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Mixed f -divergence for Multiple Pairs of
Measures

Elisabeth Werner and Deping Ye

Abstract. In this paper, the concept of the classical f -divergence for a pair of measures is extended
to themixed f -divergence for multiple pairs of measures. _emixed f -divergence provides a way to
measure the diòerence between multiple pairs of (probability) measures. Properties for the mixed
f -divergence are established, such as permutation invariance and symmetry in distributions. An
Alexandrov–Fenchel type inequality and an isoperimetric inequality for the mixed f -divergence
are proved.

1 Introduction

In applications such as pattern matching, image analysis, statistical learning, and in-
formation theory, one o�enneeds to compare two (probability)measures and to know
whether they are similar to each other. Hence, ûnding the “right” quantity to measure
the diòerence between two (probability) measures P and Q is central. Traditionally,
people use the classical Lp distances between P andQ, such as the variational distance
and the L2 distance. However, the family of f -divergences is o�en more suitable to
fulûll the goal than the classical Lp distance of measures.

_e f -divergence D f (P,Q) of two probability measures P and Q was ûrst intro-
duced in [8] and independently in [2, 30] and was deûned by

(1.1) D f (P,Q) = ∫
X
f (

p
q
)q dµ.

Here, p and q are density functions of P and Q with respect to a measure µ on X. _e
idea behind the f -divergence is to replace, for instance, the function f (t) = ∣t − 1∣
in the variational distance by a general convex function f . Hence, the f -divergence
includes various widely used divergences as special cases, such as, the variational dis-
tance, theKullback–Leibler divergence [16], the Bhattacharyya distance [5], andmany
more. Consequently, the f -divergence receives considerable attention not only in the
information theory (e.g., [3,7,14,17,31]) but also inmany other areas. We onlymention
convex geometry. Within the last few years, amazing connections have been discov-
ered between notions and concepts from convex geometry and information theory,
e.g., [9,10,15,24,25,32], leading to a totally new point of view and introducing a whole
new set of tools in the area of convex geometry. In particular, it was observed in
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[38] that one of the most important aõne invariant notions, the Lp-aõne surface
area for convex bodies, e.g., [18–20,22,34], is Rényi entropy from information theory
and statistics. Rényi entropies are special cases of f -divergences and, consequently,
were then introduced for convex bodies, and their corresponding entropy inequalities
have been established in [39]. We also refer to [4], for more references related to the
f -divergence.
Extension of the f -divergence from two (probability) measures to multiple (prob-

ability) measures is fundamental in many applications, such as statistical hypothe-
sis test and classiûcation to which much research has been devoted, for instance in
[28, 29, 42]. Such extensions include, e.g., the Matusita aõnity [26, 27], the Toussaint
aõnity [37], the information radius [36] and the average divergence [35].

_e f-dissimilarity Df(P1 , . . . , Pl) for (probability) measures P1 , . . . , Pl , intro-
duced in [11, 12] for a convex function f ∶Rl → R, is a natural generalization of the
f -divergence. It is deûned as

Df(P1 , . . . , Pl) = ∫
X
f(p1 , . . . , p l) dµ,

where the p i ’s are density functions of the Pi ’s that are absolutely continuous with
respect to µ. For a convex function f , the function f(x , y) = y f (x/y) is also convex
on x , y > 0, and Df(P,Q) is equal to the classical f -divergence deûned in formula
(1.1). Note that the Matusita aõnity is related to

f(x1 , . . . , x l) = −
l
∏
i=1

x 1/l
i ,

and the Toussaint aõnity is related to f(x1 , . . . , x l) = −∏
l
i=1 x

a i
i , where a i ≥ 0 and

such that∑l
i=1 a i = 1.

Here, we introduce special f-dissimilarities, namely the mixed f -divergence and
the i-th mixed f -divergence, which can be viewed as vector forms of the usual f -di-
vergence. We establish some basic properties of these quantities such as permutation
invariance and symmetry in distributions. We prove an isoperimetric type inequality
and anAlexandrov–Fenchel type inequality for themixed f -divergence. Alexandrov–
Fenchel inequality is a fundamental inequality in convex geometry, and many im-
portant inequalities such as the Brunn–Minkowski inequality and Minkowski’s ûrst
inequality follow from it (see, e.g., [9, 33]).

_e paper is organized as follows. In Section 2 we establish some basic properties
of the mixed f -divergence such as permutation invariance and symmetry in distribu-
tions. In Section 3 we prove the general Alexandrov–Fenchel inequality and isoperi-
metric inequality for themixed f -divergence. Section 4 is dedicated to the i-thmixed
f -divergence and its related isoperimetric type inequalities.

2 The Mixed f -Divergence

_roughout this paper, let (X , µ) be a ûnite measure space. For 1 ≤ i ≤ n, let Pi =

p iµ and Q i = q iµ be probability measures on X that are absolutely continuous with
respect to the measure µ. Moreover, we assume that for all i = 1, . . . , n, p i and q i are
nonzero µ-a.e. We use P⃗ and Q⃗ to denote the vectors of probability measures, or, in
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short, probability vