅ℎ

𝑝+1 ⊆ 𝐻(div, 𝛺). An alternative
characterization of �̂�ℎ = tr𝑛

(
𝑅ℎ
𝑝+1

)
can be given assuming that every 𝐹 ∈ Fℎ is

provided a fixed unit normal 𝑛𝐹 , which equals the outward pointing unit normal 𝑛
if 𝐹 ⊂ 𝜕𝛺, and equals either 𝑛 or −𝑛 on an interior facet 𝐹 shared by an element
𝐾 with unit outward normal 𝑛. Then it is easy to see from the well-known degrees
of freedom of the Raviart–Thomas space that

�̂�ℎ = {𝑟𝑛 : on every 𝐾 ∈ 𝛺ℎ and each 𝐹 ∈ △𝑁−1𝐾 ,
there is a 𝜇 ∈ 𝑃𝑝(𝐹) such that 𝑟𝑛 |𝜕𝐾 = (𝜇𝑛𝐹) · 𝑛|𝜕𝐾 }. (5.16)

Consequently, one may choose to implement �̂�ℎ without using 𝑅ℎ
𝑝+1. An imple-

mentation of (5.16) can proceed using only the standard polynomial space 𝑃𝑝(𝐹)
on each facet 𝐹 ∈ Fℎ together with some fixed facet orientation given by 𝑛𝐹 .

Let us examine what the Fortin condition (5.5) entails for this discrete setting.
Let (𝑤ℎ, 𝑟ℎ) ∈ 𝑋ℎ. Since 𝑟ℎ = 𝑟ℎ · 𝑛 for some 𝑟ℎ ∈ 𝑅ℎ

𝑝+1, using the 𝑏(·, ·) in (5.14),
condition (5.5) reads as follows:

(grad𝑤ℎ, grad(𝑦 − 𝛱𝑦))ℎ + ⟨𝑟ℎ · 𝑛, 𝑦 − 𝛱𝑦⟩ℎ = 0 (5.17)

for all 𝑤ℎ ∈ 𝑋ℎ,0 and 𝑟ℎ ∈ 𝑅ℎ
𝑝+1. By integration by parts, we see that (5.17) is

implied by

(𝑦 − 𝛱𝑦, Δ𝑤ℎ)𝐾 = 0 and
(𝑦 − 𝛱𝑦, (grad𝑤ℎ − 𝑟ℎ) · 𝑛)𝜕𝐾 = 0

on every𝐾 ∈ 𝛺ℎ. Once𝛱 is set to𝛱 grad
𝑟 of Theorem 5.4, these two identities follow

from (5.13a) and (5.13b), respectively, and we are ready to apply Theorem 5.2. Let
(𝑢, 𝑞𝑛) ∈ 𝑋 be the exact solution, and let 𝑞 = grad 𝑢, so that 𝑞𝑛 = tr𝑛(𝑞). If
𝑢ℎ ∈ 𝑋0,ℎ and 𝑞𝑛,ℎ ∈ �̂�ℎ together form the solution of the practical DPG method
with discrete spaces set by (5.15), then Theorem 5.2 yields

∥𝑢 − 𝑢ℎ∥𝐻1(𝛺) + ∥𝑞𝑛 − 𝑞𝑛,ℎ∥𝐻−1/2(𝜕𝛺ℎ)

≲ inf
(𝑤ℎ ,𝑟𝑛,ℎ)∈𝑋ℎ

(
∥𝑢 − 𝑤ℎ∥𝐻1(𝛺) + ∥𝑞𝑛 − 𝑟𝑛,ℎ∥𝐻−1/2(𝜕𝛺ℎ)

)
.

To obtain convergence rates, the standard approximation rates for the Lagrange
finite element space 𝑋ℎ,0,

inf
𝑤ℎ∈𝑋ℎ,0

∥𝑢 − 𝑤ℎ∥𝐻1(𝛺) ≲ ℎ
𝑠 |𝑢 |𝐻1+𝑠(𝛺), 0 ≤ 𝑠 ≤ 𝑝 + 1, (5.18)
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The discontinuous Petrov–Galerkin method 321

may be used to bound the first term in the infimum. For the other term we use the
definition of the 𝐻−1/2(𝜕𝛺ℎ)-norm via the minimal extension norm, that is,

inf
𝑟𝑛,ℎ∈�̂�ℎ

∥𝑞𝑛 − 𝑟𝑛,ℎ∥𝐻−1/2(𝜕𝛺ℎ) = inf
𝑟ℎ∈𝑅ℎ𝑝+1

∥𝑞 − 𝑟ℎ∥𝐻(div,𝛺). (5.19)

To obtain convergence rates from this, we use the standard Raviart–Thomas inter-
polant 𝛱 𝑅𝑞 ∈ 𝑅ℎ

𝑝+1, which is well-defined when 𝑞 ∈ 𝐻𝑠(𝛺)𝑁 ∩ 𝐻(div, 𝛺) with
𝑠 > 1/2, together with its commutativity property

div𝛱 𝑅𝑞 = 𝛱𝑝 div 𝑞, (5.20)

where 𝛱𝑝 denotes the 𝐿2(𝛺)-orthogonal projection into 𝑃𝑘(𝛺ℎ), as follows:

inf
𝑟ℎ∈𝑅ℎ𝑝+1

∥𝑞 − 𝑟ℎ∥2
𝐻(div,𝛺) ≤ ∥𝑞 − 𝛱 𝑅𝑞∥2

𝛺 + ∥ div(𝑞 − 𝛱 𝑅𝑞)∥2
𝛺

≤ ∥𝑞 − 𝛱 𝑅𝑞∥2
𝛺 + ∥(𝐼 − 𝛱𝑝) div 𝑞∥2

𝛺

≲ ℎ2𝑠 |𝑞 |2𝐻𝑠(𝛺) + ℎ
2𝑠 | div 𝑞 |2𝐻𝑠(𝛺), (5.21)

by the usual Bramble–Hilbert argument. Combining (5.18) and (5.21), we obtain

∥𝑢 − 𝑢ℎ∥𝐻1(𝛺) + ∥𝑞𝑛 − 𝑞𝑛,ℎ∥𝐻−1/2(𝜕𝛺ℎ) ≲ ℎ
𝑠 |𝑢 |𝐻1+𝑠(𝛺) + ℎ𝑠 |Δ𝑢 |𝐻𝑠(𝛺), (5.22)

for 1/2 < 𝑠 ≤ 𝑝 + 1.
Although the convergence rate with respect to ℎ in (5.22) is optimal, the last

term demands too much regularity. In the remainder of this example, we show how
to improve the argument using (4.35a) of Theorem 4.6. Instead of (5.19), we start
by applying (4.35a),

inf
𝑟𝑛,ℎ∈�̂�ℎ

∥𝑞𝑛 − 𝑟𝑛,ℎ∥𝐻−1/2(𝜕𝛺ℎ) ≤ ∥ tr𝑛(𝑞 − 𝛱 𝑅𝑞)∥𝐻−1/2(𝜕𝛺ℎ)

= sup
0≠𝑦∈𝐻1(𝛺ℎ)

⟨tr𝑛(𝑞 − 𝛱 𝑅𝑞), 𝑦⟩ℎ
∥𝑦∥𝐻1(𝛺ℎ)

. (5.23)

The numerator above, for any 𝑦 ∈ 𝐻1(𝛺ℎ), satisfies

⟨tr𝑛(𝑞 − 𝛱 𝑅𝑞), 𝑦⟩ℎ = (𝑞 − 𝛱 𝑅𝑞, grad 𝑦)ℎ + (div(𝑞 − 𝛱 𝑅𝑞), 𝑦)ℎ
= (𝑞 − 𝛱 𝑅𝑞, grad 𝑦)ℎ + ((𝐼 − 𝛱𝑝) div 𝑞, (𝐼 − 𝛱𝑝)𝑦)ℎ,

where we have again used (5.20). Hence

⟨tr𝑛(𝑞 − 𝛱 𝑅𝑞), 𝑦⟩ℎ
∥𝑦∥𝐻1(𝛺ℎ)

≲ ℎ𝑠 |𝑞 |𝐻𝑠(𝛺) + ℎ∥(𝐼 − 𝛱𝑝) div 𝑞∥𝛺 . (5.24)

When 1/2 < 𝑠 < 1 we can estimate the last term simply by using the fact that the
norm of the orthogonal projection 𝐼 − 𝛱𝑝 equals one:

ℎ∥(𝐼 − 𝛱𝑝) div 𝑞∥ ≤ ℎ∥ div 𝑞∥, 1/2 < 𝑠 < 1.

When 1 ≤ 𝑠 ≤ 𝑘 +1, we use the standard approximation estimate for 𝐿2-projection:

ℎ∥(𝐼 − 𝛱𝑝) div 𝑞∥𝛺 ≲ ℎℎ𝑠−1∥ div 𝑞∥𝐻𝑠−1(𝛺), 1 ≤ 𝑠 ≤ 𝑘 + 1.
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Using these two estimates to bound the last term in (5.24) and returning to (5.23),

∥𝑢 − 𝑢ℎ∥𝐻1(𝛺) + ∥𝑞𝑛 − 𝑞𝑛,ℎ∥𝐻−1/2(𝜕𝛺ℎ)

≲

{
ℎ𝑠 |𝑢 |𝐻1+𝑠(𝛺) + ℎ∥Δ𝑢∥𝛺 , 1/2 < 𝑠 < 1,
ℎ𝑠 |𝑢 |𝐻1+𝑠(𝛺) + ℎ𝑠 |Δ𝑢 |𝐻𝑠−1(𝛺), 1 ≤ 𝑠 ≤ 𝑘 + 1.

(5.25)

This gives optimal rates at reduced regularity requirements compared to (5.22).
For example, in the lowest-order case, if linear Lagrange elements are used for
approximating 𝑢, and if 𝑢 ∈ 𝐻2(𝛺), then the DPG error in 𝑢 is𝑂(ℎ) (a convergence
rate and regularity requirement comparable to the standard finite element method),
and additionally, at the price of including a piecewise constant flux 𝑞𝑛, the DPG
method gives a flux error that is also 𝑂(ℎ).

Having shown a typical application of a Fortin operator to analyse a DPG method
in the above example, let us now proceed to detail the construction of the needed
operator 𝛱 grad

𝑟 . Let 𝐾 be an 𝑁-simplex and let

�̊�𝑟 (𝐾) = {𝑢 ∈ 𝑃𝑟 (𝐾) : 𝑢 |𝜕𝐾 = 0},
𝐵0
𝑟 (𝐾) = {𝑢 ∈ 𝑃𝑟 (𝐾) : 𝑢 |𝐸 = 0 for all 𝐸 ∈ △𝑁−2𝐾}.

Let 𝜆0, . . . , 𝜆𝑁 denote the standard linear barycentric coordinate functions of an
𝑁-simplex 𝐾 , let 𝐹𝑖 be the facet in △𝑁−1𝐾 where 𝜆𝑖 vanishes, and let

𝑏𝐾 =

𝑁∏
𝑗=0
𝜆 𝑗 , 𝑏𝐹𝑖 =

𝑏𝐾

𝜆𝑖
=
∏
𝑗≠𝑖

𝜆 𝑗 . (5.26)

Clearly 𝑏𝐾 ∈ 𝑃𝑁+1(𝐾) is the element bubble of the simplex 𝐾 and 𝑏𝐹 ∈ 𝑃𝑁 (𝐾) is
the facet bubble of any facet 𝐹 in △𝑁−1𝐾 .

Lemma 5.6. Let 𝑟 = 𝑝 + 𝑁 . Then

dim 𝐵0
𝑟 (𝐾) = dim 𝑃𝑝−1(𝐾) +

∑︁
𝐹∈△𝑁−1𝐾

dim 𝑃𝑝(𝐹), (5.27)

and for every 𝑣 ∈ 𝐻1(𝐾), there is a unique 𝛱 0
𝑟 𝑣 ∈ 𝐵0

𝑟 (𝐾) satisfying

(𝛱 0
𝑟 𝑣 − 𝑣, 𝑞)𝐾 = 0 for all 𝑞 ∈ 𝑃𝑝−1(𝐾), (5.28a)

(𝛱 0
𝑟 𝑣 − 𝑣, 𝜇)𝐹 = 0 for all 𝜇 ∈ 𝑃𝑝(𝐹), 𝐹 ∈ △𝑁−1𝐾, (5.28b)

∥𝛱 0
𝑟 𝑣∥𝐿2(𝐾) + ℎ𝐾 ∥ grad𝛱 0

𝑟 𝑣∥𝐿2(𝐾) ≲ ∥𝑣∥𝐿2(𝐾) + ℎ𝐾 ∥ grad 𝑣∥𝐿2(𝐾). (5.28c)

Proof. Using the space of polynomials of vanishing trace, we can count the
dimensions of 𝐵0

𝑟 (𝐾). Indeed, dim 𝐵0
𝑟 (𝐾) = dim �̊�𝑟 (𝐾) + ∑

𝐹∈△𝑁−1𝐾 dim �̊�𝑟 (𝐹).
Note that �̊�𝑟 (𝐾) = 𝑏𝐾𝑃𝑟−𝑁−1(𝐾) and �̊�𝑟 (𝐹) = 𝑏𝐹𝑃𝑟−𝑁 (𝐹) for any 𝐹 ∈ △𝑁−1𝐾 .
Therefore, by choosing 𝑟 = 𝑝 + 𝑁 , we have

dim �̊�𝑟 (𝐾) = dim 𝑃𝑝−1(𝐾) and dim �̊�𝑟 (𝐹) = dim 𝑃𝑝(𝐹),

and consequently (5.28a)–(5.28b) is a square system for 𝛱 0
𝑟 𝑣.
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Now the existence of the stated 𝛱 0
𝑟 𝑣 will follow from uniqueness, that is, it

suffices to prove that if 𝑣 = 0, then 𝛱 0
𝑟 𝑣 = 0. Since 𝛱 0

𝑟 𝑣 ∈ 𝐵0
𝑟 (𝐾), on any

face 𝐹 ∈ △𝑁−1𝐾 , we may write (𝛱 0
𝑟 𝑣)|𝐹 = 𝑏𝐹𝑤𝑝 for some 𝑤𝑝 ∈ 𝑃𝑝(𝐹). But

then (5.28b) implies that 𝛱 0
𝑟 𝑣 must vanish on 𝜕𝐾 , so 𝛱 0

𝑟 𝑣 = 𝑏𝐾 𝑧𝑝−1 for some
𝑧𝑝−1 ∈ 𝑃𝑝−1(𝐾). Then (5.28a) implies that 𝛱 0

𝑟 𝑣 = 0 on 𝐾 . The estimate (5.28c)
now follows by a standard scaling argument using a reference 𝑁-simplex.

Proof of Theorem 5.4. Let 𝑣 ∈ 𝐻1(𝐾) on an 𝑁-simplex 𝐾 . Define 𝛱 grad
𝑟 𝑣 =

𝛱 0
𝑟 (𝑣 − 𝑣) + 𝑣, where 𝑣 denotes the mean value of 𝑣 on 𝐾:

𝑣 =
1
|𝐾 |

∫
𝐾

𝑣.

Equations (5.13a) and (5.13b) immediately follow from (5.28a) and (5.28b) of
Lemma 5.6 since

𝛱
grad
𝑟 𝑣 − 𝑣 = (𝛱 0

𝑟 − 𝐼)(𝑣 − 𝑣).

To prove (5.13c), we use (5.28c) and the Poincaré inequality as follows:

∥𝛱 grad
𝑟 𝑣∥𝐿2(𝐾) ≤ ∥𝑣∥𝐿2(𝐾) + ∥𝛱 0

𝑟 (𝑣 − 𝑣)∥𝐿2(𝐾)

≲ ∥𝑣∥𝐿2(𝐾) + ∥𝑣 − 𝑣∥𝐿2(𝐾) + ℎ𝐾 ∥ grad(𝑣 − 𝑣)∥𝐿2(𝐾)

≲ ∥𝑣∥𝐿2(𝐾) + ℎ𝐾 ∥ grad 𝑣∥𝐿2(𝐾)

and

ℎ𝐾 ∥ grad𝛱 grad
𝑟 𝑣∥𝐿2(𝐾) = ℎ𝐾 ∥ grad𝛱 0

𝑟 (𝑣 − 𝑣)∥𝐿2(𝐾)

≲ ∥𝑣 − 𝑣∥𝐿2(𝐾) + ℎ𝐾 ∥ grad(𝑣 − 𝑣)∥𝐿2(𝐾)

≲ ℎ𝐾 ∥ grad 𝑣∥𝐿2(𝐾).

These estimates together imply (5.13c).

When a lower-order reaction term, say (𝑢, 𝑦)𝛺 , is added to the Laplace formu-
lation (5.14), skimming through the analysis of Example 5.5, we immediately see
that we would need another Fortin operator where the moment condition (5.13a)
is strengthened to 𝑞 ∈ 𝑃𝑝(𝐾) in place of 𝑞 ∈ 𝑃𝑝−1(𝐾). To perform such modific-
ations easily, and also to better understand the structure of the Fortin operator we
have presented, it is useful to know an explicit representation of the prior Fortin
operator and its generalization, which we describe now.

Denote the set of (𝑁 + 1)-term multi-indices of length 𝑚 by

I𝑁+1
𝑚 =

{
𝛽 ≡ (𝛽1, . . . , 𝛽𝑁+1) : 𝛽𝑖 ≥ 0 are integers and |𝛽 | ≡

𝑁+1∑︁
𝑖=1

𝛽𝑖 = 𝑚

}
.

(5.29)
On an 𝑁-simplex, recall that a basis for 𝑃𝑚(𝐾) is given by 𝜆𝛼 = 𝜆

𝛼1
1 𝜆

𝛼2
2 · · · 𝜆𝛼𝑁+1

𝑁+1
for all multi-indices 𝛼 ∈ I𝑁+1

𝑚 . Let 𝜂𝐾𝛼 = 𝑏𝐾𝜆
𝛼 and let 𝜒𝐾

𝛽
∈ 𝑃𝑚(𝐾) denote the
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dual basis of
{
𝜆𝛼 : 𝛼 ∈ I𝑁+1

𝑚

}
in the (𝑏𝐾 ·, ·)𝐾 inner product, that is,(

𝜂𝐾𝛼 , 𝜒
𝐾
𝛽

)
𝐾
= 𝛿

𝛽
𝛼, 𝛼, 𝛽 ∈ I𝑁+1

𝑚 , (5.30)

where 𝛿𝛽𝛼 equals one or zero depending on whether 𝛼 equals 𝛽 or not. Let

𝛱𝐾
𝑚 𝑣 =

∑︁
𝛼∈I𝑁+1

𝑚

(
𝑣, 𝜒𝐾𝛼

)
𝐾
𝜂𝐾𝛼 , (5.31a)

a polynomial in 𝑃𝑚+𝑁+1(𝐾). We see from (5.30) that(
𝛱𝐾
𝑚 𝑣, 𝜒

𝐾
𝛽

)
𝐾
=
(
𝑣, 𝜒𝐾𝛽

)
𝐾

for any 𝛽 ∈ I𝑁+1
𝑚 ,

so we obtain (
𝛱𝐾
𝑚 𝑣 − 𝑣, 𝑞

)
𝐾
= 0 for all 𝑞 ∈ 𝑃𝑚(𝐾), 𝑣 ∈ 𝐿2(𝐾), (5.31b)

after expanding 𝑞 in the 𝜒𝐾
𝛽

-basis.
Since this construction works on a simplex of any dimension, we can repeat it

on any subsimplex of 𝐾 . The barycentric coordinates of a subsimplex 𝐹 ∈ △𝑁−1𝐾
are simply the restrictions of those of 𝐾 to 𝐹, omitting the one that vanishes on 𝐹.
Using them, we repeat the construction, now with shorter multi-indices 𝛼, 𝛽 ∈ I𝑁

𝑘
.

Namely, let 𝜂𝐹𝛼 = 𝑏𝐹𝜆
𝛼 and let 𝜒𝐹

𝛽
∈ 𝑃𝑘(𝐹) form the dual basis of 𝜆𝛼 in the

(𝑏𝐹 ·, ·)𝐹 inner product. Then set

𝛱𝐹
𝑘 𝑣 =

∑︁
𝛼∈I𝑁

𝑘

(
𝑣, 𝜒𝐹𝛼

)
𝐹
𝜂𝐹𝛼 . (5.32a)

This is a polynomial in 𝑃𝑘+𝑁 (𝐾) since each 𝜂𝐹𝛼 is a product of 𝑘 + 𝑁 barycentric
coordinates on 𝐹 that have a natural polynomial extension into 𝐾 . Furthermore,
this polynomial vanishes on all facets in △𝑁−1𝐾 different from 𝐹. As in (5.31b),
the analogue of (5.30) on 𝐹 now gives(

𝛱𝐹
𝑘 𝑣 − 𝑣, 𝑞

)
𝐹
= 0 for all 𝑞 ∈ 𝑃𝑘(𝐹), 𝑣 ∈ 𝐻1(𝐾). (5.32b)

Let 𝛱0 denote the 𝐿2(𝐾)-orthogonal projection to constants on 𝐾 . We put these
ingredients together to construct the polynomial

𝛱
grad
𝑘,𝑚

𝑣 = 𝛱0𝑣 +
∑︁

𝐹∈△𝑁−1𝐾

(
𝛱𝐹
𝑘 + 𝛱𝐾

𝑚

(
𝐼 − 𝛱𝐹

𝑘

))
(𝐼 − 𝛱0)𝑣. (5.33)

Note that its trace on a facet 𝐹 is determined solely by the 𝛱𝐹
𝑘

-contribution since
the traces after an application of 𝛱𝐾

𝑚 or 𝛱 �̃�
𝑘

are zero on 𝐹 for any �̃� ≠ 𝐹. Note
that when 𝑚 = 𝑝 − 1 and 𝑘 = 𝑝, we recover the operator of Theorem 5.4.

Theorem 5.7 (A more general 𝐻1(𝐾) Fortin operator). The above-defined op-
erator

𝛱
grad
𝑘,𝑚

: 𝐻1(𝐾) → 𝑃𝑟 (𝐾) for 𝑟 = max(𝑚 + 𝑁 + 1, 𝑘 + 𝑁)
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satisfies, for every 𝑣 ∈ 𝐻1(𝐾) on an 𝑁-simplex 𝐾 , the moment conditions(
𝛱

grad
𝑘,𝑚

𝑣 − 𝑣, 𝑞
)
𝐾
= 0 for all 𝑞 ∈ 𝑃𝑚(𝐾), (5.34a)(

𝛱
grad
𝑘,𝑚

𝑣 − 𝑣, 𝜇
)
𝐹
= 0 for all 𝜇 ∈ 𝑃𝑘(𝐹), 𝐹 ∈ △𝑁−1𝐾, (5.34b)

𝛱
grad
𝑘,𝑚

𝑐 = 𝑐 for all constant functions 𝑐 on 𝐾 , (5.34c)

and the norm estimates

∥ 𝛱 grad
𝑘,𝑚

𝑣∥𝐿2(𝐾) ≲ ∥𝑣∥𝐿2(𝐾) + ℎ𝐾 ∥ grad 𝑣∥𝐿2(𝐾), (5.34d)

∥ grad𝛱 grad
𝑘,𝑚

𝑣∥𝐿2(𝐾) ≲ ∥ grad 𝑣∥𝐿2(𝐾). (5.34e)

Proof. It is easy to see that using (5.31) and (5.32) that (5.34a) and (5.34b) hold.
Property (5.34c) is immediate from (5.33). The norm estimate of (5.34d) is proved
along the same lines as (5.13) by scaling arguments, and the estimate (5.34e)
follows from (5.34d) and (5.34b).

Bibliographical notes. Theorem 5.4 and the construction of the Fortin operator
𝛱

grad
𝑝+3 are taken from Gopalakrishnan and Qiu (2014). Its generalization in (5.33)

is based on the recent work of Führer and Heuer (2024). They further show that
generalizing such polynomial expressions to certain exponential ones, estimates
like (5.13) but with ∥ · ∥𝐻1(𝐾) replaced by

∥𝑣∥𝑎 =
(
∥𝑣∥2

𝐾 + 𝑎∥ grad 𝑣∥2
𝐾

)1/2

for some small parameter 𝑎, can be obtained robustly in the parameter 𝑎 as 𝑎 → 0.
The discrete stability of the primal DPG method for the Laplace equation, discussed
in Example 5.5, was first considered in Demkowicz and Gopalakrishnan (2013).
There, and in earlier DPG analyses such as that of Demkowicz and Gopalakrishnan
(2011a), error estimates comparable to (5.22) that demand extra regularity can be
found. The discussion in Example 5.5, leading to (5.25) with better regularity
requirements, is taken from the more recent work of Führer (2018, Theorem 5).

5.3. A Fortin operator for divergence in 𝑁 dimensions

In this subsection we construct a continuous linear operator 𝛱 div
𝑝+3 on 𝐻(div, 𝐾)

satisfying certain moment conditions that are useful in analysis of DPG methods
where 𝐻(div, 𝛺ℎ) features in the test space.

We will perform our construction on the reference unit 𝑁-simplex �̂� and map it
to a general 𝑁-simplex 𝐾 . Let 𝑆𝐾 : �̂� → 𝐾 be a one-to-one affine map that maps
�̂� onto a general tetrahedron 𝐾 , and let [𝑆′

𝐾
] denote the Jacobian derivative matrix

of 𝑆𝐾 . Given vector fields 𝑞 and 𝐸 on 𝐾 , we use the following pullback to map
them to �̂�:

Ψ(𝑞) = (det[𝑆′𝐾 ]) [𝑆′𝐾 ]−1(𝑞 ◦ 𝑆𝐾 ). (5.35)
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It is easy to see that

div(Ψ(𝑞)) = (det[𝑆′𝐾 ]) (div 𝑞) ◦ 𝑆𝐾 . (5.36)

Recall the Raviart–Thomas element 𝑅𝑝(𝐾), 𝑝 ≥ 1, previously considered in (5.11).

Theorem 5.8 (A Fortin operator on 𝐻(div, 𝐾)). On any 𝑁-simplex 𝐾 , for any
integer 𝑘 ≥ 0, an operator 𝛱 div

𝑘+1 : 𝐻(div, 𝐾) → 𝑅𝑘+1(𝐾) can be constructed such
that for all 𝜏 ∈ 𝐻(div, 𝐾), we have the commutativity property

div𝛱 div
𝑘+1𝜏 = 𝛱𝑘 div 𝜏, (5.37)

the moment conditions

(𝛱 div
𝑘+1𝜏 − 𝜏, 𝑞)𝐾 = 0 for all 𝑞 ∈ 𝑃𝑘−1(𝐾)𝑁 , (5.38a)

(𝑛 · (𝛱 div
𝑘+1𝜏 − 𝜏), 𝜇)𝜕𝐾 = 0 for all 𝜇 ∈ 𝑃𝑘(𝐾) (5.38b)

and the norm bounds

∥𝛱 div
𝑘+1𝜏∥𝐾 ≲ ∥𝜏∥𝐾 + ℎ𝐾 ∥ div 𝜏∥𝐾 , (5.38c)

∥ div𝛱 div
𝑘+1𝜏∥𝐾 ≤ ∥ div 𝜏∥𝐾 . (5.38d)

Proof. We will first construct the operator on the reference unit 𝑁-simplex �̂� . Let

𝑃⊥
𝑘 (𝜕�̂�) = {𝜇 ∈ 𝐿2(𝜕𝐾) : 𝜇 |𝐹 ∈ 𝑃𝑘(𝐹) for all 𝐹 ∈ △𝑁−1𝐾 and

(𝜇, 𝑞)𝜕𝐾 = 0 for all 𝑞 ∈ 𝑃𝑘(𝐾)}.

It is the 𝐿2(𝜕�̂�)-orthogonal complement of tr(𝑃𝑘(�̂�)) in the space of piecewise
polynomials on 𝜕𝐾 . Let

𝐵div
𝑘+1(�̂�) = {𝜏 ∈ 𝑅𝑘+1(�̂�) : (𝑝⊥, 𝜏 · �̂�)𝜕�̂� = 0 for all 𝑝⊥ ∈ 𝑃⊥

𝑘+1(𝜕�̂�)},

where �̂� is the unit outward normal on 𝜕�̂� and 𝑅𝑘+1(�̂�) is as in (5.11). We claim
that the equations(

�̂� div
𝑘+1𝜏, 𝑞

)
�̂�
= (𝜏, 𝑞)�̂� for all 𝑞 ∈ 𝑃𝑘−1(�̂�)𝑁 , (5.39a)(

�̂� div
𝑘+1𝜏 · �̂�, �̂�

)
𝜕�̂�

= ⟨𝜏 · �̂�, �̂�⟩𝐻1/2(𝜕𝐾) for all �̂� ∈ 𝑃𝑘(�̂�) (5.39b)

uniquely determine �̂� div
𝑘+1𝜏 ∈ 𝐵div

𝑘+1(�̂�) and thus define a linear continuous operator

�̂� div
𝑘+1 : 𝐻(div, �̂�) → 𝐵div

𝑘+1(�̂�).

Indeed, if the right-hand sides of (5.39) vanish, then since �̂� div
𝑘+1𝜏 is in 𝐵div

𝑘+1(�̂�) ⊂
𝑅𝑘+1(�̂�), we find that �̂� div

𝑘+1 is a function in the Raviart–Thomas space all of whose
canonical degrees of freedom vanish (see e.g. Arnold, Falk and Winther 2006 or
Nédélec 1980, Definition 5), so

�̂� div
𝑘+1𝜏 = 0.

Since the system (5.39) is square, we conclude that it uniquely defines �̂� div
𝑘+1𝜏.
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Next, we map this operator to a general simplex 𝐾 using the Piola transform Ψ

in (5.35):
𝛱 div
𝑘+1 = Ψ−1 ◦ �̂� div

𝑘+1 ◦ Ψ.

By standard mapping arguments, the stated moment conditions of 𝛱 div
𝑘+1 now follow

from (5.39). The moment conditions also imply that for any 𝜔 ∈ 𝑃𝑘(𝐾),(
div

(
𝛱 div
𝑘+1𝜏

)
, 𝜔

)
𝐾
= −

(
𝛱 div
𝑘+1𝜏, grad𝜔

)
𝐾
+
((
𝛱 div
𝑘+1𝜏

)
· 𝑛, 𝜔

)
𝜕𝐾

= −(𝜏, grad𝜔)𝐾 + (𝜔, 𝜏 · 𝑛)𝜕𝐾
= (div 𝜏, 𝜔)𝐾 ,

thus proving the commutativity property (5.37). Also, since �̂� div
𝑘+1 is a continuous

operator on 𝐻(div, �̂�), standard scaling arguments prove

∥𝛱 div
𝑘+1𝜏∥𝐾 + ℎ𝐾 ∥ div𝛱 div

𝑘+1𝜏∥𝐾 ≲ ∥𝜏∥𝐾 + ℎ𝐾 ∥ div 𝜏∥𝐾 .

Combined with the better bound on the divergence term,

∥ div𝛱 div
𝑘+1𝜏∥𝐾 ≤ ∥ div 𝜏∥𝐾 ,

which obviously follows from (5.37), the stated norm bound is also proved.

Bibliographical notes. Theorem 5.8 and its proof are from Gopalakrishnan and
Qiu (2014). For a construction in 𝐻(div, 𝐾) in the same spirit as Theorem 5.7, see
Führer and Heuer (2024).

5.4. Commuting Fortin operators in three dimensions

Having completed the previous discussions of a Fortin operator 𝛱 grad
𝑟 on the broken

𝐻1 space, as well an 𝐻(div, 𝐾) Fortin operator 𝛱 div
𝑘+1, we now proceed to show that

they are part of a family of local commuting Fortin operators. We restrict ourselves
to the three-dimensional (3D) 𝑁 = 3 case. Let

𝑁𝑝(𝐷) = 𝑃𝑝−1(𝐷)3 + 𝑥 × 𝑃𝑝−1(𝐷)3

denote the Nédélec element (Nédélec 1980). Together with the Raviart–Thomas
element 𝑅𝑝+1(𝐾) in (5.11), it forms the following well-known (see e.g. Arnold et al.
2006) exact complex:

0 𝑃𝑝+1(𝐾)/R 𝑁𝑝+1(𝐾) 𝑅𝑝+1(𝐾) 𝑃𝑝(𝐾) 0.
grad curl div (5.40)

We will prove the following result in this subsection. There 𝛱𝑝 denotes the 𝐿2-
orthogonal projection onto 𝑃𝑝(𝐾). In order to verify condition (5.5) in various
DPG convergence analyses, the moment conditions (5.43)–(5.48) listed below are
helpful.
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Theorem 5.9 (Commuting 3D Fortin operators satisfying moment conditions).
Let 𝑝 ≥ 0 be an integer. On any tetrahedron 𝐾 , there are operators

𝛱
grad
𝑝+3 : 𝐻1(𝐾) → 𝑃𝑝+3(𝐾),

𝛱 curl
𝑝+3 : 𝐻(curl, 𝐾) → 𝑁𝑝+3(𝐾),

𝛱 div
𝑝+3 : 𝐻(div, 𝐾) → 𝑅𝑝+3(𝐾),

such that for any 𝑣 ∈ 𝐻1(𝐾), 𝐸 ∈ 𝐻(curl, 𝐾) and 𝜏 ∈ 𝐻(div, 𝐾), the norm estimates

∥ 𝛱 grad
𝑝+3 𝑣∥𝐻1(𝐾) ≲ ∥𝑣∥𝐻1(𝐾), (5.41a)

∥ 𝛱 curl
𝑝+3 𝐸 ∥𝐻(curl,𝐾) ≲ ∥𝐸 ∥𝐻(curl,𝐾), (5.41b)

∥ 𝛱 div
𝑝+3 𝜏∥𝐻(div,𝐾) ≲ ∥𝜏∥𝐻(div,𝐾) (5.41c)

hold, the diagram

𝐻1(𝐾)/R 𝐻(curl, 𝐾) 𝐻(div, 𝐾) 𝐿2(𝐾)

𝑃𝑝+3(𝐾)/R 𝑁𝑝+3(𝐾) 𝑅𝑝+3(𝐾) 𝑃𝑝+2(𝐾)

grad

𝛱
grad
𝑝+3

curl

𝛱 curl
𝑝+3

div

𝛱 div
𝑝+3 𝛱𝑝+2

grad curl div

(5.42)

commutes, and the following identities hold:(
𝛱

grad
𝑝+3 𝑣 − 𝑣, 𝑞

)
𝐾
= 0 for all 𝑞 ∈ 𝑃𝑝−1(𝐾), (5.43)(

𝛱
grad
𝑝+3 𝑣 − 𝑣, 𝑛 · 𝜎

)
𝜕𝐾

= 0 for all 𝜎 ∈ 𝑅𝑝+1(𝐾), (5.44)(
𝛱 curl
𝑝+3 𝐸 − 𝐸, 𝑣

)
𝐾
= 0 for all 𝑣 ∈ 𝑃𝑝(𝐾)3, (5.45)(

𝑛 ×
(
𝛱 curl
𝑝+3 𝐸 − 𝐸

)
, 𝑤

)
𝜕𝐾

= 0 for all 𝑤 ∈ 𝑃𝑝+1(𝐾)3, (5.46)(
𝛱 div
𝑝+3 𝜏 − 𝜏, 𝑞

)
𝐾
= 0 for all 𝑞 ∈ 𝑃𝑝+1(𝐾)3, (5.47)(

𝑛 ·
(
𝛱 div
𝑝+3 𝜏 − 𝜏

)
, 𝜇

)
𝜕𝐾

= 0 for all 𝜇 ∈ 𝑃𝑝+2(𝐾). (5.48)

Before proceeding to prove this theorem, we note that the operator 𝛱 grad
𝑝+3 stated

in the theorem is the same as 𝛱 grad
𝑟 with 𝑟 = 𝑝 + 𝑁 constructed in Theorem 5.4,

restricted to 𝑁 = 3 dimensions (since (5.43)–(5.44) is the same as (5.28a)–(5.28b)).
However, we are yet to prove the relevant commutativity property. Note also that
the bound (5.41c) and the moment conditions (5.47) and (5.48) hold after putting
𝑁 = 3 and replacing 𝑘 with 𝑝 + 2 in Theorem 5.8. It also gives the commutativity
property of 𝛱 div

𝑝+3 stated in the last part of (5.42).
It remains to construct 𝛱 curl

𝑝+3. We will perform our construction on the reference
unit 𝑁-simplex �̂� and map it to a general 𝑁-simplex 𝐾 . As before, let 𝑆𝐾 : �̂� → 𝐾

be an affine homeomorphism from �̂� to a general tetrahedron 𝐾 . Given a vector
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fields 𝐸 on 𝐾 , we use the following pullback to map it to �̂�:

Φ(𝐸) = [𝑆′𝐾 ]𝑡 (𝐸 ◦ 𝑆𝐾 ). (5.49)

It is easy to see that
curl(Φ(𝐸)) = Ψ(curl 𝐸). (5.50)

We begin with a preliminary lemma whose relevance will be clear soon. Let

�̊� 𝑝(𝐾) = {𝑞 ∈ 𝑁𝑝(𝐾) : 𝑛 × 𝑞 |𝜕𝐾 = 0}.

Lemma 5.10. For any 𝑝 ≥ 0, if 𝐹 ∈ 𝐻(curl, 𝐾) satisfies

(curl 𝐹, 𝑤)𝐾 = 0 for all 𝑤 ∈ �̊� 𝑝+1(𝐾), (5.51)

then there is a 𝜙 ∈ 𝑃𝑝+3(𝐾) such that

(𝐹 + grad 𝜙, 𝑣)𝐾 = 0 for all 𝑣 ∈ 𝑃𝑝(𝐾)3. (5.52)

Proof. Proving (5.52) amounts to proving that there is a 𝜙 ∈ 𝑃𝑝+3(𝐾) solving

𝐴𝜙 = 𝑏, (5.53)

where 𝐴 and 𝑏 are defined using the 𝐿2(𝐾)3-orthogonal projection 𝛱𝑝 into
𝑃𝑝(𝐾)3 by

𝐴 = 𝛱𝑝 grad: 𝑃𝑝+3(𝐾) → 𝑃𝑝(𝐾)3, 𝑏 = −𝛱𝑝𝐹.

In other words, it suffices to show that 𝑏 ∈ range(𝐴) = ker(𝐴∗)⊥, where 𝐴∗ is the
𝐿2-adjoint of 𝐴.

Any 𝑞 ∈ 𝑃𝑝(𝐾)3 is in ker(𝐴∗) if and only if

(𝑢, 𝐴∗𝑞) = (𝐴𝑢, 𝑞)𝐾 = (grad 𝑢, 𝑞)𝐾
= −(𝑢, div 𝑞)𝐾 + (𝑢, 𝑞 · 𝑛)𝜕𝐾 = 0 (5.54)

for all 𝑢 ∈ 𝑃𝑝+3(𝐾). Recall the bubble functions 𝑏𝐾 and 𝑏𝐹 from (5.26). Choosing
𝑢 = 𝑏𝐾 div 𝑞 in (5.54), we find that div 𝑞 = 0. Then, removing the term containing
div 𝑞 and choosing 𝑢 = (𝑞 ·𝑛𝐹)𝑏𝐹 in (5.54), we find that (𝑞 ·𝑛𝐹)|𝐹 = 0, an argument
that can repeated on every facet 𝐹. Including the obvious converse as well, we have
proved that 𝑞 ∈ ker(𝐴∗) if and only if div 𝑞 = 0 and 𝑞 · 𝑛|𝜕𝐾 = 0, that is,

ker(𝐴∗) = curl �̊� 𝑝+1(𝐾).

Note that for any 𝑤 ∈ �̊� 𝑝+1(𝐾), by the given condition (5.51),

(𝑏, curl𝑤) = −(𝐹, curl𝑤) = −(curl 𝐹, 𝑤) = 0,

so 𝑏 ∈ ker(𝐴∗)⊥ = range(𝐴) and (5.53) has a solution.

Before constructing the required 𝛱 curl
𝑝+3, we need an intermediate operator �̂� 𝑐

𝑝+3
on a reference unit tetrahedron �̂� . Let

𝐷 𝑝+2(�̂�) = curl 𝑁𝑝+3(�̂�) = {𝑟 ∈ 𝑅𝑝+3(�̂�) : div 𝑟 = 0}
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and
𝐶 = curl : 𝑁𝑝+3(�̂�) → 𝐷 𝑝+2(�̂�).

Using �̂�𝑝, the 𝐿2(�̂�)3-orthogonal projection into 𝑃𝑝(�̂�)3, define 𝐵 = �̂�𝑝 : 𝑁𝑝+3 →
𝑃𝑝(�̂�)3. The codomains of 𝐵 and 𝐶 are endowed with the 𝐿2-norm, which then
naturally define their 𝐿2-adjoints 𝐵∗ and 𝐶∗. Note that one of the commutativity
properties in (5.42) and one of the moment conditions (5.45) read, respectively, as
follows:

𝐶𝐹 = 𝛱 div
𝑝+3 curl 𝐸, 𝐵𝐹 = �̂�𝑝𝐸, (5.55)

with 𝐹 = 𝛱 curl
𝑝+3 𝐸 . Accordingly, we seek the result of the application of the Fortin

operator in the set

𝑆(𝐸) = {𝐹 ∈ 𝑁𝑝+3(�̂�) : 𝐹 satisfies (5.55)}. (5.56)

For defining the intermediate operator �̂� 𝑐
𝑝+3, consider the problem of finding

�̂� 𝑐
𝑝+3𝐸 ∈ 𝑁𝑝+3(�̂�), 𝜆 ∈ 𝑃𝑝(�̂�)3 and 𝜇 ∈ 𝐷 𝑝+2(�̂�) satisfying

�̂� 𝑐
𝑝+3𝐸 + 𝐵∗𝜆 + 𝐶∗𝜇 = 0, (5.57a)

𝐵�̂� 𝑐
𝑝+3𝐸 = �̂�𝑝𝐸, (5.57b)

𝐶�̂� 𝑐
𝑝+3𝐸 = �̂� div

𝑝+3 curl 𝐸, (5.57c)

where �̂� div
𝑝+3 is as defined in (5.39). One may view 𝜆 and 𝜇 above as Lagrange

multipliers for the constrained minimization problem

�̂� 𝑐
𝑝+3𝐸 = arg min

𝐹∈𝑆(𝐸)
∥𝐹∥2

�̂�
, (5.58)

where the minimization is over the affine set in (5.56).
We claim that there exists a unique �̂� 𝑐

𝑝+3𝐸 ∈ 𝑁𝑝+3(�̂�) satisfying (5.57). First
observe that (5.37) implies div �̂� div

𝑝+3 curl 𝐸 = 0, that is, by the exactness of (5.40),
there is a �̂�𝑝+3 ∈ 𝑁𝑝+3(𝐾) such that curl �̂�𝑝+3 = �̂� div

𝑝+3 curl 𝐸 . By the moment
condition (5.47) of𝛱 div

𝑝+3, 𝐹 = �̂�𝑝+3−𝐸 satisfies (curl 𝐹, 𝑤) = 0 for all𝑤 ∈ 𝑃𝑝+1(𝐾),
and in particular, the condition (5.51) of Lemma 5.10. The lemma then gives the
existence of 𝜙 ∈ 𝑃𝑝+3(𝐾) such that 𝐺 = �̂�𝑝+3 + grad 𝜙 ∈ 𝑁𝑝+3(�̂�) satisfies[

𝐵

𝐶

]
𝐺 =

[
�̂�𝑝𝐸

�̂� div
𝑝+3 curl 𝐸

]
,

that is, the right-hand side of (5.57) is in the range of [ 𝐵𝐶 ] (or equivalently 𝑆(𝐸)
is a non-empty feasible set of constraints). Hence, by standard arguments (see
Brezzi and Fortin 1991, Proposition 1.1, p. 38), there exists a solution to (5.57) and
moreover the �̂� 𝑐

𝑝+3𝐸 component of the solution is unique. The linearity of �̂� 𝑐
𝑝+3𝐸

with respect to the right-hand sides of (5.57) is obvious and the right-hand sides
in turn depend linearly on 𝐸 . Furthermore, since the ranges of 𝐵 and 𝐶 are closed
finite-dimensional spaces, there is a 𝑐�̂� > 0 such that (see Brezzi and Fortin 1991,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000102
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 25 Jul 2025 at 19:50:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000102
https://www.cambridge.org/core


The discontinuous Petrov–Galerkin method 331

Proposition 1.2, p. 39) the linear operator �̂� 𝑐
𝑝+3 : 𝐻(curl, �̂�) → 𝑁𝑝+3(�̂�) satisfies

∥�̂� 𝑐
𝑝+3𝐸 ∥𝐻(curl,�̂�) ≤ 𝑐�̂� ∥𝐸 ∥𝐻(curl,�̂�). (5.59)

Next we map �̂� 𝑐
𝑝+3 from �̂� to an operator on any shape-regular tetrahedron 𝐾

using the covariant pullback Φ in (5.50):

𝛱 𝑐
𝑝+3 = Φ−1 ◦ �̂� 𝑐

𝑝+3 ◦ Φ.

Lemma 5.11. On any tetrahedron 𝐾 , the operator 𝛱 𝑐
𝑝+3 : 𝐻(curl, 𝐾) → 𝑁𝑝+3(𝐾)

satisfies

curl𝛱 𝑐
𝑝+3 𝐸 = 𝛱 div

𝑝+3 curl 𝐸 for all 𝐸 ∈ 𝐻(curl, 𝐾), (5.60)(
𝛱 𝑐
𝑝+3 𝐸 − 𝐸, 𝑣

)
𝐾
= 0 for all 𝑣 ∈ 𝑃𝑝(𝐾)3, (5.61)(

𝑛 ×
(
𝛱 𝑐
𝑝+3 𝐸 − 𝐸

)
, 𝑤

)
𝜕𝐾

= 0 for all 𝑤 ∈ 𝑃𝑝+1(𝐾)3, (5.62)
∥ 𝛱 𝑐

𝑝+3 𝐸 ∥𝐻(curl,𝐾) ≲ ∥𝐸 ∥𝐻(curl,𝐾). (5.63)

Proof. Mapping the equation (5.57b) from �̂� to 𝐾 , we obtain (5.61). It is easy
to see that curl(Φ(𝐸)) = Ψ(curl 𝐸) for any 𝐸 ∈ 𝐻(curl, 𝐾). Using it, we note that
mapping (5.57c) from �̂� to 𝐾 we obtain the commutativity property (5.60) on 𝐾 .
To prove the extra boundary moment condition (5.62), we substitute 𝑣 = curl𝑤 for
some 𝑤 ∈ 𝑃𝑝+1(𝐾)3 into (5.61) and integrate by parts to get

0 =
(
𝛱 𝑐
𝑝+3 𝐸 − 𝐸, curl𝑤

)
𝐾

= −
(
𝑛 ×

(
𝛱 𝑐
𝑝+3 𝐸 − 𝐸

)
, 𝑤

)
𝐾
+
(
curl

(
𝛱 𝑐
𝑝+3 𝐸 − 𝐸

)
, 𝑤

)
𝐾
,

and the last term vanishes by (5.60) and the moment condition (5.47) of 𝛱 div
𝑝+3.

To prove (5.63), note that the bound (5.59) and standard scaling arguments
(detailed in Carstensen et al. 2016, eq. (52)) imply

∥ 𝛱 𝑐
𝑝+3 𝐸 ∥

2
𝐾 ≲ ∥𝐸 ∥2

𝐾 + ℎ2
𝐾 ∥ curl 𝐸 ∥2

𝐾 .

Additionally, since (5.57c) and (5.41b) imply that ∥ curl𝛱 𝑐
𝑝+3 𝐸 ∥𝐾 ≲ ∥ curl 𝐸 ∥𝐾 ,

the estimate (5.63) follows.

Recall that any 𝐸 ∈ 𝐻(curl, 𝐾) admits the unique orthogonal Helmholtz decom-
position

𝐸 = �̃� + grad𝜓, (5.64)

where 𝜓 ∈ 𝐻1(𝐾) has zero mean value �̄� = |𝐾 |−1
∫
𝐾
𝜓 = 0, and �̃� ∈ 𝐻(curl, 𝐾) is

such that (�̃� , grad 𝜑)𝐾 = 0 for all 𝜑 ∈ 𝐻1(𝐾). Using the Helmholtz decomposition
(5.64) of 𝐸 , define

𝛱 curl
𝑝+3 𝐸 = 𝛱 𝑐

𝑝+3 �̃� + grad𝛱 grad
𝑝+3 𝜓. (5.65)

We proceed to prove that this operator has all the required properties.
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Proof of Theorem 5.9. We have already shown that the 𝑁-dimensional operator
𝛱 div
𝑝+3 in Theorem 5.8, restricted to 𝑁 = 3 case, satisfies all the properties stated

in the theorem. We have also shown that the operator in Theorem 5.4, restricted
to 𝑁 = 3, satisfies all the stated properties of 𝛱 grad

𝑝+3 except for its commutativity
property involving 𝛱 curl

𝑝+3. Hence, to finish the proof, we now proceed to prove
that the 𝛱 curl

𝑝+3𝐸 defined in (5.65) satisfies the norm bound (5.41b), the moment
conditions (5.45)–(5.46), as well as the commutativity properties

curl𝛱 curl
𝑝+3 𝐸 = 𝛱 div

𝑝+3 curl 𝐸, (5.66)

𝛱 curl
𝑝+3 grad 𝜙 = grad𝛱 grad

𝑝+3 𝜙 (5.67)

for all 𝜙 ∈ 𝐻1(𝐾) and 𝐸 ∈ 𝐻(curl, 𝐾).
First, we use, in succession, the definition of 𝛱 curl

𝑝+3 in (5.65), the norm bound
(5.63) of the intermediate operator 𝛱 𝑐

𝑝+3 and that of 𝛱 grad
𝑝+3 in (5.41a), the ortho-

gonality of the Helmholtz decomposition which implies

∥�̃� ∥2
𝐾 + ∥ grad𝜓∥2

𝐾 = ∥𝐸 ∥2
𝐾 ,

and the Poincaré inequality ∥𝜓∥𝐾 ≲ ℎ𝐾 ∥ grad𝜓∥2
𝐾

, to get

∥ 𝛱 curl
𝑝+3 𝐸 ∥𝐻(curl,𝐾) ≤ ∥ 𝛱 𝑐

𝑝+3 �̃� ∥𝐻(curl,𝐾) + ∥ grad𝛱 grad
𝑝+3 𝜓∥𝐾

≲ ∥�̃� ∥𝐻(curl,𝐾) + ∥𝜓∥𝐻1(𝐾) ≲ ∥𝐸 ∥𝐻(curl,𝐾),

thus proving the required bound (5.41b).
To prove the interior moment condition (5.45), we again start by applying the

definition (5.65):(
𝛱 curl
𝑝+3 𝐸 − 𝐸, 𝑣

)
𝐾
=
(
𝛱 𝑐
𝑝+3 �̃� − �̃� , 𝑣

)
𝐾
+
(
grad

(
𝛱

grad
𝑝+3 𝜓 − 𝜓

)
, 𝑣
)
𝐾
.

Note that the first term on the right-hand side vanishes since 𝛱 𝑐
𝑝+3 �̃� satisfies the

moment condition (5.61) of Lemma 5.11. The last term vanishes after integrating
by parts and using the moment conditions (5.43)–(5.44) of 𝛱 grad

𝑝+3 .
Next, to prove the element boundary moment condition (5.46), starting with(

𝑛 ×
(
𝛱 curl
𝑝+3 𝐸 − 𝐸

)
, 𝑤

)
𝜕𝐾

=
(
𝑛 ×

(
𝛱 𝑐
𝑝+3 �̃� − �̃�

)
, 𝑤

)
𝜕𝐾

+
(
𝑛 × grad

(
𝛱

grad
𝑝+3 𝜓 − 𝜓

)
, 𝑤

)
𝜕𝐾
, (5.68)

note that the first term on the right-hand side vanishes due to the moment condition
(5.62) of 𝛱 𝑐

𝑝+3 �̃� . To see that the last term also vanishes, letting 𝑒 = 𝛱 grad
𝑝+3 𝜓 − 𝜓,

observe that the equalities

(𝑒, div 𝑞)𝐾 = 0 = −(𝑞, grad 𝑒)𝐾

can be seen to hold for any 𝑞 ∈ 𝑃𝑝(𝐾)3 due to the moment conditions (5.43)–(5.44)
of 𝛱 grad

𝑝+3 and integration by parts. Putting 𝑞 = curl𝑤 for any 𝑤 ∈ 𝑃𝑝+1(𝐾)3, the
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last equality implies that

0 = (curl𝑤, grad 𝑒)𝐾 = −(𝑛 × grad 𝑒, 𝑤)𝜕𝐾 ,

which shows that the last term in (5.68) vanishes.
The proof of the commutativity property (5.66) is straightforward:

curl𝛱 curl
𝑝+3 𝐸 = curl𝛱 𝑐

𝑝+3 �̃� by (5.65)

= 𝛱 div
𝑝+3 curl �̃� by (5.60)

= 𝛱 div
𝑝+3 curl 𝐸 by (5.64).

Finally, to prove the remaining commutativity property (5.67), observe that the
Helmholtz decomposition (5.64) of 𝐸 = grad 𝜙 gives a vanishing �̃�-component
and a 𝜓-component that equals 𝜙 − 𝜙 for any 𝜙 ∈ 𝐻1(𝐾). Hence

𝛱 curl
𝑝+3 grad 𝜙 = grad𝛱 grad

𝑝+3 (𝜙 − 𝜙) = grad𝛱 grad
𝑝+3 𝜙 − grad 𝜙 = grad𝛱 grad

𝑝+3 𝜙,

where we have used (5.13d).

Example 5.12 (Maxwell equations). We continue Example 4.5, where the infin-
ite-dimensional spaces and forms for the primal DPG formulation of the Maxwell
cavity problem were set by (4.32), and the formulation was proved to be wellposed.
Now we focus on its discretization using subspaces 𝑋0,ℎ ⊂ 𝑋ℎ, �̂�ℎ ⊂ �̂� and𝑌ℎ ⊂ 𝑌
set by

𝑋0,ℎ = {𝐸ℎ ∈ �̊�(curl, 𝛺) : 𝐸ℎ |𝐾 ∈ 𝑃𝑝(𝐾)3 for all 𝐾 ∈ 𝛺ℎ}, (5.69a)
�̂�ℎ = {𝑛 × �̂�ℎ ∈ 𝐻−1/2(divF, 𝜕𝛺ℎ) : 𝑛 × �̂�ℎ |𝜕𝐾 ∈ tr𝐾𝑛× 𝑃𝑝+1(𝐾)3 for all 𝐾 ∈ 𝛺ℎ},
𝑌ℎ = {𝐹ℎ ∈ 𝐻(curl, 𝛺ℎ) : 𝐹ℎ |𝐾 ∈ 𝑁𝑝+3(𝐾) for all 𝐾 ∈ 𝛺ℎ}. (5.69b)

To obtain error estimates, we apply Theorem 5.2, under the additional assumption
that the material coefficients 𝜇, 𝜀 are constant on each mesh element 𝐾 ∈ 𝛺ℎ. Then
(5.41b), (5.45) and (5.46) of Theorem 5.9 verify condition (5.5) with 𝛱 = 𝛱 curl

𝑝+3.
Hence we conclude that

∥𝐸 − 𝐸ℎ∥2
𝐻(curl,𝛺) + ∥𝑛 × (�̂� − �̂�ℎ)∥2

𝐻−1/2(divF,𝜕𝛺ℎ)

≲ inf
𝐺ℎ∈𝑋ℎ,0, 𝑛×�̂�ℎ∈�̂�ℎ

[
∥𝐸 − 𝐺ℎ∥2

𝐻(curl,𝛺) + ∥𝑛 × �̂� − 𝑛 × �̂�ℎ∥2
𝐻−1/2(divF,𝜕𝛺ℎ)

]
.

Thus the method is quasioptimal. Convergence rates can be derived by bounding
the right-hand side (as illustrated in Example 5.5). Curiously, unlike the standard
finite element method for the cavity problem, for the DPG method there appears
to be no need for ℎ to be sufficiently small to obtain quasioptimality. However,
the discrete stability of the DPG method, inherited from the wellposedness, can
deteriorate when the exact inf-sup constant 𝛾 is poor (which is to be expected as 𝜔
approaches a cavity resonance).
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Bibliographical notes. The construction of the 𝐻(curl, 𝐾) Fortin operator for DPG
methods presented here is new, but is related to existing constructions. The first
𝐻(curl, 𝐾) Fortin operator was given in Carstensen et al. (2016). The construction
there uses an appropriate bubble space and is similar in spirit to our constructions
of 𝛱 grad

𝑝+3 in Theorem 5.4 and 𝛱 div
𝑝+3 in Theorem 5.8. Another natural method for

construction of 𝛱 curl
𝑝+3 is through the constrained minimization (5.58), where the

required moment conditions are put as constraints. Such minimizations were used
to construct Fortin operators in Demkowicz (2024) and Demkowicz and Zanotti
(2020). The construction we have presented here is close but not identical to these,
because in proving Theorem 5.9 we needed to establish commutativity between
differently constructed Fortin operators. These techniques clearly show there are
multiple avenues to construct Fortin operators for DPG schemes.

6. A posteriori error control
The DPG method comes with a built-in error estimator. The estimator naturally
appears either from a residual minimization standpoint or through a characterization
of the method as a mixed method, as revealed in this section. The estimator can
be thought of as a hierarchical type error estimator obtained by exploiting test
functions that do not contribute to the inexact optimal test space.

6.1. Discrete residual minimization, error estimators, and mixed formulation

Let 𝑥 be as in (1.1). Consider the DPG method (5.4) for approximating 𝑥, obtained
using some finite-dimensional spaces 𝑋ℎ and 𝑌 𝑟 . Recall that following prior
notation, 𝑅𝑌𝑟 : 𝑌 𝑟 → (𝑌 𝑟 )∗ denotes the Riesz map defined by (𝑅𝑌𝑟 𝑦)(𝑣) = (𝑦, 𝑣)𝑌
for all 𝑦 and 𝑣 in 𝑌 𝑟 . From the definition of the computable trial-to-test operator
𝑇𝑟 in (5.2), it is easy to see that

𝑇𝑟𝑤ℎ = 𝑅
−1
𝑌𝑟 𝐵𝑤ℎ, 𝑤ℎ ∈ 𝑋ℎ . (6.1)

Note that 𝑅−1
𝑌𝑟

can be applied to 𝐵𝑤ℎ since it is in 𝑌 ∗ ⊂ (𝑌 𝑟 )∗. For any 𝑥, 𝑤 ∈ 𝑋 ,
let

(𝑧, 𝑤)𝑟 = (𝑇𝑟 𝑧, 𝑇𝑟𝑤)𝑌 , |𝑧 |𝑟 = ∥𝑇𝑟 𝑠∥𝑌 . (6.2)

By (5.7), 𝑇𝑟 is injective on 𝑋ℎ when a Fortin operator exists, so | · |𝑟 is a norm
on 𝑋ℎ. In general, | · |𝑟 is only a seminorm on 𝑋 . Even so, whenever | · |𝑟 is a
norm on the finite-dimensional space 𝑋ℎ, it is easy to see that there exists a unique
minimizer 𝑥ℎ in 𝑋ℎ solving

𝑥ℎ = arg min
𝑧ℎ∈𝑋ℎ

|𝑥 − 𝑧ℎ |𝑟 , (6.3a)

which is characterized by

(𝑥 − 𝑥ℎ, 𝑧ℎ)𝑟 = 0 for all 𝑧ℎ ∈ 𝑋ℎ . (6.3b)
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This minimizer also minimizes a residual in a discrete dual norm and equals the
solution of the (practical) DPG method, as stated next.

Theorem 6.1 (Inexact residual minimization). Under the assumptions of The-
orem 5.2, the following are equivalent statements.

(a) 𝑥ℎ ∈ 𝑋ℎ is the unique solution of the DPG method (5.4).
(b) 𝑥ℎ is the unique element of 𝑋ℎ satisfying

|𝑥 − 𝑥ℎ |𝑟 = inf
𝑧ℎ∈𝑋ℎ

|𝑥 − 𝑧ℎ |𝑟 .

(c) 𝑥ℎ minimizes the residual in the following sense:

𝑥ℎ = arg min
𝑧ℎ∈𝑋ℎ

∥ℓ − 𝐵𝑧ℎ∥(𝑌𝑟 )∗ .

Proof. Follow along the lines of proof of Theorem 3.2 but using (6.1) instead of
(3.2) and noting (6.3).

Definition 6.2. Let ℓ be as in (1.1), let 𝑥ℎ be any element of 𝑋ℎ, and let 𝑌 𝑟 be as
in (5.1). The element of 𝑌 𝑟 defined by

𝜀𝑟 = 𝑅−1
𝑌𝑟 (ℓ − 𝐵𝑥ℎ) (6.4)

is called the inexact error representation of 𝑥ℎ (see Definition 3.3). When 𝑥ℎ is set
to the solution 𝑥ℎ of the DPG method (5.4), then its inexact error representation is
denoted (omitting the tilde) by 𝜀𝑟 = 𝑅−1

𝑌𝑟
(ℓ − 𝐵𝑥ℎ).

It is easy to see that 𝜀𝑟 in (6.4) is the unique element of 𝑌 𝑟 satisfying

(𝜀𝑟 , 𝑦)𝑌 = ℓ(𝑦) − 𝑏(𝑥ℎ, 𝑦) for all 𝑦 ∈ 𝑌 𝑟 . (6.5)

This shows that the inexact error representation of the DPG solution, namely 𝜀𝑟 , is
𝑌 -orthogonal to the entire inexact optimal test space 𝑌 𝑟

ℎ
due to (5.4). Let

𝜂 = ∥𝜀𝑟 ∥𝑌 , 𝜂 = ∥𝜀𝑟 ∥𝑌 . (6.6)

Clearly, (6.1), (6.5) and (6.2) imply

𝜂 = ∥𝑅−1
𝑌𝑟 𝐵(𝑥 − 𝑥ℎ)∥𝑌 = ∥𝑇𝑟 (𝑥 − 𝑥ℎ)∥𝑌 .

When 𝑌 𝑟 is of the product form (5.1), the norm in (6.6) can be written in terms of
local element contributions, each of which acts as a practically computable element-
wise error indicator. It is useful to note the following analogue of Theorems 3.4.

Theorem 6.3 (Inexact error representation as a mixed solution component).
Let 𝜀𝑟 denote the inexact error representation of Definition 6.2. Then the following
are equivalent statements.

(a) 𝑥ℎ ∈ 𝑋ℎ solves the DPG method (5.4).
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(b) 𝑥ℎ ∈ 𝑋ℎ and 𝜀𝑟 ∈ 𝑌 𝑟 solve the mixed formulation

(𝜀𝑟 , 𝑦)𝑌 + 𝑏(𝑥ℎ, 𝑦) = ℓ(𝑦) for all 𝑦 ∈ 𝑌 𝑟 , (6.7a)
𝑏(𝑧, 𝜀𝑟 ) = 0 for all 𝑧 ∈ 𝑋ℎ . (6.7b)

(c) 𝜀𝑟 and 𝑥ℎ form the saddle point of

𝐿(𝑦, 𝑧) =
1
2
∥𝑦∥2

𝑌 − ℓ(𝑦) + 𝑏(𝑧, 𝑦)

on 𝑌 𝑟 × 𝑋ℎ, that is,

𝐿(𝜀, 𝑥ℎ) = min
𝑦∈𝑌𝑟

max
𝑧∈𝑋ℎ

𝐿(𝑦, 𝑧).

Proof. Follow along the lines of the proof of Theorem 3.4.

The mixed reformulation (6.7) of the DPG method in Theorem 6.3 gives further
insight into the stability of the method. In a typical two-equation mixed system,
enlarging the test space in the first equation, while often helpful to prove the inf-
sup condition by increasing the supremum, is fraught with the danger of losing
the coercivity of the first term. However, in the DPG system (6.7), the first term
(·, ·)𝑌 , being an inner product, will never lose coercivity, no matter how liberally
we enrich 𝑌 𝑟 . This explains any perceived ease in proving stability of DPG
formulations.

6.2. Reliability and efficiency

The basis for a posteriori error control in DPG methods using 𝜂 is the following
result, proved under the same prior assumption on the existence of a continuous
Fortin operator 𝛱 .

Theorem 6.4 (Global reliability and efficiency for any approximation). Under
the assumptions of Theorem 5.2, we have the following inequalities for the differ-
ence between the exact solution 𝑥 and any 𝑥ℎ ∈ 𝑋ℎ in terms of the corresponding
computable error estimator 𝜂 of (6.6):

𝛾∥𝑥 − 𝑥ℎ∥𝑋 ≤ ∥𝛱 ∥ 𝜂 + osc(ℓ) (reliability), (6.8a)
𝜂 ≤ ∥𝑏∥ ∥𝑥 − 𝑥ℎ∥𝑋 (efficiency). (6.8b)

Here
osc(ℓ) = ∥ℓ ◦ (1 − 𝛱 )∥𝑌 ∗ (6.8c)

represents a term akin to data-approximation error and it admits the following
bound:

osc(ℓ) ≤ ∥𝑏∥ ∥1 − 𝛱 ∥ min
𝑧ℎ∈𝑋ℎ

∥𝑥 − 𝑧ℎ∥𝑋 . (6.8d)
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Proof. To prove (6.8a), observe that

𝑏(𝑥 − 𝑥ℎ, 𝑦) = ℓ(𝑦) − 𝑏(𝑥ℎ, 𝑦)
= ℓ(𝑦 − 𝛱𝑦) − 𝑏(𝑥ℎ, 𝑦 − 𝛱𝑦) + ℓ(𝛱𝑦) − 𝑏(𝑥ℎ, 𝛱 𝑦)
= ℓ(𝑦 − 𝛱𝑦) + (𝜀𝑟 , 𝛱 𝑦)𝑌

due to (5.5) and (6.5). Hence (1.2) implies

𝛾∥𝑥 − 𝑥ℎ∥𝑋 ≤ sup
0≠𝑦∈𝑌

|𝑏(𝑥 − 𝑥ℎ, 𝑦)|
∥𝑦∥𝑌

= sup
0≠𝑦∈𝑌

|ℓ ◦ (1 − 𝛱 )(𝑦) + (𝜀𝑟 , 𝛱 𝑦)𝑌 |
∥𝑦∥𝑌

,

from which (6.8a) follows.
The global efficiency estimate is immediate from (6.5):

𝜂2 = 𝑏(𝑥 − 𝑥ℎ, 𝜀𝑟 ) ≤ ∥𝑏∥ ∥𝑥 − 𝑥ℎ∥𝑋 𝜂.

Finally, to prove (6.8d),

(ℓ ◦ (1 − 𝛱 )(𝑦) = ℓ(𝑦) − ℓ(𝛱𝑦) = 𝑏(𝑥, 𝑦 − 𝛱𝑦)
= 𝑏(𝑥 − 𝑧ℎ, 𝑦 − 𝛱𝑦) ≤ ∥𝑏∥ ∥𝑥 − 𝑧ℎ∥𝑋 ∥𝑦 − 𝛱𝑦∥𝑌

for any 𝑧ℎ ∈ 𝑋ℎ, where we used (5.5) to get the last equality. Taking the infimum
over 𝑧ℎ ∈ 𝑋ℎ and supremum over 0 ≠ 𝑦 ∈ 𝑌 , we obtain (6.8d).

Example 6.5 (Case of 𝑌 𝑟 ⊇ 𝑌opt
ℎ

). Reconsider the setting of Example 5.3 for
some 𝑌 𝑟 ⊇ 𝑌

opt
ℎ

. As shown there, the solution 𝑥ℎ ∈ 𝑋ℎ of the IPG method
and the practical DPG method are identical. We also showed there that the Fortin
condition holds with 𝛱 set to the 𝑌 -orthogonal projection of 𝛱𝑌𝑟 into 𝑌 𝑟 . Hence
Theorem 6.4 applies with ∥𝛱 ∥ = ∥𝛱𝑌𝑟 ∥ = 1, so

𝛾∥𝑥 − 𝑥ℎ∥𝑋 ≤ 𝜂 + osc(ℓ), 𝜂 ≤ ∥𝑏∥∥𝑥 − 𝑥ℎ∥𝑋 . (6.9)

Here
osc(ℓ) = ∥ℓ ◦ (𝐼 − 𝛱𝑌𝑟 )∥𝑌 ∗ (6.10)

following its definition in (6.8c).
It is interesting to compare the exact and inexact error representations, 𝜀 ∈ 𝑌 and

𝜀𝑟 ∈ 𝑌 𝑟 respectively, in this example. Consider the mixed method reformulations
of the IPG and DPG methods, namely (3.4) and (6.7) respectively. Since 𝑥ℎ is the
same in both cases, choosing 𝑦 of (3.4a) in 𝑌 𝑟 and subtracting (6.7a), we find that

(𝜀 − 𝜀𝑟 , 𝑦)𝑌 = 0 for all 𝑦 ∈ 𝑌 𝑟 , (6.11)

that is, 𝜀𝑟 = 𝛱𝜀 is the 𝑌 -orthogonal projection of the exact error representation.
We claim that

∥𝜀𝑟 ∥𝑌 ≤ ∥𝜀∥𝑌 ≤ ∥𝜀𝑟 ∥𝑌 + osc(ℓ)2. (6.12)

The first inequality above is immediate from 𝜀𝑟 = 𝛱𝜀. The second inequality
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follows from the Pythagoras theorem ∥𝜀∥2
𝑌
= ∥𝜀𝑟 ∥2

𝑌
+ ∥𝜀 − 𝜀𝑟 ∥2

𝑌
and

∥𝜀 − 𝜀𝑟 ∥2
𝑌 = (𝜀, 𝜀 − 𝜀𝑟 )𝑌 by (6.12)
= ℓ(𝜀 − 𝜀𝑟 ) − 𝑏(𝑥ℎ, 𝜀 − 𝜀𝑟 ) by (3.4a)
= ℓ(𝜀 − 𝜀𝑟 ) by (6.7b) and (3.4b).

Clearly

ℓ(𝜀 − 𝜀𝑟 ) = ℓ(𝜀 − 𝛱𝜀) ≤ ∥ℓ ◦ (1 − 𝛱 )∥𝑌 ∗ ∥𝜀 − 𝜀𝑟 ∥𝑌 = osc(ℓ)∥𝜀 − 𝜀𝑟 ∥𝑌 ,

and the upper inequality of (6.12) follows.

Bibliographical notes. The proof given for Theorem 6.4 is a slightly simpli-
fied version of the original presented in Carstensen, Demkowicz and Gopala-
krishnan (2014a, Theorem 2.1), and produces an improved reliability constant as
in Carstensen, Gallistl, Hellwig and Weggler (2014b, Lemma 3.6). If in addition
𝛱 is idempotent, then (6.8a) can be further improved to

𝛾2∥𝑥 − 𝑥ℎ∥2
𝑋 ≤ 𝜂2 +

(
𝜂
√︁
∥𝛱 ∥2 − 1 + osc(ℓ)

)2
, (6.13)

as shown in Keith, Astaneh and Demkowicz (2019, Theorem 6.4). Note the
relationship between (6.12) and (6.13) when 𝛱 is an orthogonal projection. It
is easy to construct adaptive algorithms with marking strategies based on the
DPG error estimator following the usual ‘Solve → Estimate → Mark → Refine’
paradigm. In all reports of practical performance (Demkowicz et al. 2012a, Petrides
and Demkowicz 2017), such DPG algorithms work very well, but to the best of our
knowledge their convergence and optimality are yet to be rigorously proved.

7. Ultraweak formulations
A rich set of examples to apply the DPG ideas is offered by the so-called ‘ultraweak’
formulations of boundary value problems seeking 𝑢 ∈ 𝑉 satisfying 𝐴𝑢 = 𝑓 for
an 𝑓 ∈ 𝐿2(𝛺)𝑚. Here 𝑉 is a space where homogeneous boundary conditions
are imposed, and 𝐴 is a general partial differential operator (specified below). In
ultraweak formulations all derivatives in 𝐴 are moved to test functions by integration
by parts, element by element. In order to use the previously developed DPG ideas, it
is important to obtain a reformulation where the trial-to-test operator𝑇 is localized,
i.e. a formulation where the test space has the form (4.1). Such a reformulation,
set in a broken graph space, is derived and studied in this section. We prove its
wellposedness by general arguments that cover many examples at once. The first
main result (Theorem 7.6) of this section identifies conditions under which the
wellposedness of ultraweak formulations in broken graph spaces can be obtained
as soon as 𝐴 : 𝑉 → 𝐿2(𝛺)𝑚 is a bijection, no matter how complex the spaces of
interface variables are. Another result of this section (Theorem 7.9), which has not
appeared in previous literature, exhibits norms in which the best possible stability
of ultraweak formulations can be obtained.
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Let 𝑘, 𝑚, 𝑁 ≥ 1 be integers, let 𝛺 ⊆ R𝑁 and 𝛺ℎ be as in Section 4, let 𝑒𝑖
denote the standard Euclidean unit basis in R𝑁 , 𝑤 =

∑𝑚
𝑖=1 𝑤𝑖𝑒𝑖 : 𝛺 → C𝑚 for some

smooth functions 𝑤𝑖 , and let 𝐴 be the partial differential operator

𝐴𝑤 =

𝑚∑︁
𝑖, 𝑗=1

∑︁
𝛼∈I𝑁

𝑘

𝑒𝑖 𝜕
𝛼(𝑎𝑖 𝑗 𝛼𝑤 𝑗) (7.1)

for some functions 𝑎𝑖 𝑗 𝛼 : 𝛺 → C indexed by 𝑖, 𝑗 = 1, . . . , 𝑚, and multi-indices
𝛼 ∈ I𝑁

𝑘
(defined in (5.29)). As usual, 𝜕𝛼 = 𝜕

𝛼1
1 · · · 𝜕𝛼𝑁

𝑁
. We view 𝐴 as an

unbounded operator 𝐴 : dom(𝐴) ⊆ 𝐿2(𝛺)𝑚 → 𝐿2(𝛺)𝑚. Given an 𝑓 ∈ 𝐿2(𝛺)𝑚,
we want to

find 𝑢 ∈ dom(𝐴) such that 𝐴𝑢 = 𝑓 , (7.2)

where homogeneous boundary conditions we wish to impose are incorporated into
functions in the subspace dom(𝐴). At this point, the coefficients 𝑎𝑖 𝑗 𝛼 are allowed
to be general so long as the result of applying 𝐴 is a Schwartz distribution, that is,
we assume that

𝐴𝑢 ∈ D′(𝛺)𝑚 for any 𝑢 ∈ 𝐿2(𝛺)𝑚. (7.3)

Of course, when 𝑢 is in dom(𝐴), 𝐴𝑢 is not merely a distribution, but is in 𝐿2(𝛺)𝑚.

7.1. Graph spaces, boundary operators and their broken versions

Assume that the Schwartz space D(𝛺)𝑚 of smooth compactly supported test func-
tions in 𝛺 is contained in the domain of 𝐴:

D(𝛺)𝑚 ⊆ dom(𝐴). (7.4)

A consequence of (7.4) is that 𝐴 is densely defined, so its (maximal) adjoint 𝐴∗ is
uniquely defined as follows (see e.g. Brezis 2011 or Kato 1995). First define the
set dom(𝐴∗) ⊆ 𝐿2(𝛺)𝑚 by

dom(𝐴∗) = {𝑔 ∈ 𝐿2(𝛺)𝑚 : there is an 𝑓 ∈ 𝐿2(𝛺)𝑚 such that
(𝑔, 𝐴𝑢)𝛺 = ( 𝑓 , 𝑢)𝛺 for all 𝑢 ∈ dom(𝐴)}. (7.5)

Then define 𝐴∗ : dom(𝐴∗) ⊆ 𝐿2(𝛺)𝑚 → 𝐿2(𝛺)𝑚 by

(𝐴∗𝑔, 𝑢)𝛺 = (𝑔, 𝐴𝑢)𝛺 for all 𝑢 ∈ dom(𝐴) and 𝑔 ∈ dom(𝐴∗). (7.6)

By virtue of assumption (7.3), for any 𝑢 ∈ 𝐿2(𝛺), the distribution 𝐴𝑢 is such
that its action on a �̃� ∈ D(𝛺)𝑚 takes the form

(𝐴𝑢)(�̃�) =
𝑚∑︁
𝑖=1

∑︁
𝛼∈I𝑁

𝑘

(−1) |𝛼 | (𝑢, 𝑎 𝑗𝑖𝛼 𝜕𝛼�̃� 𝑗)𝛺 . (7.7)

For any 𝑢 ∈ dom(𝐴), since 𝐴𝑢 is in 𝐿2(𝛺)𝑚, the left-hand side above equals
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(𝐴𝑢, �̃�)𝛺 . Hence the condition in (7.5) is verified with �̃� in place of 𝑔, that is,

D(𝛺)𝑚 ⊆ dom(𝐴∗). (7.8)

In view of (7.4), (7.8) and (7.6), we can now identify 𝐴∗ with the formal adjoint
partial differential operator

𝐴∗�̃� =

𝑚∑︁
𝑖, 𝑗=1

∑︁
𝛼∈I𝑁

𝑘

𝑒𝑖 (−1) |𝛼 |𝑎 𝑗𝑖𝛼 𝜕𝛼�̃� 𝑗 . (7.9)

To circumvent issues concerning products of distributions and non-smooth func-
tions, we assume that the application of this formal adjoint satisfies

𝐴∗�̃� ∈ D′(𝛺)𝑚 for any �̃� ∈ 𝐿2(𝛺)𝑚, (7.10)

analogous to (7.3).
Note that (7.3) and (7.10) imply that we may restrict 𝐴𝑢 and 𝐴∗�̃� to any non-

empty open subset 𝑆 ⊆ 𝛺 to get distributions in D′(𝑆). This allows us to define the
following graph spaces on 𝑆:

𝑊(𝑆) = {𝑢 ∈ 𝐿2(𝑆)𝑚 : 𝐴𝑢 ∈ 𝐿2(𝑆)𝑚}, ∥𝑤∥2
𝑊(𝑆) = ∥𝑤∥2

𝑆 + ∥𝐴𝑤∥2
𝑆 ,

�̃�(𝑆) = {𝑢 ∈ 𝐿2(𝑆)𝑚 : 𝐴∗𝑢 ∈ 𝐿2(𝑆)𝑚}, ∥�̃�∥2
�̃�(𝑆) = ∥�̃�∥2

𝑆 + ∥𝐴∗�̃�∥2
𝑆 .

Here ∥ · ∥𝑆 denotes the norm of 𝐿2(𝑆)𝑚; the corresponding inner product is denoted
(·, ·)𝑆 . Our assumptions imply that these inner product spaces are complete.

Lemma 7.1. The spaces𝑊(𝑆) and �̃�(𝑆) are Hilbert spaces.

Proof. Consider a Cauchy sequence 𝑢𝑛 in𝑊(𝑆). Clearly, 𝑢𝑛 is Cauchy in 𝐿2(𝑆)𝑚
and 𝐴𝑢𝑛 is Cauchy in 𝐿2(𝑆)𝑚. Hence there is a 𝑢 ∈ 𝐿2(𝑆)𝑚 and 𝑓 ∈ 𝐿2(𝑆)𝑚
such that ∥𝑢 − 𝑢𝑛∥𝑆 → 0 and ∥ 𝑓 − 𝐴𝑢𝑛∥𝑆 → 0. To show that 𝑢 is in 𝑊(𝑆),
we use (7.7), a consequence of assumption (7.3), to get that for any �̃� ∈ D(𝑆)𝑚,
(𝐴𝑢𝑛)(�̃�) = (𝑢𝑛, 𝐴∗�̃�)𝑆 → (𝑢, 𝐴∗�̃�)𝑆 = (𝐴𝑢)(�̃�) as 𝑛 → ∞. Since 𝐴𝑢𝑛 → 𝑓 in
𝐿2(𝛺)𝑚, this implies that the distribution 𝐴𝑢 must equal 𝑓 in 𝐿2(𝛺)𝑚. This proves
the completeness of𝑊(𝑆). The completeness of �̃�(𝑆) is similarly proved by using
assumption (7.10) in place of (7.3).

Next, we need boundary operators, which are bounded linear operators

𝐷𝑆 : 𝑊(𝑆) → �̃�(𝑆)∗ and �̃�𝑆 : �̃�(𝑆) → 𝑊(𝑆)∗

defined by
⟨𝐷𝑆𝑤, �̃�⟩�̃�(𝑆) = (𝐴𝑤, �̃�)𝑆 − (𝑤, 𝐴∗�̃�)𝑆 ,
⟨�̃�𝑆�̃�, 𝑤⟩𝑊(𝑆) = (𝐴∗�̃�, 𝑤)𝑆 − (�̃�, 𝐴𝑤)𝑆 ,

(7.11)

for all 𝑤 ∈ 𝑊(𝑆) and �̃� ∈ �̃�(𝑆). Obviously ⟨𝐷𝑆𝑤, �̃�⟩�̃�(𝑆) is obtained by conjug-
ating ⟨�̃�𝑆�̃�, 𝑤⟩𝑊(𝑆) and changing sign, but note that the domains and codomains
of 𝐷𝑆 and �̃�𝑆 are different.
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When 𝑆 = 𝛺, we abbreviate 𝑊(𝑆), �̃�(𝑆), 𝐷𝑆 and �̃�𝑆 to 𝑊 , �̃� , 𝐷 and �̃�

respectively. Furthermore, let 𝑉 and �̃� denote the linear subspaces dom(𝐴) and
dom(𝐴∗) made into normed spaces using ∥ · ∥𝑊 and ∥ · ∥�̃� respectively, that is,

𝑉 = (dom(𝐴), ∥ · ∥𝑊 ), �̃� = (dom(𝐴∗), ∥ · ∥�̃� ). (7.12)

Clearly𝑉 ⊂ 𝑊 and �̃� ⊂ �̃� . Given any subspace 𝑅 of the dual space 𝑋∗, we denote
its left annihilator by ⊥

𝑅 = {𝑤 ∈ 𝑋 : ⟨𝑠′, 𝑤⟩𝑋 = 0 for all 𝑠′ ∈ 𝑅}.
Lemma 7.2. The space 𝐷𝑉 = {�̃� ∈ �̃�∗ : �̃� = 𝐷𝑣 for some 𝑣 ∈ 𝑉} satisfies

�̃� = ⊥𝐷𝑉 . (7.13)

Proof. If �̃� ∈ �̃� = dom(𝐴∗), then for any 𝑣 ∈ 𝑉 = dom(𝐴), by the definition of
the adjoint (7.6), we have ⟨𝐷𝑣, �̃�⟩�̃� = (𝐴𝑣, �̃�)𝛺 − (𝑣, 𝐴∗�̃�)𝛺 = 0, so �̃� ⊆ ⊥𝐷𝑉 .

For the reverse inclusion, let

�̃� ∈ ⊥𝐷𝑉 = {�̃� ∈ �̃� : ⟨𝐷𝑣, �̃�⟩�̃� = 0 for all 𝑣 ∈ 𝑉}.
Then 𝑓 = 𝐴∗�̃� ∈ 𝐿2(𝛺)𝑚 satisfies (𝑣, 𝑓 )𝛺 − (𝐴𝑣, �̃�)𝛺 = −⟨𝐷𝑣, �̃�⟩�̃� = 0 for
all 𝑣 ∈ 𝑉 = dom(𝐴), so given the definition of dom(𝐴∗) in (7.5), �̃� must be in
�̃� = dom(𝐴∗).

For our wellposedness theorems later, we need to place an assumption which
represents an equality analogous to Lemma 7.2 but with the roles of �̃� and 𝑉
reversed, namely

𝑉 =
⊥
�̃��̃� . (7.14)

In applications, (7.14) being a constraint on 𝑉 = dom(𝐴) restricts admissible
boundary conditions in (7.2), as in the theory of Friedrichs systems. Note that
(7.14) implies that 𝑉 is a closed subspace of 𝑊 . Hence, for (7.14) to hold it is
necessary for 𝐴 to be a closed operator in 𝐿2(𝛺)𝑚. Similarly, (7.13) of Lemma 7.2
implies, in particular, that �̃� is closed in �̃� , in agreement with the fact that the
adjoint 𝐴∗ is a closed operator.

Next we use the mesh 𝛺ℎ to define broken graph spaces (which are generally
infinite-dimensional) by

𝑊ℎ =
∏
𝐾∈𝛺ℎ

𝑊(𝐾) and �̃�ℎ =
∏
𝐾∈𝛺ℎ

�̃�(𝐾). (7.15)

For any 𝑤 ∈ 𝑊ℎ, as in (4.2), letting 𝑤 |𝐾 ≡ 𝑤𝐾 denote the component of the product
function 𝑤 on 𝐾 , we recall that 𝐷𝐾𝑤𝐾 is in �̃�(𝐾)∗. Let 𝐷ℎ : 𝑊ℎ → �̃�∗

ℎ
be the

continuous linear operator defined by

⟨𝐷ℎ𝑤, �̃�⟩�̃�ℎ =
∑︁
𝐾∈𝛺ℎ

⟨𝐷𝐾𝑤𝐾 , �̃�𝐾 ⟩�̃�𝐾 for all 𝑤 ∈ 𝑊ℎ, �̃� ∈ �̃�ℎ

and let �̃�ℎ : �̃�ℎ → 𝑊∗
ℎ

be defined by

⟨�̃�ℎ�̃�, 𝑤⟩𝑊ℎ = ⟨𝐷ℎ𝑤, �̃�⟩�̃�ℎ .
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For any 𝑤 ∈ 𝑊ℎ, we let 𝐴ℎ𝑤 denote the function obtained by applying 𝐴 to 𝑤𝐾 ,
element by element, for all 𝐾 ∈ 𝛺ℎ. The resulting function 𝐴ℎ𝑤 may be viewed
as an element of the Cartesian product Π𝐾∈𝛺ℎ𝐿

2(𝐾)𝑚, which can obviously be
embedded in 𝐿2(𝛺)𝑚. This defines the map 𝐴ℎ : 𝑊ℎ → 𝐿2(𝛺)𝑚. The operator
𝐴∗
ℎ

: �̃�ℎ → 𝐿2(𝛺)𝑚 is defined similarly by evaluating the action of 𝐴∗ (instead of
𝐴) element by element. Clearly

⟨𝐷ℎ𝑤, �̃�⟩�̃�ℎ = (𝐴ℎ𝑤, �̃�)𝛺 − (𝑤, 𝐴∗
ℎ�̃�)𝛺 for all 𝑤 ∈ 𝑊ℎ, �̃� ∈ �̃�ℎ . (7.16)

The obvious norm of the Cartesian products defining 𝑊ℎ and �̃�ℎ can now be
equivalently written in terms of 𝐴ℎ and 𝐴∗

ℎ
:

∥𝑤∥2
�̃�

= ∥𝑤∥2
𝛺 + ∥𝐴ℎ𝑤∥2

𝛺 , ∥�̃�∥2
�̃�ℎ

= ∥�̃�∥2
𝛺 + ∥𝐴∗

ℎ�̃�∥
2
𝛺 . (7.17)

Lemma 7.3. For all 𝑤 ∈ 𝑊 and �̃� ∈ �̃� , we have

⟨𝐷ℎ𝑤, �̃�⟩�̃�ℎ = ⟨𝐷𝑤, �̃�⟩�̃� .
Proof. Since piecewise differential operators coincide with the global ones when
applied to functions in the unbroken spaces, 𝐴ℎ𝑤 = 𝐴𝑤 and 𝐴∗

ℎ
�̃� = 𝐴∗�̃�. Therefore

(7.16) implies

⟨𝐷ℎ𝑤, �̃�⟩�̃�ℎ = (𝐴𝑤, �̃�)𝛺 − (𝑤, 𝐴∗�̃�)𝛺 = ⟨𝐷𝛺𝑤, �̃�⟩�̃� ,
where the last equality followed from (7.11).

Lemma 7.4. The equality (7.14) implies that any 𝑤 ∈ 𝑊ℎ satisfying 𝐷ℎ𝑤 = 0 is
in 𝑉 . Similarly, any �̃� ∈ �̃�ℎ satisfying �̃�ℎ�̃� = 0 is in �̃� . In fact,

�̃� = {�̃� ∈ �̃�ℎ : ⟨𝐷ℎ𝑧, �̃�⟩�̃�ℎ = 0 for all 𝑧 ∈ 𝑉}. (7.18)

Proof. Let us prove (7.18) first. If �̃� ∈ �̃� , then for any 𝑧 ∈ 𝑉 , using Lemmas 7.3
and 7.2, we have

⟨𝐷ℎ𝑧, �̃�⟩�̃�ℎ = ⟨𝐷𝑧, �̃�⟩�̃� = 0.

Thus �̃� is contained in the set on the right-hand side of (7.18).
To prove the reverse inclusion, consider a �̃� ∈ �̃�ℎ satisfying ⟨𝐷ℎ𝑧, �̃�⟩�̃�ℎ = 0

for all 𝑧 ∈ 𝑉 . Then

0 = ⟨𝐷ℎ𝑧, �̃�⟩�̃�ℎ = (𝐴ℎ𝑧, �̃�)𝛺 − (𝑧, 𝐴∗
ℎ�̃�) for all 𝑧 ∈ 𝑉. (7.19)

Since 𝑧 ∈ 𝑉 ⊂ 𝑊 , we can replace 𝐴ℎ𝑧 by 𝐴𝑧 above. In fact (7.19) implies that 𝐴∗
ℎ
�̃�

also equals 𝐴∗�̃�, because �̃� is in �̃� , as we now show. The action of the distribution
𝐴∗�̃� on any 𝜑 in D(𝛺)𝑚 satisfies

(𝐴∗�̃�)(𝜑) = (𝐴𝜑, �̃�)𝛺 = (𝐴ℎ𝜑, �̃�)𝛺 = (𝜑, 𝐴∗
ℎ�̃�)𝛺 + ⟨𝐷ℎ𝜑, �̃�⟩�̃�ℎ .

The last term must vanish because of the first equality of (7.19) and because
𝜑 ∈ D(𝛺)𝑚 ⊆ dom(𝐴) = 𝑉 by our assumption (7.4). Hence

|(𝐴∗�̃�)(𝜑)| ≤ ∥𝜑∥𝛺 ∥𝐴∗
ℎ�̃�∥𝛺 for all 𝜑 ∈ D(𝛺)𝑚,
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which implies that the distribution 𝐴∗�̃� is in 𝐿2(𝛺)𝑚. Therefore �̃� ∈ �̃� . Returning
to (7.19), we find that

0 = (𝐴ℎ𝑧, �̃�)𝛺 − (𝑧, 𝐴∗
ℎ�̃�)

= (𝐴𝑧, �̃�)𝛺 − (𝑧, 𝐴∗�̃�) = ⟨𝐷𝑧, �̃�⟩�̃�
for all 𝑧 ∈ 𝑉 . Hence �̃� ∈ ⊥𝐷𝑉 . By (7.13) of Lemma 7.2, we then conclude that
�̃� ∈ �̃� , thus proving (7.18).

The proof of the second statement immediately follows from (7.18). Indeed, any
�̃� ∈ �̃�ℎ that is in the null space of �̃�ℎ satisfies ⟨𝐷ℎ𝑤, �̃�⟩�̃�ℎ = 0 for all 𝑤 ∈ 𝑊ℎ

due to the relationship between �̃�ℎ and 𝐷ℎ, so in particular (7.19) holds for all
𝑧 ∈ 𝑉 . Hence (7.18) implies that �̃� is in �̃� .

The proof of the first statement proceeds similarly, but using (7.14) in place of
(7.13).

Bibliographical notes. Graph spaces of first-order differential operators are a clas-
sical ingredient in the theory of Friedrichs systems (Friedrichs 1958). More recently
they were studied in Sheen (1992), Jensen (2004) and Ern, Guermond and Caplain
(2007). Completeness and density results were proved in Jensen (2004), where one
also finds the term ‘broken graph space’ in the context of DG methods. Analogues
of our twin equalities of (7.13) and (7.14), namely �̃� = ⊥𝐷𝑉 and𝑉 =

⊥
�̃��̃� , prom-

inently feature as abstract conditions in modern takes on the theory of first-order
Friedrichs systems (Ern et al. 2007). Our presentation here, which is not restric-
ted to first-order operators, is based on Demkowicz, Gopalakrishnan, Nagaraj and
Sepúlveda (2017).

7.2. Hybrid ultraweak formulation suitable for DPG method

Now that we have broken graph spaces 𝑊ℎ, �̃�ℎ and elementwise boundary oper-
ators 𝐷ℎ, �̃�ℎ, we can perform elementwise operations analogous to performing
integration by parts and moving all derivatives to the test functions. Namely, we
derive an ultraweak formulation by multiplying the equation 𝐴𝑢 = 𝑓 by a test
function �̃� ∈ �̃�ℎ, applying the definition of 𝐷𝐾 on each element 𝐾 , and summing
over all 𝐾 ∈ 𝛺ℎ. Then we obtain

(𝑢, 𝐴∗
ℎ�̃�)𝛺 + ⟨𝐷ℎ𝑢, �̃�⟩�̃�ℎ = ⟨ 𝑓 , �̃�⟩�̃�ℎ (7.20)

for any �̃� in �̃�ℎ. Now, since 𝐷ℎ is not an injective operator in general, we define
𝑞 = 𝐷ℎ𝑢, an unknown that we want to uniquely solve for. Note that𝑊 is contained
in 𝑊ℎ, so 𝑉 can be viewed as a subspace of the broken graph space 𝑊ℎ. Let
𝐷ℎ,𝑉 = 𝐷ℎ |𝑉 : 𝑉 → �̃�∗

ℎ
denote the restriction of 𝐷ℎ from𝑊ℎ to 𝑉 . Analogous to

the quotient norms that appeared earlier (such as (4.10) and (4.31)), we define

𝑄 = range(𝐷ℎ,𝑉 ), ∥𝑞∥𝑄 = inf
𝑣∈𝐷−1

ℎ,𝑉
{�̂�}

∥𝑣∥𝑊 , (7.21)
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that is, the space

𝑄 = {𝑞 ∈ �̃�∗
ℎ : there is a 𝑣 ∈ 𝑉 satisfying 𝑞 = 𝐷ℎ𝑣}

is endowed with the minimal norm of elements in the preimage set

𝐷−1
ℎ,𝑉 {𝜌} = {𝑣 ∈ 𝑉 : 𝐷ℎ𝑣 = 𝜌},

a quotient norm that makes 𝑄 into a Hilbert space.
Using 𝑞 in (7.20), we have completed the derivation of the following (hybrid)

ultraweak formulation of (7.2): find 𝑢 ∈ 𝐿2(𝛺)𝑚 and 𝑞 ∈ 𝑄 such that

(𝑢, 𝐴∗
ℎ�̃�)𝛺 + ⟨𝑞, �̃�⟩�̃�ℎ = 𝐹(�̃�) for all �̃� ∈ �̃�ℎ, (7.22)

where 𝐹 ∈ �̃�∗
ℎ

is set by 𝐹(�̃�) = ( 𝑓 , �̃�)𝛺 . This formulation can be viewed as a
hybridized version of another with the unbroken graph space �̃� as the test space.
Indeed, multiplying 𝐴𝑢 = 𝑓 with �̃�0 ∈ �̃� and using the definition of 𝐷 = 𝐷𝛺
(see (7.11)), we find that 𝑢 ∈ 𝑉 solves (𝑢, 𝐴∗�̃�0)𝛺 + ⟨𝐷𝑢, �̃�0⟩�̃� = 𝐹(�̃�0) for all
�̃�0 ∈ �̃� . By Lemma 7.2, ⟨𝐷𝑢, �̃�0⟩�̃� = 0 is �̃�0 is in �̃� . Hence restricting to test
functions �̃� ∈ �̃� ⊂ �̃� , we obtain an ‘unbroken ultraweak formulation’ that finds
𝑢 ∈ 𝑉 such that

(𝑢, 𝐴∗�̃�)𝛺 = 𝐹(�̃�) for all �̃� ∈ �̃� . (7.23)

Comparing with the formulation in (7.22), we see the hybrid ultraweak formulation
with broken graph spaces in (7.22) as a hybrid version of the unbroken ultraweak
formulation (7.23) obtained by introducing an ‘interface variable’, which has now
taken the abstract form of 𝑞 ∈ �̃�∗

ℎ
.

This suggests that the stability of hybrid ultraweak formulation may follow from
that of the unbroken ultraweak formulation (7.23) if we can verify the conditions
of (4.12) and apply Theorem 4.3. The work to make this rigorous is completed in
Theorem 7.6 below, whose proof contains a proof of the stability of the unbroken
ultraweak formulation (7.23), as well techniques to handle the element interface
terms to conclude the stability of the hybrid version (7.22). To fit into the setting
of (4.12), put

𝑋0 = 𝑉, 𝑌0 = �̃� ,

�̂� = 𝑄, 𝑌 = �̃�ℎ,

𝑏0(𝑢, �̃�) = (𝑢, 𝐴∗
ℎ�̃�)𝛺 , �̂�(𝑞, �̃�) = ⟨𝑞, �̃�⟩�̃�ℎ .

The sum of the above forms,

𝑏( (𝑢, 𝑞), �̃�) = 𝑏0(𝑢, �̃�) + �̂�(𝑞, �̃�) = (𝑢, 𝐴∗
ℎ�̃�)𝛺 + ⟨𝑞, �̃�⟩�̃�ℎ ,

is the ultraweak form in (7.22). We proceed to verify the conditions of (4.12) with
the above choices of spaces and forms. The next lemma generalizes an argument
we previously used to prove the ‘inf = sup’-type interface duality identities (of
Theorem 4.6) to the present scenario.
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Lemma 7.5. Assumption (7.14) implies that for all 𝑞 ∈ 𝑄,

inf
𝑣∈𝐷−1

ℎ,𝑉
{�̂�}

∥𝑣∥𝑊 = sup
0≠�̃�∈�̃�ℎ

|⟨𝑞, �̃�⟩�̃�ℎ |
∥�̃�∥�̃�ℎ

.

Proof. We use two functions, �̃��̂� and 𝑢�̂�, both obtained from 𝑞, but by solving
two distinct boundary value problems. First, the supremum of the lemma, which
we denote by 𝑠, is attained by the function �̃��̂� in �̃�ℎ satisfying

(𝐴∗
ℎ�̃��̂�, 𝐴

∗
ℎ�̃�)𝛺 + (�̃��̂�, �̃�)𝛺 = −⟨𝑞, �̃�⟩�̃�ℎ (7.25)

for all �̃� ∈ �̃�ℎ, and moreover, it equals

𝑠 = ∥�̃��̂� ∥�̃�ℎ . (7.26)

Note that 𝑞 = 𝐷ℎ𝑧 for some 𝑧 ∈ 𝑉 . Hence

−⟨𝑞, �̃�⟩�̃�ℎ = −⟨𝐷ℎ𝑧, �̃�⟩ = −(𝐴ℎ𝑧, �̃�) + (𝑧, 𝐴∗
ℎ �̃�) = −(𝐴𝑧, �̃�) + (𝑧, 𝐴∗�̃�) = 0

due to (7.6), since 𝑧 ∈ dom(𝐴) and �̃� ∈ dom(𝐴∗) by assumption (7.8). Therefore,
choosing 𝑦 = �̃� ∈ D(𝛺)𝑚 in (7.25), the right-hand side vanishes, and we conclude
that the distribution 𝐴(𝐴∗

ℎ
�̃��̂�) is in 𝐿2(𝛺)𝑚 and equals −�̃��̂�. Hence (7.16) is

applicable with 𝑤 = 𝐴∗
ℎ
�̃��̂� and we obtain

𝐴𝐴∗
ℎ�̃��̂� + �̃��̂� = 0, (7.27a)
𝐷ℎ𝐴

∗
ℎ�̃��̂� = 𝑞. (7.27b)

Let 𝑢�̂� = 𝐴∗
ℎ
�̃��̂�. Then (7.27a) implies 𝐴𝑢�̂� = −�̃��̂�, which implies 𝐴∗

ℎ
𝐴𝑢�̂� =

−𝐴∗
ℎ
�̃��̂� = −𝑢�̂�. Combining with (7.27b), we conclude that 𝑢�̂� solves

𝐴∗
ℎ𝐴𝑢�̂� + 𝑢�̂� = 0, (7.28a)

𝐷ℎ𝑢�̂� = 𝑞. (7.28b)

Since 𝐴𝑢�̂� is in 𝐿2(𝛺) by (7.27a), we know that 𝑢�̂� is in𝑊 . Let us now prove that
𝑢�̂� is actually in 𝑉 . By assumption (7.14), it suffices to prove that 𝑢�̂� is in ⊥

�̃��̃� .
For any �̃� in �̃� , Lemma 7.3 implies

⟨𝐷𝑢�̂�, �̃�⟩�̃� = ⟨𝐷ℎ𝑢�̂�, �̃�⟩�̃�ℎ = ⟨𝑞, �̃�⟩�̃�ℎ = ⟨𝐷ℎ𝑧, �̃�⟩�̃�ℎ = ⟨𝐷𝑧, �̃�⟩�̃� .

The last term is zero by Lemma 7.2. Hence 𝑢�̂� is in ⊥
�̃��̃� = 𝑉 .

Thus 𝑢�̂� is in the set 𝐷−1
ℎ,𝑉

{𝑞} over which the infimum of the lemma is taken.
We claim that the infimum of the lemma is achieved by 𝑢�̂�. Standard variational
arguments show that the infimum is attained by a unique minimizer 𝑣�̂� ∈ 𝑉 satisfy-
ing 𝐷ℎ𝑣�̂� = 𝑞 and (𝐴ℎ𝑣�̂�, 𝐴ℎ𝑣)𝛺 + (𝑣�̂�, 𝑣)𝛺 = 0 for all 𝑣 ∈ 𝐷−1

ℎ,𝑉
{0}. Choosing a

𝑣 in D(𝐾)𝑚, whose extension by zero is in 𝐷−1
ℎ,𝑉

{0}, we conclude that distribution
𝐴∗(𝐴ℎ𝑣�̂�)|𝐾 is in 𝐿2(𝐾)𝑚 for any 𝐾 ∈ 𝛺ℎ. Therefore 𝐴∗

ℎ
𝐴ℎ𝑣�̂� is in 𝐿2(𝛺)𝑚 and

satisfies (7.28), so 𝑣�̂� = 𝑢�̂�.
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To complete the proof, it now suffices to show that

∥𝑢�̂� ∥𝑊 = ∥�̃��̂� ∥�̃�ℎ , (7.29)

since the left-hand side equals the infimum, as we just established, and the right-
hand side equals the supremum by (7.26). But (7.29) is obvious from 𝑢�̂� = 𝐴∗

ℎ
�̃��̂�

and 𝐴𝑢�̂� = −�̃��̂�.

Theorem 7.6 (Wellposedness of the hybrid ultraweak formulation). Let 𝐴 be
the partial differential operator in (7.1) satisfying (7.3), (7.4) and (7.10). If, in
addition, (7.14) holds and

𝐴 : 𝑉 → 𝐿2(𝛺)𝑚 is a bijection, (7.30)

then the ultraweak formulation (7.22) is wellposed. Moreover, if 𝐹(𝑣) = ( 𝑓 , 𝑣)𝛺
for some 𝑓 ∈ 𝐿2(𝛺)𝑚, then the unique 𝑢 and 𝑞 satisfying (7.22) are such that 𝑢
solves (7.2), 𝑢 is in 𝑉 , and 𝑞 satisfies 𝑞 = 𝐷ℎ𝑢.

Proof. To apply Theorem 4.3 for the current setting (7.24), we need to verify its
conditions (4.12b) and (4.12c). In the present case, this task requires us to prove
that there are positive constants 𝑐0, 𝑐 such that

𝑐0∥𝑢∥𝛺 ≤ sup
0≠𝑦0∈𝑌0

|(𝑢, 𝐴∗
ℎ
𝑦0)𝛺 |

∥𝑦0∥�̃�ℎ
for all 𝑢 ∈ 𝐿2(𝛺)𝑚, (7.31)

𝑐 ∥𝑞∥𝑄 ≤ sup
0≠𝑦∈�̃�ℎ

|⟨𝑞, �̃�⟩�̃�ℎ |
∥�̃�∥�̃�ℎ

for all 𝑞 ∈ 𝑄, (7.32)

where
𝑌0 = {𝑦 ∈ �̃�ℎ : ⟨𝑟, 𝑦⟩�̃�ℎ = 0 for all 𝑟 ∈ 𝑄}.

By (7.18) of Lemma 7.4 and the definition of 𝑄, we have

�̃� = {�̃� ∈ �̃�ℎ : ⟨𝑟, �̃�⟩�̃�ℎ = 0 for all 𝑟 ∈ 𝑄},
that is,

𝑌0 = �̃� . (7.33)

Since (7.32) follows with 𝑐 = 1 from Lemma 7.5, we focus on (7.31), which
amounts to proving the stability of the unbroken ultraweak formulation (7.23).

As already noted, (7.14) implies that 𝐴 is a closed operator. By the Closed
Range Theorem for closed operators, if 𝐴 : dom 𝐴 → 𝐿2(𝛺)𝑚 is a bijection, then
𝐴∗ : dom(𝐴∗) → 𝐿2(𝛺)𝑚 is also a bijection. Hence, assumption (7.30) and (7.33)
imply that 𝐴∗ : 𝑌0 → 𝐿2(𝛺)𝑚 is a bijection. Thus there is a constant 𝑐 > 0 such
that 𝑐∥𝑦∥𝛺 ≤ ∥𝐴∗𝑦∥𝛺 for all 𝑦 ∈ 𝑌0. Moreover, given any 𝑢 ∈ 𝐿2(𝛺)𝑚, there is
a 𝑦𝑢 ∈ 𝑌0 such that 𝐴∗𝑦𝑢 = 𝑢. Hence the supremum in (7.31), for any given 𝑢,
admits the bound

sup
0≠𝑦0∈𝑌0

|(𝑢, 𝐴∗
ℎ
𝑦0)𝛺 |

∥𝑦0∥�̃�ℎ
≥

∥𝐴∗𝑦𝑢∥2
𝛺

(𝑐2 + 1)1/2∥𝐴∗𝑦𝑢∥𝛺
,
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and (7.31) follows with 𝑐0 = 1/(𝑐2+1)1/2. Hence, applying Theorem 4.3, the proof
is complete.

Example 7.7 (Schrödinger equation). This is an example of a second-order op-
erator for which the previous theory applies. Let 𝜕𝑥𝑥 denote the Laplacian with
respect to a spatial variable 0 < 𝑥 < 𝐿, let 𝜕𝑡 denote the derivative 𝜕/𝜕𝑡 with
respect to 0 < 𝑡 < 𝑇 (where both 𝐿 and 𝑇 are finite), let 𝛺 = (0, 𝐿) × (0, 𝑇),
and let 𝑓 ∈ 𝐿2(𝛺). The classical form of the Schrödinger initial boundary value
problem is

𝚤𝜕𝑡𝑢 − 𝜕𝑥𝑥𝑢 = 𝑓 , 0 < 𝑥 < 𝐿, 0 < 𝑡 < 𝑇, (7.34a)
𝑢(𝑥, 𝑡) = 0, 𝑥 = 0 or 𝑥 = 𝐿, 0 < 𝑡 < 𝑇, (7.34b)
𝑢(𝑥, 0) = 0, 0 < 𝑥 < 𝐿. (7.34c)

Here 𝑓 is any given function in 𝐿2(𝛺). Viewing 𝛺 as a rectangle with time as
the vertical axis, let 𝛤 denote the union of vertical boundary walls and the bottom
initial time slice, and let �̃� denote the union of vertical boundary walls and the top
final time slice. Then the initial and boundary conditions together can be written
as 𝑢 |𝛤 = 0.

To fit into the previous framework, set

𝑘 = 2, 𝑚 = 1, 𝐴 = 𝚤𝜕𝑡 − 𝜕𝑥𝑥 .
Then the formal adjoint expression in (7.9) reads 𝐴∗ = 𝚤𝜕𝑡 − 𝜕𝑥𝑥 = 𝐴. Hence the
graph spaces are

𝑊 = �̃� = {𝑢 ∈ 𝐿2(𝛺) : 𝑖𝜕𝑡𝑢 − Δ𝑥𝑢 ∈ 𝐿2(𝛺)},
and the boundary operator �̃� = 𝐷 : 𝑊 → 𝑊∗ is set by ⟨𝐷𝑤, 𝑣⟩𝑊 = (𝐴𝑤, 𝑣)𝛺 −
(𝑤, 𝐴𝑣)𝛺 for all 𝑤, 𝑣 ∈ 𝑊 . As usual, let D(�̄�) denote the restrictions of functions
from D(R𝑁 ) to 𝛺. Integration by parts shows that

⟨𝐷𝜙, 𝜓⟩𝑊 =

∫
𝜕𝛺

𝚤𝑛𝑡𝜙�̄� +
∫
𝜕𝛺

𝜙𝑛𝑥𝜕𝑥�̄� −
∫
𝜕𝛺

𝑛𝑥𝜕𝑥𝜙�̄� (7.35)

for all 𝜙, 𝜓 ∈ D(�̄�), where we have used the spatial and temporal components
𝑛𝑥 , 𝑛𝑡 of the outward unit normal 𝑛 on 𝜕𝛺.

To incorporate the boundary and initial conditions into dom(𝐴), circumventing
the development of a full trace theory for the graph space, we first set

Ṽ = {𝜑 ∈ D(�̄�) : 𝜑 |�̃� = 0},
and use it to set

dom(𝐴) = {𝑢 ∈ 𝑊 : ⟨𝐷𝑣, 𝑢⟩𝑊 = 0 for all 𝑣 ∈ Ṽ}, (7.36)

or equivalently
𝑉 =

⊥
𝐷Ṽ . (7.37)

For smooth 𝑢 ∈ D(�̄�)∩dom(𝐴), the integration-by-parts formula (7.35) shows that

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000102
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 25 Jul 2025 at 19:50:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000102
https://www.cambridge.org/core


348 L. Demkowicz and J. Gopalakrishnan

𝑢 |𝛤 must vanish. Note that assumptions (7.3), (7.4) and (7.10) are immediately
verified. By Lemma 7.2, the domain of the maximal adjoint is given by

�̃� = ⊥𝐷𝑉 . (7.38)

It is shown in Demkowicz et al. (2017, Theorem 3.1) that Ṽ is dense in �̃� . Hence
(7.37) implies 𝑉 =

⊥
𝐷�̃� and assumption (7.14) is also verified.

To conclude wellposedness of the ultraweak formulation (7.22) for this Schrö-
dinger problem, the only remaining assumption we need to verify is the bijectivity
stated in (7.30). Let 𝜙𝑘(𝑥) in 𝐻1

0(0, 𝐿) and let 𝜆𝑘 > 0 be a Laplace eigenpair
satisfying −𝜕𝑥𝑥𝜙𝑘 = 𝜆𝑘𝜙𝑘 normalized so that ∥𝜙𝑘 ∥(0,𝐿) = 1 for all natural numbers
𝑘 ≥ 1. Suppose 𝑓 ∈ 𝐿2(𝛺) and

𝑓𝑘(𝑡) =
∫ 𝐿

0
𝑓 (𝑥, 𝑡)𝜙𝑘(𝑥) 𝑑𝑥, 𝑢𝑘(𝑡) = −𝚤

∫ 𝑡

0
𝑒𝚤𝜆𝑘(𝑡−𝑠) 𝑓𝑘(𝑠) 𝑑𝑠, (7.39a)

𝐹𝑀 (𝑥, 𝑡) =
𝑀∑︁
𝑘=1

𝑓𝑘(𝑡)𝜙𝑘(𝑥), 𝑈𝑀 (𝑥, 𝑡) =
𝑀∑︁
𝑘=1

𝑢𝑘(𝑡)𝜙𝑘(𝑥). (7.39b)

It is immediately verified that 𝐴𝑈𝑀 = 𝐹𝑀 . Since 𝑈𝑀 and any 𝜑 ∈ Ṽ are smooth
enough for integration by parts using 𝜑 |𝛤∗ = 0 and𝑈𝑀 |𝛤 = 0, we have

(𝚤𝜕𝑡𝑈𝑀 , 𝜑)𝛺 = (𝑈𝑀 , 𝚤𝜕𝑡𝜑)𝛺 ,
(Δ𝑈𝑀 , 𝜑)𝛺 = (𝑈𝑀 ,Δ𝜑)𝛺 .

Hence ⟨𝐷𝜑,𝑈𝑀⟩𝑊 = (𝐴𝜑,𝑈𝑀 )𝛺 − (𝜑, 𝐴𝑈𝑀 )𝛺 = 0 for all 𝜑 ∈ Ṽ . By (7.37), this
implies that𝑈𝑀 is in 𝑉 .

To prove that 𝐴 is surjective, it now suffices to show that the limit 𝑢 of𝑈𝑀 exists
in 𝑉 and solves 𝐴𝑢 = 𝑓 . Note that𝑈𝑀 is a Cauchy sequence in 𝑉 . Indeed, for any
𝑁 > 𝑀 , by (7.39),

∥𝑈𝑀 −𝑈𝑁 ∥2
𝛺 =

𝑁∑︁
𝑘=𝑀+1

∫ 𝑇

0
|𝑢𝑘(𝑡)|2 𝑑𝑡 ≤

1
2
𝑇2

∞∑︁
𝑘=𝑀+1

∫ 𝑇

0
| 𝑓𝑘(𝑡)|2 𝑑𝑡,

∥𝐴(𝑈𝑀 −𝑈𝑁 )∥2
𝛺 = ∥𝐹𝑀 − 𝐹𝑁 ∥2

𝛺 ≤
∞∑︁

𝑘=𝑀+1

∫ 𝑇

0
| 𝑓𝑘(𝑡)|2 𝑑𝑡,

both of which converge to 0 as 𝑀 → ∞, because 𝑓 ∈ 𝐿2(𝛺). Thus, having shown
that𝑈𝑀 is a Cauchy sequence in 𝑉 , we conclude that it must have an accumulation
point 𝑢 in 𝑉 . Moreover, since 𝐴𝑢 and 𝑓 are 𝐿2(𝛺)-limits of the same sequence
𝐹𝑀 = 𝐴𝑈𝑀 , we have 𝐴𝑢 = 𝑓 . Thus 𝐴 : 𝑉 → 𝐿2(𝛺) is surjective.

That 𝐴 is in fact a bijection can be shown in many ways. For example, we can
use an argument, completely analogous to the above, but now using (7.38) and
with 𝑢𝑘 defined by integrals from 𝑇 to 𝑡, to show that 𝐴 = 𝐴∗ : 𝑉∗ → 𝐿2(𝛺) is
also surjective. Since ker(𝐴) =

⊥range(𝐴∗) this implies that 𝐴 : 𝑉 → 𝐿2(𝛺) is
injective, thus completing the verification of (7.30).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000102
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 25 Jul 2025 at 19:50:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000102
https://www.cambridge.org/core


The discontinuous Petrov–Galerkin method 349

Example 7.8 (Poisson equation in first-order form). Reconsidering the Dirich-
let boundary value problem (4.5) of Example 4.2, we now develop a different vari-
ational formulation for it. Reformulating −Δ𝑢 = 𝑓 into a first-order system by
introducing the flux 𝑞 = − grad 𝑢,

𝑞 + grad 𝑢 = 0 in 𝛺,
div 𝑞 = 𝑓 in 𝛺,

𝑢 = 0 on 𝜕𝛺.

Using a group variable 𝑣 = (𝑞, 𝑢) ∈ 𝐿2(𝛺)𝑁 × 𝐿2(𝛺), consider the unbounded
operator

𝐴𝑣 ≡ 𝐴(𝑞, 𝑢) = (𝑞 + grad 𝑢, div 𝑞), 𝑘 = 1, 𝑚 = 𝑁 + 1,
dom(𝐴) = 𝐻(div, 𝛺) × �̊�1(𝛺).

We easily see that the adjoint operator, acting on �̃� = (𝑞, �̃�) ∈ 𝐿2(𝛺)𝑁 × 𝐿2(𝛺), is

𝐴∗�̃� ≡ 𝐴∗(𝑞, �̃�) = (𝑞 − grad �̃�,− div 𝑞),
dom(𝐴∗) = dom(𝐴).

Clearly assumptions (7.3), (7.4) and (7.10) hold for this example. Since 𝑉 = �̃�

and 𝐷 = �̃�, the assumption (7.14) also holds since it is the same as the conclusion
(7.13) of Lemma 7.2.

Note that if (𝑞, 𝑢) and 𝐴(𝑞, 𝑢) are both in 𝐿2(𝛺)𝑚, then obviously div 𝑞 ∈ 𝐿2(𝛺)
and grad 𝑢 ∈ 𝐿2(𝛺)𝑁 , so

𝑊 = �̃� = 𝐻(div, 𝛺) × 𝐻1(𝛺),
𝑊ℎ = �̃�ℎ = 𝐻(div, 𝛺ℎ) × 𝐻1(𝛺ℎ),

using the broken Sobolev spaces defined in (4.4) and (4.33). Hence, for any
(𝑞, 𝑢) ∈ 𝑊ℎ and (𝑞, �̃�) ∈ �̃�ℎ,

⟨𝐷ℎ(𝑞, 𝑢), (𝑞, �̃�)⟩�̃� =
∑︁
𝐾∈𝛺ℎ

⟨𝑞 · 𝑛, �̃�⟩𝐻1/2(𝜕𝐾) + ⟨𝑢, 𝑞 · 𝑛⟩𝐻−1/2(𝜕𝐾)

≡ ⟨𝑞 · 𝑛, �̃�⟩ℎ + ⟨𝑢, 𝑞 · 𝑛⟩ℎ, (7.40)

where in the last step we have extended the previous notation of (4.8) ⟨·, ·⟩ℎ
to include sums of duality pairings in both 𝐻1/2(𝜕𝐾) 𝐻−1/2(𝜕𝐾). Since any
(𝑞, 𝑢) ∈ 𝑉 = dom(𝐴) satisfies 𝑢 |𝜕𝛺 = 0 on the global boundary, its element-by-
element trace tr(𝑢), as defined in (4.34), lies in

�̊�1/2(𝜕𝛺ℎ) = {�̂� ∈ 𝐻1/2(𝜕𝛺ℎ) : 𝑤 |𝜕𝛺 = 0} = tr �̊�1(𝛺).
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The (hybrid) ultraweak formulation (7.22) now takes the form (1.1) with the fol-
lowing forms:

𝑏( (𝑞, 𝑢, �̂�, 𝑞𝑛), (𝑟, 𝑣) ) = (𝑞, 𝑟)ℎ − (𝑢, div 𝑟)ℎ + ⟨�̂�, 𝑟 · 𝑛⟩ℎ
− (𝑞, grad 𝑣)ℎ + ⟨𝑣, 𝑞𝑛⟩ℎ,

ℓ(𝑟, 𝑣) = ( 𝑓 , 𝑣)𝛺 ,

where (𝑞, 𝑢) ∈ 𝑊ℎ, (𝑟, 𝑣) ∈ �̃�ℎ, �̂� ∈ �̊�1/2(𝜕𝛺ℎ) and 𝑞𝑛 ∈ 𝐻−1/2(𝜕𝛺ℎ).
By Theorem 7.6, this ultraweak formulation is wellposed if 𝐴 : 𝑉 → 𝐿2(𝛺)𝑁+1

is a bijection, that is, if there is a unique 𝑞 ∈ 𝐻(div, 𝛺) and 𝑢 ∈ �̊�1(𝛺) satisfying

𝑞 + grad 𝑢 = 𝐺 on 𝛺, (7.41a)
div 𝑞 = 𝐹 on 𝛺 (7.41b)

for any given 𝐹 ∈ 𝐿2(𝛺) and 𝐺 ∈ 𝐿2(𝛺)𝑁 . To verify this condition, it is sufficient
to note that 𝑞 and 𝑢 satisfy (7.41) if and only if they form the unique solution
of the well-known mixed weak problem (see e.g. Brezzi and Fortin 1991, Ch. II,
Prop. 1.3) to find 𝑞 in 𝐻(div, 𝛺) and 𝑢 in 𝐿2(𝛺) such that

(𝑞, 𝑟)𝛺 − (𝑢, div 𝑟)𝛺 = (𝐺, 𝑟)𝛺 for all 𝑟 ∈ 𝐻(div, 𝛺), (7.42a)
(div 𝑞, 𝑤)𝛺 = (𝐹, 𝑤)𝛺 for all 𝑤 ∈ 𝐿2(𝛺). (7.42b)

It is easy to see that (7.42a) also implies that 𝑢 ∈ �̊�1(𝛺) and (7.41a) holds. Hence
the unique solution (𝑞, 𝑢) of (7.42) is in 𝑉 and solves 𝐴(𝑞, 𝑢) = (𝐺, 𝐹), thus
verifying assumption (7.30).

Bibliographical notes. Theorem 7.6 and the treatment of the Schrödinger equation
(Example 7.7) by DPG methods appeared first in Demkowicz et al. (2017). There
it is also pointed out why it is not advisable to split the Schrödinger equation
into a first-order system. This is the reason for staying with the original second-
order form of the Schrödinger equation while deriving the ultraweak formulation in
Example 7.7. The wellposedness result in Example 7.8 was first proved in Demko-
wicz and Gopalakrishnan (2011a), but using different techniques. An application
of Theorem 7.6 to the spacetime wave equation can be found in Gopalakrishnan
and Sepúlveda (2019). That paper also notes how the spacetime wave operator
produces a 𝐷ℎ operator with a non-trivial null space (even though 𝑞 = 𝐷ℎ𝑢 can
be uniquely determined) and how one overcomes the consequent difficulties in
practically solving an ultraweak discretization.

7.3. Analysis with scaled and optimal norms

In practice, it is often useful to introduce a scaling parameter to tune the norm in
which the residual is minimized. In this subsection we consider the case where the
terms in the test space norm we have been working with (see (7.17)) are differently
weighted. We continue to use the notation from the previous subsections, e.g. �̃�ℎ
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is as in (7.15) and 𝑄 is as in (7.21), but now consider a new test norm on �̃�ℎ,
defined for any 0 < 𝑠 < ∞, by

∥�̃�∥2
𝑌,𝑠 = 𝑠

−2∥�̃�∥2
𝛺 + ∥𝐴∗

ℎ�̃�∥
2
𝛺 , �̃� ∈ 𝑌 = �̃�ℎ,

and a new 𝑠-dependent norm on the trial space by

∥(𝑤, 𝑟)∥2
𝑋,𝑠 = inf

𝑣∈𝐷−1
ℎ,𝑉

{𝑟 }

(
∥𝑤 − 𝑣∥2

𝛺 + 𝑠2∥𝐴𝑣∥2
𝛺

)
, (𝑤, 𝑟) ∈ 𝑋 = 𝐿2(𝛺)𝑚 ×𝑄.

For any fixed 𝑠 > 0, the test norm ∥�̃�∥𝑌,𝑠 is obviously equivalent to ∥�̃�∥�̃�ℎ . The
fact that ∥(𝑤, 𝑟)∥𝑋,𝑠 is a norm follows from the next result. In these norms, the
ultraweak form

𝑏((𝑤, 𝑟), �̃�) =
(
𝑤, 𝐴∗

ℎ�̃�
)
𝛺
+ ⟨𝑟, �̃�⟩�̃�ℎ

becomes a generalized duality pairing (of Definition 3.5), as shown next. Con-
sequently, the energy norm (of Definition 3.1) on 𝑋 for the ultraweak formulation
with the test norm ∥·∥𝑌,𝑠 is ∥(·, ·)∥𝑋,𝑠, and simultaneously, the optimal test norm
(of Definition 3.5) on 𝑌 corresponding to the trial norm ∥(·, ·)∥𝑋,𝑠 is ∥·∥𝑌,𝑠.
Theorem 7.9 (Optimal norms for ultraweak formulations). Adopt the setting
and assumptions of Theorem 7.6 and let 𝑋 = 𝐿2(𝛺)𝑚 × 𝑄 and 𝑌 = �̃�ℎ. Then, for
all (𝑣, �̂�) ∈ 𝑋 and �̃� ∈ 𝑌 ,

∥(𝑣, �̂�)∥𝑋,𝑠 = sup
0≠�̃�∈𝑌

|𝑏((𝑣, �̂�), �̃�)|
∥�̃�∥𝑌,𝑠

, ∥�̃�∥𝑌,𝑠 = sup
0≠(𝑣,�̂�)∈𝑋

|𝑏((𝑣, �̂�), �̃�)|
∥(𝑣, �̂�)∥𝑋,𝑠

. (7.43)

In these norms, both ∥𝑏∥ and the inf-sup constant 𝛾 are one. The approximation
(𝑢ℎ, 𝑞ℎ) ∈ 𝑋ℎ from the ideal DPG method to the ultraweak solution (𝑢, 𝑞) using
any 𝑋ℎ ⊂ 𝑋 is the best in the sense that

∥(𝑢 − 𝑢ℎ, 𝑞 − 𝑞ℎ)∥𝑋,𝑠 = inf
(𝑤ℎ ,𝑟ℎ)∈𝑋ℎ

∥(𝑢 − 𝑤ℎ, 𝑞 − 𝑟ℎ)∥𝑋,𝑠 . (7.44)

Proof. We need only prove the second equality in (7.43). The first equality of
(7.43) then follows from the second by Proposition 3.6, and moreover, (7.44) then
follows from Theorem 3.2(b).

Let �̃� ∈ �̃�ℎ. We will produce a (𝑤, 𝑟) ∈ 𝑉 ×𝑄 satisfying

𝑏((𝑤, 𝑟), �̃�) = ∥�̃�∥2
𝑌,𝑠, ∥(𝑤, 𝑟)∥𝑋,𝑠 ≤ ∥�̃�∥𝑌,𝑠 . (7.45)

By virtue of (7.30), there is a 𝑧 ∈ 𝑉 such that

𝐴𝑧 = �̃�. (7.46)

Then

∥�̃�∥2
𝑌,𝑠 = (𝑠−2�̃�, �̃�)𝛺 +

(
𝐴∗
ℎ�̃�, 𝐴

∗
ℎ�̃�

)
𝛺

= (𝐴(𝑠−2𝑧), �̃�)𝛺 +
(
𝐴∗
ℎ�̃�, 𝐴

∗
ℎ�̃�

)
𝛺

=
(
𝑠−2𝑧, 𝐴∗

ℎ�̃�
)
𝛺
+ ⟨𝐷ℎ(𝑠−2𝑧), �̃�⟩�̃�ℎ +

(
𝐴∗
ℎ�̃�, 𝐴

∗
ℎ�̃�

)
𝛺

= 𝑏((𝑤, 𝑟), �̃�)
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with

𝑤 = 𝑠−2𝑧 + 𝐴∗
ℎ�̃� ∈ 𝐿2(𝛺)𝑚, 𝑟 = 𝐷ℎ(𝑠2𝑧) ∈ 𝑄. (7.47)

Moreover,

∥(𝑤, 𝑟)∥2
𝑋,𝑠 = inf

𝑣∈𝐷−1
ℎ,𝑉

{�̂�}

(
∥𝑤 − 𝑣∥2

𝛺 + 𝑠2∥𝐴𝑣∥2
𝛺

)
≤ ∥𝑤 − (𝑠−2𝑧)∥2

𝛺 + 𝑠2∥𝐴(𝑠−2𝑧)∥2
𝛺

= ∥𝐴∗
ℎ�̃�∥

2
𝛺 + 𝑠−2∥�̃�∥2

𝛺 = ∥�̃�∥2
𝑌,𝑠,

where we have used the formulas for 𝑤 and 𝑧, from (7.47) and (7.46) respectively,
in the last step. This proves (7.45), from which it readily follows that

sup
0≠(𝑣,�̂�)∈𝑋

|𝑏((𝑣, �̂�), �̃�)|
∥(𝑣, �̂�)∥𝑋,𝑠

≥ |𝑏((𝑤, 𝑟), �̃�)|
∥(𝑤, 𝑟)∥𝑋,𝑠

≥ ∥�̃�∥𝑌,𝑠 . (7.48)

In fact the supremum equals ∥�̃�∥𝑌,𝑠 because the reverse inequality also holds,
as we now show. Letting (𝑣, �̂�) be any element in 𝑋 and choosing any 𝑧 ∈ 𝑉 such
that �̂� = 𝐷ℎ𝑧,

𝑏((𝑣, �̂�), �̃�) = (𝑣, 𝐴∗
ℎ�̃�)𝛺 + ⟨𝐷ℎ𝑧, �̃�⟩�̃�ℎ

= (𝑣, 𝐴∗
ℎ�̃�)𝛺 + (𝐴𝑧, �̃�)𝛺 − (𝑧, 𝐴∗

ℎ�̃�)𝛺
= (𝑣 − 𝑧, 𝐴∗

ℎ�̃�)𝛺 + (𝐴𝑧, �̃�)𝛺
≤
(
∥𝑣 − 𝑧∥2

𝛺 + 𝑠2∥𝐴𝑧∥2
𝛺

)1/2∥�̃�∥𝑌,𝑠 .

Taking the infimum over all 𝑧 ∈ 𝐷−1
ℎ,𝑉

{�̂�}, we obtain

𝑏((𝑣, �̂�), �̃�) ≤ ∥(𝑣, �̂�)∥𝑋,𝑠 ∥�̃�∥𝑌,𝑠,

which together with (7.48) proves the second equality of (7.43).

The trial norm ∥ · ∥𝑋,𝑠 of Theorem 7.9 is related to Peetre’s 𝐾-functional (Bergh
and Löfström 1976). To see this, suppose there is a 𝐶𝑉 > 0 such that

∥𝑣∥𝛺 ≤ 𝐶𝑉 ∥𝐴𝑣∥𝛺 for all 𝑣 ∈ 𝑉. (7.49)

Assumption (7.30) certainly implies the existence of such a 𝐶𝑉 (by the Closed
Range Theorem). Let 𝑉0 = {𝑤ℎ ∈ 𝑊ℎ : 𝐷ℎ𝑤ℎ = 0} be the kernel of 𝐷ℎ, which is
a closed subspace by the continuity of 𝐷ℎ. By Lemma 7.4, 𝑉0 is a subspace of 𝑉 .
Hence, for any �̂� ∈ 𝑄, the set 𝐷−1

ℎ,𝑉
{�̂�} equals the affine translate 𝑣�̂� + 𝑉0 for any

𝑣�̂� ∈ 𝑉 with the property 𝐷ℎ𝑣�̂� = �̂�. Minimization over this closed coset gives a
minimal extension 𝐸�̂� of �̂� defined by

𝐸�̂� = arg min
𝑣∈𝐷−1

ℎ,𝑉
{�̂�}

∥𝐴𝑣∥𝛺 .
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Note that by (7.49), ∥𝐴𝑣∥𝛺 is a norm on 𝐷−1
ℎ,𝑉

{�̂�} ⊂ 𝑉 . Since 𝐸 is defined through
minimization over a translate of 𝑉0, we see that

(𝐴𝐸�̂�, 𝐴𝑣0)𝛺 = 0 for all 𝑣0 ∈ 𝑉0. (7.50)

Define the 𝐾-functional for the scale of spaces between 𝑉0 and 𝐿2(𝛺)𝑚 by

𝐾(𝑠, 𝑤) = inf
𝑣0∈𝑉0

(
∥𝑤 − 𝑣0∥2

𝛺 + 𝑠2∥𝐴𝑣0∥2
𝛺

)
(7.51)

for any 𝑤 ∈ 𝐿2(𝛺)𝑚. The next two results help us better understand the norm
∥ · ∥𝑋,𝑠 in Theorem 7.9.

Proposition 7.10. Suppose (7.49) holds. Then, for any (𝑢, �̂�) ∈ 𝑋 ,

∥(𝑢, �̂�)∥2
𝑋,𝑠 = 𝑠

2∥𝐴𝐸�̂�∥2
𝛺 + 𝐾(𝑠, 𝑢 − 𝐸�̂�).

Proof. Writing any 𝑣 ∈ 𝐷−1
ℎ,𝑉

{�̂�} as 𝑣 = 𝐸�̂� + 𝑣0 for a 𝑣0 ∈ 𝑉0,

∥𝑢 − 𝑣∥2
𝛺 + 𝑠2∥𝐴𝑣∥2

𝛺 = ∥𝑢 − 𝐸�̂� − 𝑣0∥2
𝛺 + 𝑠2∥𝐴(𝐸�̂� + 𝑣0)∥2

𝛺

= ∥𝑢 − 𝐸�̂� − 𝑣0∥2
𝛺 + 𝑠2∥𝐴𝐸�̂�∥2

𝛺 + 𝑠2∥𝐴𝑣0∥2
𝛺 ,

where the last equality is due to (7.50). Hence the result follows by minimizing
over 𝑣0 ∈ 𝑉0.

Proposition 7.11. Let𝐶𝑉 be as in (7.49), 𝑐𝑠 = 𝐶2
𝑉
/𝑠2, and 𝑘𝑠 = 1

2 (𝑐𝑠+
√︁
𝑐2
𝑠 + 4𝑐𝑠).

Then, for all (𝑢, �̂�) ∈ 𝑋 and 𝑠 > 0, we have these two-sided bounds:

(1 + 𝑘𝑠)−1∥(𝑢, �̂�)∥2
𝑋,𝑠 ≤ ∥𝑢∥2

𝛺 + 𝑠2∥𝐴𝐸�̂�∥2
𝛺 ≤ (1 + 𝑘𝑠) ∥(𝑢, �̂�)∥2

𝑋,𝑠 . (7.52)

Proof. By the triangle inequality,

∥𝑢∥2
𝛺 ≤ (∥𝑢 − 𝐸�̂� − 𝑣0∥𝛺 + ∥𝐸�̂� + 𝑣0∥𝛺)2

≤ (1 + 𝛼−2)∥𝑢 − 𝐸�̂� − 𝑣0∥2
𝛺 + (1 + 𝛼2)𝐶2

𝑉 ∥𝐴(𝐸�̂� + 𝑣0)∥2
𝛺 ,

where we have used (7.49) and the inequality (𝑎 + 𝑏)2 ≤ (1 + 𝛼−2)𝑎2 + (1 + 𝛼2)𝑏2

for numbers 𝑎, 𝑏 and 𝛼 > 0. Using (7.50),

∥𝑢∥2
𝛺 + 𝑠2∥𝐴𝐸�̂�∥2

𝛺 ≤ (1 + 𝛼−2)∥𝑢 − 𝐸�̂� − 𝑣0∥2
𝛺

+ [(1 + 𝛼2)𝑐𝑠 + 1]
(
𝑠2∥𝐴𝐸�̂�∥2

𝛺 + 𝑠2∥𝐴𝑣0∥2
𝛺

)
with 𝑐𝑠 = 𝐶2

𝑉
/𝑠2. Now set 𝛼2 = 1

2 (−𝑐𝑠 +
√︁
𝑐2
𝑠 + 4𝑐𝑠)/𝑐𝑠 so that (1 + 𝛼2)𝑐𝑠 = 𝛼−2.

Then 1 + 𝛼−2 = 1 + (1 + 𝛼2)𝑐𝑠 = 1 + 𝑘𝑠 and the last inequality of (7.52) follows
after taking the infimum over all 𝑣0 ∈ 𝑉0 and applying Proposition 7.10.

For the first inequality of (7.52), we begin by noting that the choice of 𝑣0 = 0 in
(7.51) gives 𝐾(𝑠, 𝑤) ≤ ∥𝑤∥2

𝛺
. Together with Proposition 7.10, we then have

∥(𝑢, �̂�)∥𝑋,𝑠 ≤ 𝑠2∥𝐴𝐸�̂�∥2
𝛺 + ∥𝑢 − 𝐸�̂�∥2

𝛺 .

By the triangle inequality and (7.49),

∥(𝑢, �̂�)∥𝑋,𝑠 ≤ (1 + 𝛼−2)∥𝑢∥2
𝛺 + [(1 + 𝛼−2)𝑐𝑠 + 1]𝑠2∥𝐴𝐸�̂�∥2

𝛺 .
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354 L. Demkowicz and J. Gopalakrishnan

Choosing exactly the same 𝛼 as before, 1 + 𝛼−2 = 1 + (1 + 𝛼2)𝑐𝑠 = 1 + 𝑘𝑠, and the
first inequality of (7.52) is proved.

Note that when Proposition 7.11 is combined with (7.44) of Theorem 7.9, we
obtain

∥𝑢 − 𝑢ℎ∥2
𝛺 + 𝑠2∥𝐴𝐸(�̂� − �̂�ℎ)∥2

𝛺

≤ (1 + 𝑘𝑠)2
[

inf
𝑤ℎ∈𝑋ℎ,0

∥𝑢 − 𝑤ℎ∥2
𝛺 + inf

𝑟ℎ∈�̂�ℎ
𝑠2∥𝐴𝐸(�̂� − 𝑟ℎ)∥2

𝛺

]
, (7.53)

where the constant 𝑘𝑠 is as in Proposition 7.11. At the price of increasing the quasi-
optimality constant from the optimal one, this estimate gives a simpler implication
of (7.44) in easier norms.

Example 7.12 (Helmholtz equation for time-harmonic waves). The Helmholtz
equation arises in varied applications, including electromagnetics and acoustics.
For example, in the latter, the physics of acoustical disturbances (Courant and
Friedrichs 1948) show that by linearizing the isentropic Euler equations around a
hydrostatic solution and assuming harmonic time variations, we obtain

𝚤𝜔𝑣 + grad 𝜙 = 𝐺 in 𝛺, (7.54a)
𝚤𝜔𝜙 + div 𝑣 = 𝐹 in 𝛺, (7.54b)

for some given 𝜔 > 0, 𝐹 ∈ 𝐿2(𝛺) and 𝐺 ∈ 𝐿2(𝛺)𝑁 . Here 𝑣 : 𝛺 → C𝑁 and
𝜙 : 𝛺 → C are velocity and pressure variables, respectively, associated to the
acoustic perturbations from equilibrium, complexified under the standard time-
harmonic assumption. These equations must be supplemented by a boundary
condition. Let us consider the impedance boundary condition

𝑣 · 𝑛 − 𝜙 = 0 on 𝜕𝛺. (7.54c)

Other Dirichlet, Neumann or mixed-type boundary conditions can equally well be
considered. Note that taking the divergence of (7.54a) and substituting the value
of div 𝑣 from (7.54b), we recover the popular second-order form of the Helmholtz
equation for 𝜙 (which we shall not use here).

The first-order system (7.54) can be written as 𝐴𝑢 = 𝑓 using the group variable
𝑢 = (𝑣, 𝜙) ∈ 𝐿2(𝛺)𝑁 × 𝐿2(𝛺), the unbounded operator

𝐴𝑢 = (𝚤𝜔𝑣 + grad 𝜙, 𝚤𝜔𝜙 + div 𝑣)

and 𝑓 = (𝐺, 𝐹) ∈ 𝐿2(𝛺)𝑁 × 𝐿2(𝛺). Clearly (7.54) is in the setting of (7.2) with
𝑚 = 𝑁 + 1 and dom 𝐴 equal to

𝑉 = {(𝑧, 𝜇) ∈ 𝐻(div, 𝛺) × 𝐻1(𝛺) : 𝑧 · 𝑛 = 𝜇 on 𝜕𝛺}.

Its adjoint is

𝐴∗�̃� = (−𝚤𝜔�̃� − grad 𝜙, −𝚤𝜔𝜙 − div �̃�)
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for any �̃� = (�̃�, 𝜙) in dom 𝐴∗, which equals

�̃� = {(𝑧, 𝜇) ∈ 𝐻(div, 𝛺) × 𝐻1(𝛺) : 𝑧 · 𝑛 = −𝜇 on 𝜕𝛺},

a space analogous to 𝑉 but with a change of sign in the boundary condition. It is
easy to verify that (7.3), (7.4) and (7.10) hold. Using the standard trace theory of
𝐻(div, 𝛺) and 𝐻1(𝛺), it is also easy to verify that (7.14) hold.

To apply Theorems 7.6 and 7.9, it therefore suffices to verify the bijectivity
in (7.30). Injectivity follows from uniqueness of Helmholtz solutions, so (7.30)
follows from stability results of the form

∥𝑣∥𝛺 ≤ 𝐶(𝜔)∥𝐴𝑣∥𝛺 , 𝑣 ∈ 𝑉, (7.55)

which is the same as (7.49) with 𝐶𝑉 = 𝐶(𝜔). The inequality (7.55) was proved in
Demkowicz, Gopalakrishnan, Muga and Zitelli (2012b, Lemmas 4.2 and 4.3), using
a result of Melenk (1995), with a𝐶(𝜔) independent of 𝜔 on a convex domain 𝛺 for
the present case of impedance boundary conditions. For other boundary conditions
or on trapping domains, we generally expect (7.55) to hold with an 𝜔-dependent
constant. Hence we proceed assuming that (7.55) holds, and consider the DPG
ultraweak formulation to find 𝑢 ∈ 𝐿2(𝛺)𝑁+1 and �̂� ∈ 𝑄 = range(𝐷ℎ,𝑉 ) satisfying

(𝑢, 𝐴∗
ℎ�̃�)𝛺 + ⟨�̂�, �̃�⟩�̃�ℎ = 𝐹(�̃�) for all �̃� ∈ �̃�ℎ, (7.56)

with the broken adjoint Helmholtz operator 𝐴∗
ℎ
. We conclude that this is a wellposed

formulation by Theorem 7.6.
Next let us apply Theorem 7.9 with 𝑠 = 1/𝛿 for some small 0 < 𝛿 ≪ 1 for an

ideal DPG approximation (𝑢ℎ, �̂�ℎ) ∈ 𝑋0,ℎ × �̂�ℎ ⊂ 𝑋ℎ of (7.56). Recall that the
combination of Proposition 7.11 and Theorem 7.9 yields (7.53) with 𝑘𝑠 = 1 + 𝑐𝛿
for a constant 𝑐 > 0 that depends only on 𝐶(𝜔). Then (7.53) implies

∥𝑢 − 𝑢ℎ∥2
𝛺 + 1

𝛿2 ∥𝐴𝐸(�̂� − �̂�ℎ)∥2
𝛺

≤ (1 + 𝑐𝛿)2
[

inf
𝑤ℎ∈𝑋ℎ,0

∥𝑢 − 𝑤ℎ∥2
𝛺 + inf

𝑟ℎ∈�̂�ℎ

1
𝛿2 ∥𝐴𝐸(�̂� − 𝑟ℎ)∥2

𝛺

]
.

This estimate was arrived at by other means (without using Theorem 7.9) in Gopala-
krishnan, Muga and Olivares (2014). There it was offered as a justification for the
practically visible marked improvement in DPG Helmholtz solutions as 𝛿 is made
smaller. The improvement in solutions was further justified there via a dispersion
analysis of the DPG method for the Helmholtz equation on an infinite uniform
stencil. Since the test norm

∥�̃�∥2
𝑌,1/𝛿 = 𝛿

2∥�̃�∥2
𝛺 + ∥𝐴∗

ℎ�̃�∥
2
𝛺

becomes smaller as 𝛿 is made smaller, a takeaway from such observations is that it
pays to use a weaker norm on the test space when computing wave solutions.
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8. Optimal test functions in time integrators
In this section we present an application of the DPG ideas to design an exponential
integrator for initial value problems. The resulting method yields a discrete solution
not only at the time steps but also between the time steps. In fact, in each time
interval, the discrete solution is the best (in 𝐿2-norm) possible approximation of
the exact solution from a polynomial space. We also show how the DPG error
representation can be used for a posteriori error control within the time integrators.

8.1. An initial value system

Let 𝐾 ∈ C𝑚×𝑚 be a non-singular matrix and 𝛺 = (0, 1) ⊂ R. Given 𝑢0 ∈ C𝑚 and
𝑓 ∈ 𝐿2(𝛺), consider the initial value problem for 𝑢 : 𝛺 → C𝑚 satisfying

𝑑𝑢

𝑑𝑡
+ 𝐾𝑢 = 𝑓 , 0 < 𝑡 < 1,

𝑢(0) = 𝑢0.
(8.1)

This can be viewed as a generalization of Example 2.6. We may proceed similarly
to get the weak problem to find 𝑢 ∈ 𝐿2(𝛺)𝑚 and �̂� ∈ C𝑚 satisfying

(𝑢, 𝐴∗𝑣)𝛺 + �̂� 𝑣(1) = ( 𝑓 , 𝑣)𝛺 + 𝑢0 𝑣(0) for all 𝑣 ∈ 𝐻1(𝛺)𝑚, (8.2)

with

𝐴∗𝑣 = −𝑑𝑣
𝑑𝑡

+ 𝐾∗𝑣.

This fits into our framework with

𝑏((𝑤, �̂�), 𝑦) = (𝑤, 𝐴∗𝑦)𝛺 + �̂� 𝑦(1), (8.3a)

ℓ(𝑣) = ( 𝑓 , 𝑣)𝛺 + 𝑢0 𝑣(0). (8.3b)

An alternative avenue to arrive at the same weak formulation is the approach
of Section 7, that is, one would set 𝛺 = (0, 1), an unbounded operator 𝐴𝑢 =

𝑑𝑢/𝑑𝑡 + 𝐾𝑢, on 𝐿2(𝛺)𝑚 with dom(𝐴) = {𝑢 ∈ 𝐻1(𝛺)𝑚 : 𝑢(0) = 0}, and develop
the following formulation for homogeneous initial conditions: (𝑢, 𝐴∗𝑣) = ( 𝑓 , 𝑣) for
all 𝑣 ∈ 𝑉∗ = dom 𝐴∗ = {𝑢 ∈ 𝐻1(𝛺)𝑚 : 𝑢(1) = 0}. One would then extend it to
cover the non-homogeneous initial condition 𝑢0 by a process similar to going from
unbroken to broken graph spaces, employing a larger class of test functions that do
not vanish at 𝑡 = 1. This would then result in the additional unknown, the trace �̂�,
and one would obtain (8.2) again. Of course, for regular solutions, �̂� = 𝑢(1).

Returning to (8.3), we endow the trial space 𝑋 = 𝐿2(𝛺)𝑚 × C𝑚 with the norm

∥(𝑤, �̂�)∥2
𝑋 = ∥𝑤∥2

𝛺 + |�̂� |22,

where |�̂� |22 = |�̂�1 |2 + · · · + |�̂�𝑚 |2 denotes the square of the ℓ2-norm of �̂� ∈ C𝑚. On
the test space 𝑌 = 𝐻1(𝛺)𝑚, the corresponding optimal test norm of (3.6) can then
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be computed easily. Namely, with 𝑏 as in (8.3), we see that

||||𝑦 ||||𝑌 = sup
0≠(𝑤,�̂�)∈𝑋

|𝑏((𝑤, �̂�), 𝑦)|
∥(𝑤, �̂�)∥𝑋

=
(
∥𝐴∗𝑦∥2

𝛺 + |𝑦(1)|22
)1/2

. (8.4a)

We then set the norm on 𝑌 = 𝐻1(𝛺)𝑚 to be the optimal test norm, that is,

∥𝑦∥𝑌 = ||||𝑦 ||||𝑌 . (8.4b)

Clearly, for any 𝑣, 𝑦 ∈ 𝑌 ,

(𝑣, 𝑦)𝑌 = (𝐴∗𝑣, 𝐴∗𝑦)𝛺 + 𝑣(1) · 𝑦(1)

= (−¤𝑣 + 𝐾∗𝑣,−¤𝑦 + 𝐾∗𝑦)𝛺 + 𝑣(1) · 𝑦(1) (8.4c)

is the inner product that generates the optimal test norm above. Here ¤𝑣 = 𝑑𝑣/𝑑𝑡.
This is one of the rare cases where the optimal test norm is so readily calculable.

The ideal Petrov Galerkin method (i.e. the IPG method of Definition 2.3) uses the
optimal test space, which we now examine. Using the inner product in (8.4c), the
variational problem for the optimal test function 𝑣 corresponding to any (𝑤, �̂�) ∈ 𝑋
reads as follows for any 𝑦 ∈ 𝐻1(𝛺)𝑚:

(−¤𝑣 + 𝐾∗𝑣,−¤𝑦 + 𝐾∗𝑦)𝛺 + 𝑣(1) · 𝑦(1) = (𝑤,−¤𝑦 + 𝐾∗𝑦)𝛺 + �̂� 𝑦(1). (8.5)

For any 𝑔 ∈ 𝐿2(𝛺), since the initial value problem ¤𝑦 − 𝐾∗𝑦 = −𝑔 with initial
condition 𝑦(1) = 0 is solvable, we find that (8.5) implies (−¤𝑣 + 𝐾∗𝑣, 𝑔)𝛺 = (𝑤, 𝑔)𝛺
for all 𝑔 in 𝐿2(𝛺), i.e. −¤𝑣 + 𝐾∗𝑣 = 𝑤. Using this in (8.5), we then conclude that
𝑣(1) = �̂�. Thus the optimal test function 𝑣 of any (𝑤, �̂�) ∈ 𝑋 is the solution of

−𝑑𝑣
𝑑𝑡

+ 𝐾𝑣 = 𝑤 in 𝛺, (8.6a)

𝑣(1) = �̂�. (8.6b)

Recall the matrix exponential, defined by

𝑒𝐴 =

∞∑︁
𝑘=0

1
𝑘!
𝐴𝑘 . (8.7)

Using it, the solution of (8.6) can be written down in closed form by the variation of
constants method. Namely, the optimal test function 𝑣 and the trial-to-test operator
𝑇 are given by

𝑣(𝑡) = 𝑇(𝑤, �̂�) = 𝑒𝐾
∗(𝑡−1)�̂� + 𝑒𝐾∗𝑡

∫ 𝑡

1
𝑒−𝐾

∗𝜏𝑤(𝜏) 𝑑𝜏. (8.8)

Throughout this section, we fix 𝑇 to be this operator. Because we have chosen
the optimal test norm, we are now able to prove that the resulting Petrov–Galerkin
method produces the best possible 𝐿2-approximation within (0, 1), and furthermore,
the numerical flux approximation at the endpoint 𝑡 = 1 has zero error.
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Proposition 8.1 (Optimality of interior solution and endpoint exactness). Let
𝑈ℎ be any finite-dimensional subspace of 𝐿2(0, 1)𝑚 and let the interior solu-
tion 𝑢ℎ ∈ 𝑈ℎ together with the endpoint solution �̂�ℎ ∈ C𝑚 satisfy

(𝑢ℎ, 𝐴∗𝑣)𝛺 + �̂�ℎ 𝑣(1) = ( 𝑓 , 𝑣)𝛺 + 𝑢0 𝑣(0) for all 𝑣 ∈ 𝑌opt
ℎ
, (8.9)

where 𝑌opt
ℎ

= 𝑇(𝑈ℎ × C𝑚) for the 𝑇 given by (8.8). Let 𝑢 be the exact solution of
(8.1). Then

𝑢ℎ = 𝛱𝑈𝑢 and �̂�ℎ = �̂� = 𝑢(1), (8.10)

where 𝛱𝑈 is the 𝐿2-orthogonal projection into𝑈ℎ.

Proof. The norm choice in (8.4b) makes the form 𝑏((𝑤, �̂�), 𝑦) into a generalized
duality pairing (as in Definition 3.5), so by Proposition 3.6, the energy norm is the
same as the ∥ · ∥𝑋-norm. Hence, by Theorem 3.2(b), solution of the IPG method for
this formulation equals the best approximation, that is, the given 𝑢ℎ and �̂�ℎ satisfy

∥𝑢 − 𝑢ℎ∥2
𝛺 + |�̂� − �̂�ℎ |22 = inf

𝑤ℎ∈𝑈ℎ �̂�ℎ∈C𝑚
(
∥𝑢 − 𝑤ℎ∥2

𝛺 + |�̂� − �̂�ℎ |22
)
.

It is easy to see that the infimum equals ∥𝑢−𝛱𝑈𝑢∥𝛺 . Hence the identities of (8.10)
follow.

8.2. The discrete system

Consider the basis for the set of vector polynomials 𝑃𝑝(𝛺)𝑚 given by monomials
𝑡 𝑗𝑒𝑖 for 𝑡 ∈ 𝛺 = (0, 1), 𝑗 = 0, . . . , 𝑝, and 𝑖 = 1, . . . , 𝑚 (where 𝑒𝑖 are the standard
unit vectors). Let us set𝑈ℎ in Proposition 8.1 by

𝑈ℎ = 𝑃𝑝(𝛺)𝑚 = span{𝑡 𝑗𝑒𝑖 : 𝑗 = 0, . . . , 𝑝, 𝑖 = 1, . . . , 𝑚}

and examine how to solve for 𝑢ℎ and �̂�ℎ in (8.9). Then we introduce the follow-
ing functions that emerge from the previous formula in (8.8) for the trial-to-test
operator:

�̂�𝑖 ≔ 𝑇(0, 𝑒𝑖) = 𝑒𝐾
∗(𝑡−1)𝑒𝑖

𝑣0,𝑖 ≔ 𝑇(𝑒𝑖 , 0) = 𝐾−∗ [𝐼 − 𝑒𝐾∗(𝑡−1)]𝑒𝑖

𝑣𝑝,𝑖 ≔ 𝑇(𝑡 𝑝𝑒𝑖 , 0) = 𝑒𝐾
∗𝑡
∫ 1

𝑡

𝑒−𝐾
∗𝜏𝜏𝑝𝑒𝑖 𝑑𝜏

= 𝐾−∗(𝑡 𝑝𝑒𝑖 + 𝑝𝑣𝑝−1,𝑖 − �̂�𝑖)

for 𝑝 = 1, 2, . . . , where we have integrated by parts to get the last identity. Given
any 𝑀 ∈ C𝑚×𝑚 and 𝑡 > 0, define the matrix-valued functions

𝑅𝑝(𝑀, 𝑡) ≔
𝑝∑︁
𝑗=0

𝑝!
𝑗!

(𝑀𝑡) 𝑗 and �̂�(𝑀, 𝑡) ≔ 𝑒𝑀(𝑡−1).
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Then let

𝑣𝑟 (𝑀, 𝑡) = 𝑀−𝑟−1(𝑅𝑟 (𝑀, 𝑡) − 𝑅𝑟 (𝑀, 1) �̂�(𝑀, 𝑡)). (8.11)

Using this notation, we can express the previously given optimal test functions as

𝑣𝑟 ,𝑖 = 𝑣𝑟 (𝐾∗, 𝑡)𝑒𝑖 for all 𝑟 = 0, 1, . . . , 𝑝.

When these optimal test function expressions are substituted into (8.9), we obtain
a system for the discrete solution

𝑢ℎ =

𝑝∑︁
𝑗=0
𝑢ℎ, 𝑗 𝑡

𝑗 , 𝑢ℎ, 𝑗 ∈ C𝑚, (8.12a)

which couples the solution coefficients 𝑢ℎ, 𝑗 by
𝑝∑︁
𝑗=0
𝑎𝑟 𝑗 𝑢ℎ, 𝑗 = 𝑣𝑟 (𝐾, 0) 𝑢0 +

∫ 1

0
𝑣𝑟 (𝐾, 𝑡) 𝑓 (𝜏) 𝑑𝑡, 𝑟 = 0, . . . , 𝑝, (8.12b)

where

𝑎𝑟 𝑗 ≔

∫ 1

0
𝑡 𝑗+𝑟 𝑑𝑡.

This is a system of 𝑝 + 1 equations for the (vector-valued) unknowns 𝑢ℎ, 𝑗 , 𝑗 =

0, . . . , 𝑝. The endpoint trace, which equals the exact solution by Proposition 8.1,
is given by

�̂�ℎ = �̂�(𝐾, 0) 𝑢0 +
∫ 1

0
�̂�(𝐾, 𝑡) 𝑓 (𝜏) 𝑑𝜏. (8.12c)

Thus, to compute �̂�ℎ and 𝑢ℎ, 𝑗 , we need techniques to compute the integrals in-
volving matrix exponentials.

8.3. Exponential quadrature rules

To proceed, as seen above, we must digress to review standard exponential integ-
rators, which, for the system (8.1), are based on the formula for the exact solution
obtained by the method of variation of constants, namely

𝑢(𝑡) = 𝑒−𝐾𝑡𝑢0 + 𝑒−𝐾𝑡
∫ 𝑡

0
𝑒𝐾𝜏 𝑓 (𝜏) 𝑑𝜏. (8.13)

Applying the formula recursively to intervals [𝑡𝑘−1, 𝑡𝑘], we have

𝑢(𝑡𝑘) = 𝑒−ℎ𝑘𝐾𝑢(𝑡𝑘−1) +
∫ 𝑡𝑘

𝑡𝑘−1

𝑒(𝜏−𝑡𝑘)𝐾 𝑓 (𝜏) 𝑑𝜏, ℎ𝑘 ≔ 𝑡𝑘 − 𝑡𝑘−1.

The integral above can be approximated using standard exponential quadrature
rules that we now describe.
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Selecting 𝑠 arbitrary quadrature points 𝑐𝑖 ∈ [0, 1], 𝑖 = 1, . . . , 𝑠, we approximate
the right-hand side function 𝑓 (𝑠) in the time interval [0, 1] by

𝑓 (𝜏) ≈
𝑠∑︁
𝑖=1

𝑓 (𝑡𝑘−1 + 𝑐𝑖ℎ𝑘) 𝑙𝑖(𝜏),

where 𝑙𝑖 , 𝑖 = 1, . . . , 𝑠 are the Lagrange polynomials of order 𝑠 − 1 on the unit
interval 𝐼 = [0, 1]

𝑙𝑖(𝜃) =
𝑠∏

𝑗=1, 𝑗≠𝑖

𝜃 − 𝑐 𝑗
𝑐𝑖 − 𝑐 𝑗

, 𝑗 = 1, . . . , 𝑠,

and 𝑙𝑖(𝜏) are the corresponding mapped Lagrange polynomials on interval [𝑡𝑘−1, 𝑡𝑘].
Substituting the approximation for 𝑓 (𝜏) into the formula (8.13) from variation of
constants, we obtain a time-marching scheme,

𝑢𝑘 = 𝑒−ℎ𝑘𝐾𝑢𝑘−1 + ℎ𝑘
𝑠∑︁
𝑖=1

𝑏𝑖(−ℎ𝑘𝐾) 𝑓𝑖 ,

where 𝑢𝑘 ≈ 𝑢(𝑡𝑘), 𝑓𝑖 = 𝑓 (𝑡𝑘−1 + 𝑐𝑖ℎ𝑘), and the weights are defined by

𝑏𝑖(𝑧) ≔
∫ 1

0
𝑒(1−𝜃)𝑧𝑙𝑖(𝜃) 𝑑𝜃, 𝑖 = 1, . . . , 𝑠.

It is standard to compute the weights using the so-called ‘𝜙-functions’ (see e.g.
Al-Mohy and Higham 2011 or Niesen and Wright 2012), defined as follows:

𝜙0(𝑧) ≔ 𝑒𝑧 ,

𝜙𝑝(𝑧) ≔
∫ 1

0
𝑒(1−𝜃)𝑧 𝜃 𝑝−1

(𝑝 − 1)!
𝑑𝜃

=
1
𝑧

(
𝜙𝑝−1(𝑧) − 1

(𝑝 − 1)!

)
, 𝑝 = 1, 2, . . . .

The two simple examples below show how they are used.

Example 8.2 (A standard one-point integrator). Selecting a single point 𝑐1 ∈
[0, 1], we have 𝑙1(𝜃) = 1, 𝑏1(𝑧) = 𝜙1(𝑧), 𝑒𝑧 = 𝑧𝜙1(𝑧) + 1, which gives

𝑢𝑘 = 𝑢𝑘−1 + ℎ𝑘𝜙1(−ℎ𝑘𝐾)( 𝑓1 − 𝐾𝑢𝑘−1),

an integrator formula for the 𝑠 = 1 case.
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Example 8.3 (A standard two-point integrator). Selecting 𝑐1, 𝑐2 ∈ [0, 1], we
have

𝑏1(𝑧) =
∫ 1

0
𝑒(1−𝜃)𝑧 𝜃 − 𝑐2

𝑐1 − 𝑐2
𝑑𝜃

=
1

𝑐1 − 𝑐2

∫ 1

0
𝑒(1−𝜃)𝑧𝜃 𝑑𝜃 − 𝑐2

𝑐1 − 𝑐2

∫ 1

0
𝑒(1−𝜃)𝑧 𝑑𝜃

=
1

𝑐1 − 𝑐2
𝜙2(𝑧) − 𝑐2

𝑐2 − 𝑐1
𝜙1(𝑧).

Similarly,

𝑏2(𝑧) =
1

𝑐2 − 𝑐1
𝜙2(𝑧) − 𝑐1

𝑐2 − 𝑐1
𝜙1(𝑧).

Thus we obtain

𝑢𝑘 = 𝑢𝑘−1 − ℎ𝑘𝐾𝜙1(−ℎ𝑘𝐾)𝑢𝑘−1

+ ℎ𝑘
(

1
𝑐1 − 𝑐2

𝜙2(−ℎ𝑘𝐾) − 𝑐2
𝑐1 − 𝑐2

𝜙1(−ℎ𝑘𝐾)
)
𝑓1

+ ℎ𝑘
(

1
𝑐2 − 𝑐1

𝜙2(−ℎ𝑘𝐾) − 𝑐1
𝑐2 − 𝑐1

𝜙1(−ℎ𝑘𝐾)
)
𝑓2,

a standard two-point exponential integrator.

To connect these existing results to the IPG scheme, first note that (8.12c) is
exactly the variation of constants formula (8.13) (which is also as expected from
the endpoint exactness result of Proposition 8.1). Hence the above-described
standard exponential integrator formulas can be used to compute the IPG fluxes
�̂�ℎ at the time steps 𝑡𝑘 . It remains to discuss how to compute the solution 𝑢ℎ in
between.

8.4. An exponential integrator for interior solution in between time steps

Going beyond the classical exponential integration schemes, we now discuss a
new feature arising from the DPG method, namely the capability to also compute
an interior solution field that represents the 𝐿2-projection of the solution onto
the polynomial spaces within the intervals [𝑡𝑘−1, 𝑡𝑘]. To this end, we obtain a
discrete scheme from the system (8.12b) using the following result. Its proof is an
elementary but lengthy calculation which can be found in Muñoz-Matute, Pardo
and Demkowicz (2021), and is omitted here. The result allows us to compute the
optimal test functions using the standard 𝜙 functions.
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Proposition 8.4. The following relations between optimal test functions (8.11)
and the 𝜙 functions hold:

𝑣𝑟 (𝑀, 0) =
𝑟∑︁
𝑗=0

𝑟!
𝑗!

(−1)𝑟− 𝑗 𝜙𝑟− 𝑗+1(−𝑀),∫ 1

0
𝑣𝑟 (𝑀, 𝑡) 𝑡𝑞 𝑑𝑡 = 𝑞!

𝑟∑︁
𝑗=0

𝑟!
𝑗!

(−1)𝑟− 𝑗 𝜙𝑟− 𝑗+𝑞+2(−𝑀)
(8.14)

for any 𝑀 in C𝑚×𝑚 (including the scalar case 𝑚 = 1).

Example 8.5 (A one-point integrator for the interior IPG solution). Utilizing
Proposition 8.4, the system (8.12b) for 𝑝 = 0 reduces to the following scheme:

𝑢𝑘ℎ,0 = 𝜙1(−ℎ𝑘𝐾)�̂�𝑘−1
ℎ + ℎ𝑘𝜙2(−ℎ𝑘𝐾) 𝑓1.

It computes a constant interior solution given from �̂�𝑘−1
ℎ

and 𝑓1 that is guaranteed
to equal the mean of the exact solution.

Example 8.6 (A two-point integrator for the interior IPG solution). For 𝑝 =

2, the system (8.12b) for the two coefficients of the interior solution reduces to the
following system of two equations after applying Proposition 8.4:

𝑢𝑘ℎ,0 +
1
2
𝑢𝑘ℎ,1 = 𝑔1

(
�̂�𝑘−1
ℎ , 𝑓1, 𝑓2

)
, (8.15a)

1
2
𝑢𝑘ℎ,0 +

1
3
𝑢𝑘ℎ,1 = 𝑔2

(
�̂�𝑘−1
ℎ , 𝑓1, 𝑓2

)
, (8.15b)

where

𝑔1
(
�̂�𝑘−1
ℎ , 𝑓1, 𝑓2

)
= 𝜙1(−ℎ𝑘𝐾)�̂�𝑘−1

ℎ

+ ℎ𝑘
(

1
𝑐1 − 𝑐2

𝜙3(−ℎ𝑘𝐾) − 𝑐2
𝑐1 − 𝑐2

𝜙2(−ℎ𝑘𝐾)
)
𝑓1

+ ℎ𝑘
(

1
𝑐2 − 𝑐1

𝜙3(−ℎ𝑘𝐾) − 𝑐1
𝑐2 − 𝑐1

𝜙2(−ℎ𝑘𝐾)
)
𝑓2,

and

𝑔2
(
�̂�𝑘−1
ℎ , 𝑓1, 𝑓2

)
= 𝜙1(−ℎ𝑘𝐾)�̂�𝑘−1

ℎ − 𝜙2(−ℎ𝑘𝐾)�̂�𝑘−1
ℎ

+ ℎ𝑘
(

1
𝑐1 − 𝑐2

(𝜙3(−ℎ𝑘𝐾) − 𝜙4(−ℎ𝑘𝐾)) − 𝑐2
𝑐1 − 𝑐2

(𝜙2(−ℎ𝑘𝐾) − 𝜙3(−ℎ𝑘𝐾))
)
𝑓1

+ ℎ𝑘
(

1
𝑐2 − 𝑐1

(𝜙3(−ℎ𝑘𝐾) − 𝜙4(−ℎ𝑘𝐾)) − 𝑐1
𝑐2 − 𝑐1

(𝜙2(−ℎ𝑘𝐾) − 𝜙3(−ℎ𝑘𝐾))
)
𝑓2.

The equations of (8.15) give the best 𝐿2-approximation of the interior solution in
the space of linear functions.
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8.5. A posteriori error estimation

Now that we have an interior solution, it is possible to get an error representation
through the DPG residual. Indeed, equation (3.4a) for the error representation 𝜀
now takes the form

(𝜀, 𝑣)𝑌 = ℓ(𝑣) − 𝑏((𝑢ℎ, �̂�ℎ), 𝑣)

= ( 𝑓 , 𝑣)𝛺 + 𝑢0 𝑣(0) −
[
(𝑢ℎ, 𝐴∗𝑣)𝛺 + �̂�ℎ 𝑣(1)

]
for all 𝑣 ∈ 𝑌 . For this example, it is possible to derive an explicit formula for
function 𝜀, as shown in Muñoz-Matute, Demkowicz and Pardo (2022). However,
applying the formula requires coming up with special quadrature rules for matrix-
valued functions and it is cumbersome to use. Instead, it is recommended to
compute an inexact error representation 𝜀𝑟 using (6.7a), namely

(𝜀𝑟 , 𝑣)𝑌 = ℓ(𝑣) − 𝑏((𝑢ℎ, �̂�ℎ), 𝑣) for all 𝑣 ∈ 𝑌 𝑟 , (8.16)

with a 𝑌 𝑟 obtained by enlarging 𝑌opt
ℎ

by at least one linearly independent function.
(One may, for example, set 𝑌 𝑟 = 𝑇(𝑃𝑝+1(𝛺) × C𝑚) ⊃ 𝑌opt

ℎ
.) Solving for 𝜀𝑟 from

(8.16) then only involves solving a small linear system after the computation of
𝑢ℎ and �̂�ℎ. Moreover, 𝜀𝑟 is almost as good an error estimator as 𝜀 because of the
following result.

Proposition 8.7 (Error estimator for time integrator). Set 𝑏 and ℓ as in (8.3),
𝑋ℎ = 𝑃𝑝(𝛺) × C𝑚, 𝛺 = (0, 1), and using any 𝑌 𝑟 ⊃ 𝑌opt

ℎ
, solve the practical DPG

method (6.7) for 𝑥ℎ ∈ 𝑋ℎ and 𝜀𝑟 ∈ 𝑌 𝑟 . Then 𝑥ℎ coincides with the solution 𝑢ℎ, �̂�ℎ
of the IPG method (8.9). Moreover,

∥𝜀𝑟 ∥2
𝑌 ≤ ∥𝜀∥2

𝑌 ≤ ∥𝜀𝑟 ∥2
𝑌 + osc(ℓ)2, (8.17)

∥𝜀𝑟 ∥𝑌 ≤ ∥𝑢 − 𝑢ℎ∥𝛺 ≤ ∥𝜀𝑟 ∥𝑌 + osc(ℓ), (8.18)

where osc(ℓ) = ∥ℓ ◦ (𝐼 − 𝑃𝑌𝑟 )∥𝑌 ∗ and 𝑃𝑌𝑟 denotes the 𝑌 -orthogonal projection
onto 𝑌 𝑟 .

Proof. The stated results follow from discussions in Examples 5.3 and 6.5. Es-
timate (8.17) is immediate from (6.12). Furthermore, since the norm choice in
(8.4b) makes 𝑏((𝑤, �̂�), 𝑦) into a generalized duality pairing, by Proposition 3.6, we
know that ∥𝑏∥ = 1 and 𝛾 = 1. Hence (6.9) implies

∥𝑥 − 𝑥ℎ∥𝑋 ≤ ∥𝜀𝑟 ∥𝑌 + osc(ℓ), ∥𝜀𝑟 ∥𝑌 ≤ ∥𝑥 − 𝑥ℎ∥𝑋 .

By the endpoint exactness of Proposition 8.1, ∥𝑥 − 𝑥ℎ∥𝑋 = ∥𝑢 − 𝑢ℎ∥𝛺 , so (8.18)
also follows.

Adapting Proposition 8.7 to each time interval [𝑡𝑘 , 𝑡𝑘+1], we obtain a practical
strategy for adaptive step size control. The unit constants in (8.17)–(8.18) are
notable and point to the effectiveness of the strategy. Note, however, that we have
not stated any guarantee for osc(ℓ) to be small. We would need to ensure that 𝑌 𝑟
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contains enough functions to provide some approximation properties before we can
quantitatively characterize the smallness of osc(ℓ).

Bibliographical notes. The main ideas of this section are taken from Muñoz-Matute
et al. (2021) and Muñoz-Matute et al. (2022). Our presentation here is slightly
different and shorter. The DPG exponential integrator has also been recently
extended to nonlinear problems in Muñoz-Matute and Demkowicz (2024).

9. Duality in DPG formulations
This section is devoted to formulations that are dual in a certain sense to the hybrid
DPG formulations. We motivate the construction of the dual formulation using
overdetermined and underdetermined systems, and provide typical applications of
the dual problem, including the Aubin–Nitsche duality argument for estimating
error in weaker norms, and error bounds for goal functionals. In the DPG context,
the regularity of dual solutions can be a limiting factor. Even when all solutions of
the DPG formulation are highly regular, the dual solutions may have very limited
regularity.

9.1. Overdetermined and underdetermined equations

We have been occupied with the solution of the operator equation

𝐵𝑥 = ℓ, (9.1)

given ℓ ∈ 𝑌 ∗ and given 𝐵 : 𝑋 → 𝑌 ∗, the operator generated by the form 𝑏(·, ·)
introduced and used in Section 3 (see e.g. (3.10)). Also using the adjoint 𝐵∗ and
the Riesz operators 𝑅𝑋 and 𝑅𝑌 introduced there, consider the following two systems
of operator equations. The first seeks 𝑥 ∈ 𝑋 and 𝜁 ∈ 𝑌 solving

𝑅𝑌 𝜁 + 𝐵𝑥 = ℓ,
𝐵∗𝜁 = 0.

(9.2)

The second seeks 𝑥 ∈ 𝑋 and 𝜆 ∈ 𝑌 solving

𝑅𝑋𝑥 + 𝐵∗𝜆 = 0,
𝐵𝑥 = ℓ.

(9.3)

The system (9.3) is related to (9.1) since its second equation is identical to (9.1).
The system (9.2) is also related to (9.1), since whenever 𝑥 solves (9.1), it also solves
(9.2) with 𝜁 = 0. Let us begin by studying in what sense these formulations are
twin relatives of the same problem (9.1).

Suppose the inf-sup condition (1.2a) holds, but we do not know if the uniqueness
condition (1.2b) holds. The inf-sup condition (1.2a) is the same as

∥𝐵𝑧∥𝑌 ∗ ≥ 𝛾∥𝑧∥𝑋 for all 𝑧 ∈ 𝑋, (9.4)

which is also equivalent to asserting that 𝐵 is injective and that the range of 𝐵 is
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closed. But we do not know if 𝐵 is surjective. Therefore we can only expect 𝐵𝑥 = ℓ
to be solvable if ℓ ∈ range(𝐵). Since range 𝐵 equals the annihilator of the null
space of 𝐵∗, a necessary compatibility condition for solvability of 𝐵𝑥 = ℓ is that

ℓ(𝑦) = 0 for all 𝑦 ∈ ker(𝐵∗). (9.5)

For general ℓ, the equation 𝐵𝑥 = ℓ represents an overdetermined system.
Nonetheless, the inf-sup condition (9.4) immediately implies that (9.2) is uniquely

solvable, by the standard theory of mixed methods; see e.g. Brezzi and Fortin (1991)
or Ern and Guermond (2021). Since (9.2) uniquely solves for 𝑥 even when 𝐵𝑥 = ℓ
is not solvable, we may interpret (9.2) as a regularized version of 𝐵𝑥 = ℓ. Indeed,
(9.2) solves for 𝑥 satisfying

𝐵∗𝑅−1
𝑌 𝐵𝑥 = 𝐵∗𝑅−1

𝑌 ℓ, (9.6)

as can be seen by eliminating 𝜁 from (9.2). When (9.4) holds, (9.6) can be solved
for 𝑥 even when 𝐵𝑥 = ℓ cannot be solved.

Now suppose the adjoint inf-sup condition (1.3a) holds, but we do not know if
the adjoint uniqueness condition (1.3b) holds. Note that (1.3a) is the same as

∥𝐵∗𝑦∥𝑋∗ ≥ 𝛾∥𝑦∥𝑌 for all 𝑦 ∈ 𝑌 . (9.7)

By the Closed Range Theorem, (9.7) implies that 𝐵 is surjective, but we do not
know that 𝐵 is injective. In other words, 𝐵𝑥 = ℓ is solvable for any ℓ ∈ 𝑌 ∗, but its
solution need not be unique in general. Hence, in this case, 𝐵𝑥 = ℓ represents an
underdetermined system.

As in the previous case, the inf-sup condition (9.7) immediately implies, by
standard mixed method theory, that (9.3) is uniquely solvable. Eliminating 𝜆, we
find that the unique 𝑥 it solves for is given by

𝑥 = −𝑅−1
𝑋 𝐵

∗(𝐵𝑅−1
𝑋 𝐵

∗)−1
ℓ.

This solution is orthogonal to ker 𝐵 and has the least norm among all possible
solutions of 𝐵𝑥 = ℓ.

9.2. Relationship to the DPG method and a dual DPG* method

Define 𝑎 : (𝑋 × 𝑌 ) × (𝑋 × 𝑌 ) → C by

𝑎((𝑥, 𝜁), (𝑧, 𝑦)) = (𝜁, 𝑦)𝑌 + 𝑏(𝑥, 𝑦) + 𝑏(𝑧, 𝜁)

for all 𝑥, 𝑧 ∈ 𝑋 and 𝜁, 𝑦 ∈ 𝑌 and suppose 𝐹 ∈ (𝑋 ×𝑌 )∗ is given. Equation (9.2) can
then be written as

𝑎((𝑥, 𝜁), (𝑧, 𝑦)) = 𝐹(𝑧, 𝑦) for all 𝑧 ∈ 𝑋, 𝑦 ∈ 𝑌, (9.8)

with 𝐹(𝑧, 𝑦) = ℓ(𝑦). Using subspaces 𝑋ℎ ⊂ 𝑋 and 𝑌 𝑟 ⊂ 𝑌 satisfying the discrete
version of the inf-sup condition (1.2a),

1 ≲ inf
0≠𝑧∈𝑋ℎ

sup
0≠𝑦∈𝑌𝑟

|𝑏(𝑧, 𝑦)|
∥𝑧∥𝑋∥𝑦∥𝑌

, (9.9)
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consider the discrete problem to find 𝑥ℎ ∈ 𝑋ℎ and 𝜁𝑟 ∈ 𝑌 𝑟 satisfying

𝑎((𝑥ℎ, 𝜁𝑟 ), (𝑧, 𝑦)) = 𝐹(𝑧, 𝑦) for all 𝑧 ∈ 𝑋ℎ, 𝑦 ∈ 𝑌 𝑟 . (9.10)

From the standard theory of mixed methods in Brezzi and Fortin (1991), we obtain
quasioptimality of the method (9.10). To summarize, suppose the exact inf-sup
condition (1.2a) and the discrete inf-sup condition (9.9) hold. Then (9.8) and (9.10)
are uniquely solvable for any 𝐹 ∈ (𝑋 × 𝑌 )∗, and their solutions satisfy

∥𝑥 − 𝑥ℎ∥𝑋 + ∥𝜁 − 𝜁𝑟 ∥𝑌 ≲ inf
𝑧ℎ∈𝑋ℎ ,𝑦𝑟 ∈𝑌𝑟

[
∥𝑥 − 𝑧ℎ∥𝑋 + ∥𝜁 − 𝑦𝑟 ∥𝑌

]
. (9.11)

This has implications for both the DPG method and a dual DPG* method defined
shortly. First, the DPG method, in the form of the mixed system in Theorem 6.3(b),
is a discretization of (9.2), or its equivalent form (9.8), with

𝐹(𝑧, 𝑦) = ℓ(𝑦). (9.12)

Hence, once the inf-sup conditions (1.2a) and (9.9) are verified, the DPG method in
the mixed form (6.7) can be used to regularize and solve overdetermined systems,
even when it is not possible to verify the uniqueness assumption (1.2b) or the
compatibility condition (9.5). Moreover, if 𝐵 is a continuous bijection (so that the
system is no longer overdetermined) and 𝐹 is as in (9.12), then it is easy to see that
𝜁 = 0, and that 𝜁𝑟 = 𝜀𝑟 together with 𝑥ℎ solves the DPG method (6.7). Then (9.11)
reduces to

∥𝑥 − 𝑥ℎ∥𝑋 + ∥𝜀𝑟 ∥𝑌 ≲ inf
𝑧ℎ∈𝑋ℎ ,𝑦𝑟 ∈𝑌𝑟

∥𝑥 − 𝑧ℎ∥𝑋, (9.13)

an error estimate we can also conclude from the theory in prior sections.
Next, consider dual formulations of (9.8). Since the operator generated by the

form 𝑎(·, ·) is self-adjoint, ‘dual problems’ of (9.8) take the same form as (9.8). By
a DPG* method we mean the method (9.10) for the case

𝐹(𝑧, 𝑦) = 𝑔(𝑧),

where 𝑔 ∈ 𝑋∗. To distinguish from the previous case, let us now rename 𝜁𝑟 as
𝜉𝑟 and 𝑥ℎ as 𝜆ℎ. We can then rewrite (9.10) to express the DPG* method as the
method that finds 𝜉𝑟 ∈ 𝑌 𝑟 and 𝜆ℎ ∈ 𝑋ℎ satisfying

(𝜉𝑟 , 𝑦)𝑌 + 𝑏(𝜆ℎ, 𝑦) = 0 for all 𝑦 ∈ 𝑌 𝑟 , (9.14a)

𝑏(𝑧, 𝜉𝑟 ) = 𝑔(𝑧) for all 𝑧 ∈ 𝑋ℎ . (9.14b)

Now it is evident that this is a discretization of (9.3) with the roles of 𝑋 and 𝑌
reversed, 𝐵∗ in place of 𝐵, 𝜉 in place of 𝑥, and 𝑔 in place of ℓ, that is,

(𝜉, 𝑦)𝑌 + 𝑏(𝜆, 𝑦) = 0 for all 𝑦 ∈ 𝑌, (9.15a)

𝑏(𝑧, 𝜉) = 𝑔(𝑧) for all 𝑧 ∈ 𝑋, (9.15b)

thus revealing the connection with underdetermined systems. By verifying the
exact same inf-sup conditions as for the DPG method, namely (1.2a) and (9.9),
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the estimate (9.11) then gives that the DPG* method is uniquely solvable and the
solution satisfies

∥𝜆 − 𝜆ℎ∥𝑋 + ∥𝜉 − 𝜉𝑟 ∥𝑌 ≲ inf
𝑧ℎ∈𝑋ℎ ,𝑦𝑟 ∈𝑌𝑟

[
∥𝜆 − 𝑧ℎ∥𝑋 + ∥𝜉 − 𝑦𝑟 ∥𝑌

]
. (9.16)

An important difference between the DPG* estimate (9.16) and the DPG estimate
(9.13) is that convergence in (9.16) depends on the regularity of an extraneous
Lagrange multiplier 𝜆.

9.3. Error in goal functionals

A typical application of duality is in characterizing the error in a goal functional or
in goal-oriented adaptivity. Let 𝐺 be a continuous linear functional on 𝑋 such that
𝐺(𝑥) represents a goal of interest that depends on the solution 𝑥. After computing
𝑥ℎ by the DPG method, we obtain an approximate goal 𝐺(𝑥ℎ). We are interested in
bounding the error 𝐺(𝑥) −𝐺(𝑥ℎ). The dual formulation of DPG* method is useful
in this context.

Theorem 9.1 (Error in goal functional). Let 𝑥 ∈ 𝑋 solve (1.1) and 𝑥ℎ ∈ 𝑋ℎ
solve the DPG discretization (5.4). Let 𝜉 ∈ 𝑌 and 𝜉𝑟 ∈ 𝑌 𝑟 be as in the DPG*
formulations (9.15) and (9.14) with 𝑔(𝑧) = 𝐺(𝑧). Then the error in the goal
functional is given by

𝐺(𝑥) − 𝐺(𝑥ℎ) = 𝑏(𝑥 − 𝑥ℎ, 𝜉 − 𝜉𝑟 ). (9.17)

Proof. First note that

𝑏(𝑥 − 𝑥ℎ, 𝜉𝑟 ) = −(𝜀𝑟 , 𝜉𝑟 )𝑌 by subtracting (6.7a) from (1.1)

= −𝑏(𝜆ℎ, 𝜀𝑟 ) by (9.14a)
= 0 by (6.7b). (9.18)

Hence

𝐺(𝑥 − 𝑥ℎ) = 𝑏(𝑥 − 𝑥ℎ, 𝜉) by (9.15b) (9.19)
= 𝑏(𝑥 − 𝑥ℎ, 𝜉 − 𝜉𝑟 ),

and the result follows.

An identity analogous to (9.17) holds for the error in the goal when using the
standard Galerkin method, where we have the additional freedom to choose one
of 𝑥ℎ or 𝜉𝑟 arbitrarily from the corresponding finite element space. An analogous
freedom exists in the DPG case as well. Since subtracting (5.4) from (1.1) gives
𝑏(𝑥 − 𝑥ℎ, 𝑦ℎ) = 0 for all 𝑦ℎ ∈ 𝑇𝑟 (𝑋ℎ), we may combine it with (9.19) to obtain

𝐺(𝑥) − 𝐺(𝑥ℎ) = 𝑏(𝑥 − 𝑥ℎ, 𝜉 − 𝑇𝑟𝑤ℎ), (9.20)

an identity that holds for any 𝑤ℎ in 𝑋ℎ. Nonetheless, while obtaining convergence
rates from either (9.20) or (9.17), the limiting factor is usually the regularity of the
dual solution.
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9.4. Aubin–Nitsche argument for DPG methods

Aubin–Nitsche duality arguments are typically used in finite element methods to
prove higher rates of convergence in weaker norms. We present such an argument,
adopting the general hybrid setting of (4.12) and Theorem 4.3, where 𝑋 = 𝑋0 × �̂�
and the solution takes the form (𝑥, 𝑥) with 𝑥 ∈ 𝑋0 and 𝑥 ∈ �̂� . We return to our
standard setting where one of (1.1), (1.2) or (1.3) holds, that is, 𝐵 is a bijection
(so we are no longer considering overdetermined or underdetermined systems).
Limiting ourselves to showing how a duality argument can potentially yield higher
rates of convergence for the solution component 𝑥 in 𝑋0.

Recall the equivalent mixed form of the DPG method given in (6.7). We rewrite
it using the composite sesquilinear form 𝑎(·, ·), which in the hybrid case takes the
form

𝑎((𝑥, 𝑥, 𝜀), (𝑧, 𝑧, 𝑦)) = (𝜀, 𝑦)𝑌 + 𝑏((𝑥, 𝑥), 𝑦) + 𝑏((𝑧, 𝑧), 𝜀)

for all 𝑥, 𝑧 ∈ 𝑋 , 𝑥, 𝑧 ∈ �̂� and 𝜀, 𝑦 ∈ 𝑌 . The system (6.7) can be reformulated as the
problem of finding 𝑥ℎ ∈ 𝑋ℎ,0 ⊂ 𝑋0, 𝑥ℎ ∈ �̂�ℎ ⊂ �̂� and 𝜀𝑟 ∈ 𝑌 𝑟 satisfying

𝑎((𝑥ℎ, 𝑥ℎ, 𝜀𝑟 ), (𝑧ℎ, 𝑧ℎ, 𝑦𝑟 )) = ℓ(𝑦𝑟 ) (9.21)

for all 𝑧ℎ ∈ 𝑋ℎ, 𝑧ℎ ∈ �̂�ℎ,0, 𝑦𝑟 ∈ 𝑌 𝑟 . The undiscretized version of this equation is
to find 𝑥 ∈ 𝑋 such that

𝑎((𝑥, 𝑥, 0), (𝑧, 𝑧, 𝑦)) = ℓ(𝑦) (9.22)

for all 𝑧 ∈ 𝑋0, 𝑧 ∈ �̂� , 𝑦 ∈ 𝑌 . Recall that 𝜁 in (9.8) equals zero when 𝐵 is a bijection.
Obviously, (9.22) is equivalent to (4.13). Since the operator generated by the form
𝑎(·, ·) is self-adjoint, dual problems takes the same form, with the roles of test and
trial functions reversed.

To detail a specific dual problem of interest, suppose 𝐿 and 𝑍 are Hilbert spaces
such that the embeddings

𝑍 ⊆ 𝑋 × 𝑌 and 𝑋0 ⊆ 𝐿 are continuous. (9.23a)

For any 𝑔 ∈ 𝐿, we consider the ‘dual problem’ for

𝜉𝑔 = (𝑥𝑔, 𝑥𝑔, 𝜀𝑔) ∈ 𝑋0 × �̂� × 𝑌

satisfying

𝑎((𝑧, 𝑧, 𝑦), 𝜉𝑔) = (𝑧, 𝑔)𝐿 for all 𝑧 ∈ 𝑋0, 𝑧 ∈ �̂�, 𝑦 ∈ 𝑌 . (9.23b)

The right-hand side is a continuous linear functional on 𝑋 by (9.23a). Suppose
there is a 𝑐(ℎ) > 0 such that for any 𝑔 ∈ 𝐿, there is an 𝑥𝑔 ∈ 𝐿 and 𝜀𝑔 ∈ 𝑌 satisfying
(9.23b) and

inf
𝜍ℎ∈𝑋ℎ×𝑌𝑟

∥𝜉𝑔 − 𝜍ℎ∥𝑋×𝑌 ≤ 𝑐(ℎ)∥𝑔∥𝐿 . (9.23c)

In examples, one would want to leverage regularity of the dual solution, if available,
to verify (9.23c) and obtain some 𝑐(ℎ) that goes to zero as ℎ decreases.
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Theorem 9.2 (Duality argument for DPG formulations). Assume the setting
of (9.23) and (4.12). Then

∥𝑥 − 𝑥ℎ∥𝐿 ≤ 𝑐(ℎ) ∥𝑎∥ ∥(𝑥, 𝑥, 0) − (𝑥ℎ, 𝑥ℎ, 𝜀𝑟 )∥𝑋0×�̂�×𝑌 . (9.24)

Proof. Subtracting (9.22) from (9.21),

𝑎((𝑥 − 𝑥ℎ, 𝑥 − 𝑥ℎ, 0 − 𝜀𝑟 ), (𝑧ℎ, 𝑧ℎ, 𝑦𝑟 )) = 0 (9.25)

for all 𝑧ℎ ∈ 𝑋ℎ, 𝑧ℎ ∈ �̂�ℎ,0, 𝑦𝑟 ∈ 𝑌 𝑟 . Next, we use (9.23b) with 𝑔 = 𝑥−𝑥ℎ ∈ 𝑋0 ⊆ 𝐿,
𝑧 = 𝑥 − 𝑥ℎ, 𝑧 = 𝑥 − 𝑥ℎ and 𝑦 = −𝜀𝑟 , to get

∥𝑥 − 𝑥ℎ∥2
𝐿 = 𝑎((𝑥 − 𝑥ℎ, 𝑥 − 𝑥ℎ,−𝜀𝑟 ), 𝜉𝑔)
= 𝑎((𝑥 − 𝑥ℎ, 𝑥 − 𝑥ℎ,−𝜀𝑟 ), 𝜉𝑔 − 𝜍ℎ) by (9.25)
≤ ∥𝑎∥ ∥(𝑥 − 𝑥ℎ, 𝑥 − 𝑥ℎ, 𝜀𝑟 )∥𝑋0×�̂�×𝑌 ∥𝜉𝑔 − 𝜍ℎ∥𝑋0×�̂�×𝑌

for any 𝜍ℎ ∈ 𝑋0,ℎ × �̂�ℎ × 𝑌 𝑟 . Hence the result follows from (9.23c).

Example 9.3 (The dual of a primal DPG formulation on a convex domain).
The primal DPG method for the Laplace equation of Example 5.5 offers a simple
example of how one can determine the regularity of the dual solutions, assuming
that the domain 𝛺 is convex. Recall that there we have set 𝑋0 = �̊�1(𝛺), �̂� =

𝐻−1/2(𝜕𝛺ℎ) and 𝑌 = 𝐻1(𝛺ℎ). Additionally, set

𝐿 = 𝐿2(𝛺), 𝑍 = (𝐻2(𝛺) ∩ 𝑋0) × �̂� × (𝐻2(𝛺) ∩ 𝑌 ).

Then (9.23a) is obvious. The dual problem (9.23b) for 𝜉𝑔 = (𝑥𝑔, 𝑥𝑔, 𝜀𝑔) ∈ �̊�1(𝛺)×
𝐻−1/2(𝜕𝛺ℎ) × 𝐻1(𝛺ℎ), after complex conjugations as needed, reads as follows:

(𝜀𝑔, 𝑦)𝑌 + (grad 𝑥𝑔, grad 𝑦)ℎ − ⟨𝑥𝑔, 𝑦⟩ℎ = 0, (9.26a)
(grad 𝜀𝑔, grad 𝑧)ℎ = (𝑔, 𝑧)𝛺 , (9.26b)

⟨𝑧, 𝜀𝑔⟩ℎ = 0 (9.26c)

for all 𝑦 ∈ 𝐻1(𝛺ℎ), 𝑤 ∈ �̊�1(𝛺) and 𝑧 ∈ 𝐻−1/2(𝜕𝛺ℎ).
We need to understand the regularity of solutions of (9.26). First, note that the

𝜀𝑔 component in 𝐻1(𝛺ℎ) is actually in �̊�1(𝛺), as seen from (9.26c) after applying
Theorem 4.6(a). Together with (9.26b), we conclude that

−Δ𝜀𝑔 = 𝑔 on 𝛺, (9.27a)
𝜀𝑔 = 0 on 𝜕𝛺. (9.27b)

Next, observe that equation (9.26a) with 𝑦 ∈ �̊�1(𝛺) yields

(grad 𝑥𝑔, grad 𝑦) = −(𝜀𝑔, 𝑦)ℎ − (grad 𝜀𝑔, grad 𝑦)ℎ = −(𝜀𝑔, 𝑦)ℎ + (Δ𝜀𝑔, 𝑦)ℎ,

which implies Δ𝑥𝑔 = 𝜀𝑔 + 𝑔. Finally, using the equations for 𝑥𝑔 and 𝜀𝑔 in (9.26a)
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and integrating by parts, we find ⟨𝑥𝑔, 𝑦⟩ℎ = ⟨𝑛 · grad(𝜀𝑔 + 𝑥𝑔), 𝑦⟩ℎ. Hence

Δ𝑥𝑔 = 𝜀𝑔 + 𝑔 on 𝛺, (9.27c)
𝑥𝑔 = 0 on 𝜕𝛺, (9.27d)
𝑥𝑔 = 𝑛 · grad(𝜀𝑔 + 𝑥𝑔) on 𝜕𝐾 , for all 𝐾 ∈ 𝛺ℎ . (9.27e)

At this point we are able to use the well-known full regularity of the Dirichlet
problem on a convex domain (see e.g. Grisvard 1985), to conclude that

∥𝜀𝑔∥𝐻2(𝛺) ≲ ∥𝑔∥𝛺 ,
∥𝑥𝑔∥𝐻2(𝛺) ≲ ∥𝜀𝑔∥𝛺 + ∥𝑔∥𝛺 ≲ ∥𝑔∥𝛺 ,

which in turn also implies that the interface variable satisfies

∥𝑥𝑔∥𝐻−1/2(𝜕𝛺ℎ) ≤ ∥ grad(𝜀𝑔 + 𝑥𝑔)∥𝐻(div,𝛺)

= ∥ grad(𝜀𝑔 + 𝑥𝑔)∥𝛺 + ∥Δ(𝜀𝑔 + 𝑥𝑔)∥𝛺 ≲ ∥𝑔∥𝛺 .

Hence we have shown the regularity estimate

∥𝜉𝑔∥𝑍 = ∥(𝑥𝑔, 𝑥𝑔, 𝜀𝑔)∥𝑍 ≲ ∥𝑔∥𝛺 . (9.28)

To complete the verification of (9.23c), we now only need to bound approxima-
tion errors. By an application of the Bramble–Hilbert lemma as in Example 5.5, it is
easy to show that there is an interpolant 𝜉𝑔,ℎ ≡ (𝑥𝑔,ℎ, 𝑥𝑔,ℎ, 𝜀𝑔,ℎ) of 𝜉𝑔 = (𝑥𝑔, 𝑥𝑔, 𝜀𝑔)
such that

∥𝜉𝑔 − 𝜉𝑔,ℎ∥𝑋0×�̂�×𝑌 ≲ ℎ
(
∥𝜀𝑔∥𝐻2(𝛺) + ∥𝑥𝑔∥𝐻2(𝛺)

)
≲ ℎ∥𝑔∥𝛺 ,

where the last inequality followed from (9.28). This verifies (9.23c) with 𝑐(ℎ) = ℎ.
Applying Theorem 9.2, we obtain

∥𝑢 − 𝑢ℎ∥𝛺 ≤ 𝐶ℎ
(
∥𝑢 − 𝑢ℎ∥𝐻1(𝛺) + ∥𝑞𝑛 − 𝑞𝑛,ℎ∥𝐻−1/2(𝜕𝛺ℎ)

)
,

which shows that on a convex domain we expect to obtain an 𝐿2-convergence rate
of one higher order for 𝑢ℎ than the 𝐻1-rate we proved earlier in (5.25).

Bibliographical notes. The DPG* method was introduced in Demkowicz, Gopala-
krishnan and Keith (2020), motivated by theLL∗ method (or the ‘FOSLL∗ method’)
of Cai, Manteuffel, McCormick and Ruge (2001). Numerical experiments in Dem-
kowicz et al. (2020, § 5.3) include a case where the 𝜆 in (9.16) is in 𝐻3(𝛺) while
𝑥 is much more regular. It confirms that both the DPG* and the LL∗ methods
have convergence rates that are limited by the regularity of 𝜆. The argument of
Theorem 9.1 can be found in Keith (2018). Such arguments are leveraged for
goal-oriented adaptivity in Keith et al. (2019). Theorem 9.2 and its application
to the primal DPG formulation in Example 9.3 are from Bouma et al. (2014). A
further example applying the duality argument to an ultraweak DPG formulation
can be found in Führer (2018).
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10. Pointers to DPG techniques for nonlinear problems
Exploitation of DPG ideas to nonlinear problems is an active area of current re-
search. In this section we discuss a DPG extension to nonlinear problems by the
steepest descent method. First, however, we quickly give pointers to existing liter-
ature containing various other ways of utilizing DPG ideas in nonlinear problems.

10.1. Prior literature

A natural avenue for dealing with nonlinearities is the use of Newton–Raphson
iterations that linearizes the nonlinear problem and applies the prior DPG ideas
to the linearized problem. Many have adopted this avenue (Chan, Demkowicz
and Moser 2014a, Roberts, Demkowicz and Moser 2015), and this approach is
related to the classical Gauss–Newton method mentioned below in Section 10.3. A
PDE-constrained residual minimization problem for solving nonlinear systems was
formulated in Bui-Thanh and Ghattas (2014). They combined it with a trust-region
inexact Newton conjugate gradient iteration to solve two-dimensional Burgers and
Euler equations.

A nonlinear mixed problem cast in the residual minimization DPG framework
can be found in Carstensen, Bringmann, Hellwig and Wriggers (2018) for a model
nonlinear diffusion problem. They studied it in the context of the primal formulation
and lowest-order approximations; their work includes a priori and a posteriori
error estimates as well as an equivalent least-squares formulation, and is illustrated
with two-dimensional examples involving adaptivity. A different approach for the
same model problem was taken by Cantin and Heuer (2018), who, by introducing
additional unknowns, reformulated the nonlinear problem as a linear one with a
nonlinear algebraic constraint. The DPG technology is then used only for the linear
problem, and the nonlinear constraint is enforced by penalization. The resulting
system is an extension of the mixed form (6.7) of the DPG method to a saddle-
point formulation with a strongly monotone diagonal block that is wellposed under
appropriate conditions. Nonlinearities in the same block also arise in the work of
Muga and van der Zee (2020) on residual minimization without a Hilbert structure
through Banach duality maps.

Other lines of DPG research involving nonlinearities include problems charac-
terized by variational inequalities such as contact problems in elasticity. Führer,
Heuer and Stephan (2018a) have developed a DPG theory for (scalar) Signorini-
type problems, where optimal test functions are used for discretizing the partial
differential operator of the problem and duality terms are added to incorporate the
nonlinear boundary conditions. This yields a variational inequality of the first kind.
By using an ultraweak formulation they have direct access to normal derivatives
through one of the trace variables (unlike standard weak formulations). They also
derived reliable error estimators consisting of an error representation as in previ-
ous sections, plus a duality term measuring the violation of the complementarity
condition.
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10.2. Steepest descent iteration

We now discuss how to extend the residual minimization methodology to general
nonlinear problems in the framework of the steepest descent method, borrowed
from Li (2024). The same technique was applied much earlier by Bristeau et al.
(1979, 1985) to solve the challenging transonic flow problem. Although nonlinear
problems deserve to be set in Banach spaces, for simplicity we limit ourselves to
the Hilbert space setting. Unlike the remainder of this paper, here we assume that
all spaces are over R, and that 𝐵 : 𝑋 → 𝑌 ∗ is a nonlinear operator generated by a
form 𝑏(𝑥; 𝑦) which is nonlinear in 𝑥 and linear in 𝑦 via

𝐵(𝑥)(𝑦) = 𝑏(𝑥; 𝑦) (10.1)

for any 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 .
We are interested in solving the nonlinear analogue of (1.1) using the 𝑏 in (10.1),

which we now recast as the problem of approximating a minimizer of

min
𝑥∈𝑋

1
2
∥ℓ − 𝐵(𝑥)∥2

𝑌 ∗ , (10.2)

given some ℓ ∈ 𝑌 ∗. Define nonlinear maps 𝐶 : 𝑋 → 𝑌 and 𝐽 : 𝑋 → R by
𝐶(𝑥) = 𝑅−1

𝑌
(ℓ − 𝐵(𝑥)) and 𝐽(𝑥) = 1

2 ∥𝐶(𝑥)∥2. Then finding a minimizer in (10.2) is
the same as finding

𝑥 = arg min
𝑤∈𝑋

𝐽(𝑤). (10.3)

Here we have used the isometry of the Riesz map 𝑅𝑌 in (3.1).
To compute (Gateaux) derivatives of these nonlinear maps, we use the following

notation. For any normed linear spaces𝑈,𝑉 and 𝐹 : 𝑈 → 𝑉 , we write

𝑑𝐹𝑢(𝑧) ≡ 𝑑𝐹𝑢𝑧 = lim
𝑡→0

𝐹(𝑢 + 𝑡𝑧) − 𝐹(𝑢)
𝑡

,

for any 𝑢 and 𝑧 in 𝑈, if the limit exists in the topology of 𝑉 and results in a
continuous linear operator 𝑑𝐹𝑢 : 𝑈 → 𝑉 . We proceed assuming that for the
previously introduced maps 𝐽,𝐶 and 𝐵, the derivatives 𝑑𝐽𝑥 : 𝑋 → R, 𝑑𝐵𝑥 : 𝑋 → 𝑌 ∗

and 𝑑𝐶𝑥 : 𝑋 → 𝑌 exist at any 𝑥 ∈ 𝑋 . Note that by definition 𝑑𝐽𝑥 is in 𝑋∗ (which
consists of continuous linear, not antilinear, functionals since 𝑋 is now over R).

The steepest descent iteration to approximate (10.3) uses the gradient of 𝐽, which
is an endomorphism ∇𝐽 : 𝑋 → 𝑋 defined by

(∇𝐽)(𝑥) = 𝑅−1
𝑋 𝑑𝐽𝑥 . (10.4)

Given an initial iterate 𝑥0 ∈ 𝑋 , the iteration produces 𝑥𝑛 by

𝑥𝑛+1 = 𝑥𝑛 − 𝛼 (∇𝐽)(𝑥𝑛), 𝑛 = 0, 1, 2, . . . , (10.5)

where 0 < 𝛼 ≤ 1 is the step size. Let us compute ∇𝐽. Recall our notation for
the adjoint of a linear operator 𝑀 : 𝑋 → 𝑌 ∗, namely 𝑀∗ : 𝑌 → 𝑋∗, obtained after
identifying the bidual of a Hilbert space with itself, as already mentioned in (3.9),
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namely
(𝑀∗𝑦)(𝑧) = (𝑀𝑧)(𝑦) (10.6)

for any 𝑦 ∈ 𝑌 and 𝑥 ∈ 𝑋 (with no conjugation since the spaces are now over R).

Proposition 10.1. In the above setting, for any 𝑥 ∈ 𝑋 ,

(∇𝐽)(𝑥) = −𝑅−1
𝑋 (𝑑𝐵𝑥)∗𝑅−1

𝑌 (ℓ − 𝐵(𝑥)).

Proof. For any 𝑥, 𝑧 ∈ 𝑋 , since 𝑑𝐶𝑥𝑧 = (𝑑𝑅−1
𝑌

(ℓ − 𝐵(𝑥)))(𝑧) = −𝑅−1
𝑌
𝑑𝐵𝑥𝑧 and

𝐽(𝑥) = 1
2 (𝐶(𝑥), 𝐶(𝑥))𝑌 ,

𝑑𝐽𝑥𝑧 = (𝑑𝐶𝑥𝑧, 𝐶(𝑥))𝑌 = (−𝑅−1
𝑌 𝑑𝐵𝑥𝑧, 𝐶(𝑥))𝑌

= −(𝑑𝐵𝑥𝑧)(𝐶(𝑥)) = −((𝑑𝐵𝑥)∗𝐶(𝑥))(𝑧)

by (10.6). Now the result follows from (10.4).

By Proposition 10.1, the steepest descent iteration becomes

𝑥𝑛+1 = 𝑥𝑛 + 𝛼𝑅−1
𝑋 (𝑑𝐵𝑥𝑛)∗𝑅−1

𝑌 (ℓ − 𝐵(𝑥𝑛)), 𝑛 = 0, 1, . . . . (10.7)

It is applicable for DPG formulations when the inverse of the Gram matrices of
both the 𝑋 and the 𝑌 inner products can be efficiently applied; see the discussion
in Section 10.4.

Example 10.2 (Specialization to the linear case). Suppose the operator 𝐵 in
(10.1) is a linear continuous bijection. Then 𝑑𝐵𝑥 = 𝐵 is independent of 𝑥. By
Proposition 10.1, the steepest descent iteration (10.5) then becomes

𝑥𝑛+1 = 𝑥𝑛 + 𝛼𝑅−1
𝑋 𝐵

∗𝑅−1
𝑌 (ℓ − 𝐵𝑥𝑛).

If 𝑥 is the exact solution of (1.1), then this can be rewritten as

𝑥 − 𝑥𝑛+1 =
(
𝐼 − 𝛼𝑅−1

𝑋 𝐵
∗𝑅−1
𝑌 𝐵

)
(𝑥 − 𝑥𝑛).

Consequently, if the error-reducing operator satisfies

∥𝐼 − 𝛼𝑅−1
𝑋 𝐵

∗𝑅−1
𝑌 𝐵∥ ≤ 𝑞 < 1, (10.8)

where the norm is the induced operator norm in 𝑋 , we have a contraction which
guarantees the convergence of the iterations. Note that the operator 𝑅−1

𝑋
𝐵∗𝑅−1

𝑌
𝐵 is

self-adjoint. Indeed, we have for any 𝑧, 𝑤 ∈ 𝑋 ,(
𝑅−1
𝑋 𝐵

∗𝑅−1
𝑌 𝐵𝑧, 𝑤

)
𝑋
=
〈
𝐵∗𝑅−1

𝑌 𝐵𝑧, 𝑤
〉
𝑋
=
〈
𝐵𝑤, 𝑅−1

𝑌 𝐵𝑧
〉
𝑌
=
(
𝑅−1
𝑌 𝐵𝑤, 𝑅−1

𝑌 𝐵𝑧
)
𝑌
.

Since the last expression is symmetric in 𝑧 and 𝑤, the self-adjointness follows.
Additionally, we find that the operator norm in (10.8) is the same as

𝐼 − 𝛼𝑅−1

𝑋 𝐵
∗𝑅−1
𝑌 𝐵



 = sup
𝑤∈𝑋, ∥𝑤 ∥𝑋=1

��(𝑤 − 𝛼𝑅−1
𝑋 𝐵

∗𝑅−1
𝑌 𝐵𝑤, 𝑤

)
𝑋

��
= sup
𝑤∈𝑋, ∥𝑤 ∥𝑋=1

��∥𝑤∥2
𝑋 − 𝛼∥𝐵𝑤∥2

𝑌 ∗
��.
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Using ∥𝑏∥ and the inf-sup constant 𝛾 introduced in Section 1, we know that for any
𝑤 ∈ 𝑋 ,

𝛾∥𝑤∥𝑋 ≤ ∥𝐵𝑤∥𝑌 ∗ ≤ ∥𝑏∥∥𝑤∥𝑋,

which implies

(𝛼𝛾2 − 1)∥𝑤∥2 ≤ 𝛼∥𝐵𝑤∥2
𝑌 ∗ − ∥𝑤∥2

𝑋 ≤ (𝛼∥𝑏∥2 − 1)∥𝑤∥2
𝑋 .

This shows that the sufficient condition (10.8) for convergence can be met if

−𝑞 ≤ 𝛼𝛾2 − 1 and 𝛼∥𝑏∥2 − 1 ≤ 𝑞,

or equivalently
1 − 𝑞
𝛾2 ≤ 𝛼 ≤ 1 + 𝑞

∥𝑏∥2 .

The smallest possible contraction constant

𝑞 =
∥𝑏∥2 − 𝛾2

∥𝑏∥2 + 𝛾2 =
𝐶2 − 1
𝐶2 + 1

, where 𝐶 =
∥𝑏∥
𝛾
,

is achieved when the lower and upper bounds for 𝛼 coincide. To summarize,
selecting any 𝑞 such that (𝐶2 − 1)/(𝐶2 + 1) ≤ 𝑞 < 1 and setting any 𝛼 satisfying
(1 − 𝑞)/𝛾2 ≤ 𝛼 ≤ (1 + 𝑞)/∥𝑏∥2, the steepest descent iterations with such an 𝛼
converge, and the error-reducing operator is a contractive map with a contraction
constant 𝑞 or higher.

If 𝑋 and 𝑌 are endowed with optimal norms that make 𝑏(·, ·) into a generalized
duality pairing as in Definition 3.5, then 𝛾 = ∥𝑏∥ = 𝐶 = 1. Hence 𝑞 = 0 and the
steepest descent method with 𝛼 = 1 delivers the DPG solution in just one step,
independently of the initial iterate.

10.3. Relation with the Gauss–Newton method

It is useful to compare (10.7) with the Gauss–Newton iterations (see e.g. Nocedal
and Wright 2006), which are obtained by linearizing 𝐵(𝑥) = ℓ around the current
iterate. Namely, if 𝑥𝑛 is a current iterate, then Δ𝑥 = 𝑥𝑛+1 − 𝑥𝑛 is obtained from the
approximation 𝐵(𝑥𝑛 + Δ𝑥) ≈ 𝐵(𝑥𝑛) + 𝑑𝐵𝑥𝑛Δ𝑥 by requiring

𝐵(𝑥𝑛) + 𝑑𝐵𝑥𝑛Δ𝑥 = ℓ.

One can bring in DPG techniques to solve for the increment by minimizing the
residual, that is, by finding

Δ𝑥 = arg min
𝑤∈𝑋

1
2
∥𝐵(𝑥𝑛) + 𝑑𝐵𝑥𝑛𝑤 − ℓ∥𝑌 ∗ . (10.9)

As we have shown previously (see e.g. (9.6)), an equivalent way to compute this
minimizer is by solving

(𝑑𝐵𝑥𝑛)∗𝑅−1
𝑌 𝑑𝐵𝑥𝑛 Δ𝑥 = (𝑑𝐵𝑥𝑛)∗𝑅−1

𝑌 (ℓ − 𝐵(𝑥𝑛)). (10.10)
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This is solvable when 𝑑𝐵𝑥𝑛 satisfies the inf-sup condition. Comparing (10.10) with
the increment Δ̃𝑥 of the steepest descent step iteration (10.7) with unit step size
𝛼 = 1, which solves

𝑅𝑋Δ̃𝑥 = (𝑑𝐵𝑥𝑛)∗𝑅−1
𝑌 (ℓ − 𝐵(𝑥𝑛)),

we see that the two iterations coincide with each other provided

𝑅𝑋 = (𝑑𝐵𝑥𝑛)∗𝑅−1
𝑌 𝑑𝐵𝑥𝑛 ,

that is, provided we use the step-dependent energy norm

|||Δ𝑢 |||𝑋 = ∥𝑑𝐵𝑥𝑛Δ𝑢∥𝑌 ∗

for the space 𝑋 (which, of course, is a norm when the linearized operator 𝑑𝐵𝑥𝑛
satisfies the inf-sup condition).

10.4. Trade-offs

The steepest descent iteration (10.7) requires the application of the inverse of the
Gram matrices of both the 𝑋 and 𝑌 inner products due to the presence of 𝑅−1

𝑋
and

𝑅−1
𝑌

there. In Section 4 we discussed at length the DPG localization techniques to
make 𝑅−1

𝑌
easy. However, we also need 𝑅−1

𝑋
to implement (10.5). This is a drawback

of the descent approach. Nonetheless, 𝑅𝑋 is a linear Hermitian positive definite
operator. Moreover, the component spaces of 𝑋 have norms that are either standard
norms or quotient trace norms, which may be treated as norms arising from Schur
complements of Gram matrices of standard norms. As shown in Barker, Dobrev,
Gopalakrishnan and Kolev (2018), such Schur complements and the corresponding
𝑅𝑋 can be efficiently preconditioned using off-the-shelf preconditioners.

Consider the alternative of the Newton–Raphson iterations which, in the context
of the minimum residual methodology, translates into the Gauss–Newton method.
Here we require the linearization 𝑑𝐵𝑥 to satisfy the inf-sup condition. This require-
ment is absent for the steepest descent methodology and is another reason to opt
for it. For example, in nonlinear elasticity, the linearized problem may be singular
(such as in buckling) which, in numerics, manifests as bad conditioning. In the
steepest descent approach, we need only invert well-conditioned Riesz operators.
In both methodologies we need 𝑑𝐵𝑥 , but in steepest descent we use it only to com-
pute the load, whereas in the Gauss–Newton approach we also use it to compute
and invert the stiffness matrix. Steepest descent naturally provides the possibility
of incorporating additional constraints by solving the minimum residual problem
with additional constraints. Incorporating the constraints through a penalty method
results in a minimal modification of the algorithm and, in particular, allows the
use of a penalty term that is only once differentiable; see Bristeau et al. (1985).
This is a common situation for inequality constraints. Thus the steepest descent
methodology appears to be much more robust than Gauss–Newton.

On the negative side, the steepest descent iterations deliver only linear conver-
gence compared with the quadratic convergence of Newton methods. It may be
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advantageous to combine the two methodologies into a single algorithm. For ex-
ample, one may start with the more robust steepest descent iterations and finish
with Gauss–Newton iterations once the increments become small enough.

11. Further pointers and conclusion
We conclude this review by giving brief pointers to topics we have not covered. To
keep this review manageable, we have omitted details of many DPG-based tech-
niques, including DPG-style residual minimization in non-Hilbert norms (Muga
and van der Zee 2020), polygonal elements (Vaziri Astaneh, Fuentes, Mora and
Demkowicz 2018), fractional norms (Bacuta, Demkowicz, Mora and Xenophontos
2021a), regularization of rough functionals (Millar, Muga, Rojas and Van der Zee
2022), dispersion analysis (Gopalakrishnan et al. 2014), eigensolvers using con-
tour integrals (Gopalakrishnan, Grubišić, Ovall and Parker 2020), DPG eigenvalue
error indicators (Bertrand, Boffi and Schneider 2023) and connections with non-
conforming methods developed in Carstensen et al. (2014b). Works on residual
minimization under constraints include those of Ellis, Demkowicz and Chan (2014)
and Ellis, Chan and Demkowicz (2016), who consider elementwise conservation,
and Li and Demkowicz (2024), with circulation constraints around holes in the
domain.

Discussion of coupling of DPG methods with other methods was also omitted:
a variational formulation applying the DPG methodology to coupling boundary
integral operators was developed in Heuer and Karkulik (2015), but it led to non-
local optimal test functions boundary element degrees of freedom. This difficulty
was later overcome by Führer, Heuer and Karkulik (2017), who provided a frame-
work to efficiently couple the DPG method to Galerkin boundary element method
(BEM) or other numerical methods. Specifics on coupling of DPG and standard
finite element methods can be found in Führer, Heuer, Karkulik and Rodrı́guez
(2018b), and an application to a singularly perturbed transmission problem can
be found in Führer and Heuer (2017). A DPG BEM for hypersingular boundary
integral operators in three dimensions can be found in Heuer and Karkulik (2017a).

The DPG method has been applied to many applications, including incompress-
ible flows (Roberts, Bui-Thanh and Demkowicz 2014, Roberts et al. 2015), com-
pressible flows (Chan et al. 2014a), the Cahn–Hilliard equation (Valseth, Romkes
and Kaul 2021) and shallow water equations (Valseth and Dawson 2022). Applic-
ations to elasticity that we have not had a chance to detail include the work on
the Kirchhoff–Love model (Führer, Heuer and Niemi 2019) for thin-structure de-
formation. They discuss conformity for bending moments in 𝐻(div div), the space
of symmetric 𝐿2-tensors 𝜏 with div div(𝜏) in 𝐿2, appropriate for problems with
non-convex corners. Their analysis and discretization is motivated by the DPG
approach for ultraweak formulations; specifically, a conforming discretization of
bending moments in Führer et al. (2019) was achievable by the restriction to traces,
possible by the ultraweak DPG setting. Other works applying DPG ideas to plates
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and shells include those of Calo, Collier and Niemi (2014), Führer, Heuer and
Niemi (2022, 2023) and Führer, Heuer and Sayas (2020).

DPG ideas are playing an important role in development of parameter-robust
methods. The work of Broersen, Dahmen and Stevenson (2018) gave stability
estimates for the DPG method applied to the linear transport equation that are
uniform in the relative orientation of the local mesh and the advection direction.
For singularly perturbed problems, specifically for advection-dominated diffusion,
parameter-robust stability was confirmed in Demkowicz and Heuer (2013) and
Chan, Heuer, Bui-Thanh and Demkowicz (2014b). The case of reaction-dominated
diffusion was studied in Heuer and Karkulik (2017b).

One of the attractive features of the DPG method is that it only requires the solu-
tion of a symmetric positive definite system, even when the original boundary value
problem is non-self-adjoint. This can be leveraged in the design of iterative solvers
and high performance computing. In Barker et al. (2018), one can find specifics
on how to combine off-the-shelf algebraic preconditioners effectively to develop
highly scalable DPG solvers. A DPG solver for harmonic wave propagation, in-
tegrated within an adaptive procedure, through a two-grid-like preconditioner for
the conjugate gradient method, was developed in Petrides and Demkowicz (2017)
as well as in Badger, Henneking, Petrides and Demkowicz (2023); it exhibits
excellent practical efficiency. Connecting DPG with other similar saddle-point
least-squares systems, certain solvers are suggested in Bacuta, Hayes and Jacavage
(2021b). Parameter robustness in DPG solvers is still highly sought after in specific
applications and remains an active area of research.

The design of stable spacetime formulations by DPG techniques is another topic
we have not detailed in this review, except for the early work in Demkowicz et al.
(2017), which is applicable beyond spacetime problems. Since then, spacetime
DPG formulations for transient waves have been studied in Gopalakrishnan and
Sepúlveda (2019), Sepúlveda (2018) and Ernesti and Wieners (2019), and a space-
time DPG method for the heat equation was developed in Diening and Storn (2022).
The approach of Demkowicz et al. (2017) to prove wellposedness in graph spaces
(along the lines of the theory of Friedrichs systems) was found to be difficult for
various spacetime problems. A new approach has been proposed in the recent
work of Führer, González and Karkulik (2024) using Bochner spaces. This shows
promise for reducing the technicalities in proving convergence of DPG and residual
minimization methods for spacetime methods.

An exciting new frontier is the use of DPG ideas for variationally correct machine
learning approaches. The very recent work of Rojas et al. (2024) defines a quadratic
loss functional, motivated by DPG-type formulations, within a physics-informed
neural network to solve a boundary value problem (and earlier developments in
physics-informed neural networks can be found in Kharazmi, Zhang and Karniada-
kis 2021). The recent work of Bachmayr, Dahmen and Oster (2024) centres around
learning the parameter-to-solution map for systems of partial differential equa-
tions that depend on a potentially large number of parameters. These works show
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emerging techniques based on DPG formulations with a variationally correct resid-
ual (measured in a dual norm like the ones we have seen in earlier sections) forming
the basis for loss functionals in machine learning. The tools we have developed
here can be used to establish that a loss function based on such dual residuals is
uniformly proportional to the squared solution error in a mathematically correct
norm. Such results show potential to augment machine learning predictions with
rigorous a posteriori accuracy control. Other recent works that combine machine
learning with DPG and residual minimization ideas include Brevis et al. (2024)
and Brevis, Muga and van der Zee (2022).

These references show the wide variety of topics that the DPG ideas have im-
pacted. The essential theoretical underpinnings of the DPG methodology, discussed
earlier, should be enough preparation to delve into the above-mentioned works for
further studies. We limited the scope of earlier sections by selecting topics for
discussion that have potential applicability to a large variety of boundary value
problems. Discussions of specific boundary value problems have been delineated
as brief examples throughout, but the cited original sources are recommended for
a complete picture of each case.
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method for the Schrödinger equation, SIAM J. Numer. Anal. 55, 1740–1759.

L. Diening and J. Storn (2022), A space-time DPG method for the heat equation, Comput.
Math. Appl. 105, 41–53.

I. Ekeland and R. Témam (1999), Convex Analysis and Variational Problems, Vol. 28 of
Classics in Applied Mathematics, SIAM.

T. Ellis, J. Chan and L. Demkowicz (2016), Robust DPG methods for transient convection–
diffusion, in Building Bridges: Connections and Challenges in Modern Approaches to
Numerical Partial Differential Equations (G. R. Barrenechea et al., eds), Vol. 114 of
Lecture Notes in Computational Science and Engineering, Springer.

T. Ellis, L. Demkowicz and J. Chan (2014), Locally conservative discontinuous Petrov–
Galerkin finite elements for fluid problems, Comput. Math. Appl. 68, 1530–1549.

A. Ern and J.-L. Guermond (2021), Finite Elements II, Springer.
A. Ern, J.-L. Guermond and G. Caplain (2007), An intrinsic criterion for the bijectivity of

Hilbert operators related to Friedrichs’ systems, Commun. Partial Differential Equations
32, 317–341.

J. Ernesti and C. Wieners (2019), A space-time discontinuous Petrov–Galerkin method for
acoustic waves, in Space-Time Methods: Applications to Partial Differential Equations
(U. Langer and O. Steinbach, eds), De Gruyter, pp. 89–116.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492924000102
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 25 Jul 2025 at 19:50:24, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492924000102
https://www.cambridge.org/core


382 L. Demkowicz and J. Gopalakrishnan

K. O. Friedrichs (1958), Symmetric positive linear differential equations, Commun. Pure
Appl. Math. 11, 333–418.

T. Führer (2018), Superconvergence in a DPG method for an ultra-weak formulation,
Comput. Math. Appl. 75, 1705–1718.

T. Führer and N. Heuer (2017), Robust coupling of DPG and BEM for a singularly perturbed
transmission problem, Comput. Math. Appl. 74, 1940–1954.

T. Führer and N. Heuer (2019), Fully discrete DPG methods for the Kirchhoff–Love plate
bending model, Comput. Methods Appl. Mech. Engrg 343, 550–571.

T. Führer and N. Heuer (2024), Robust DPG test spaces and Fortin operators: The 𝐻1 and
𝐻(div) cases, SIAM J. Numer. Anal. 62, 718–748.
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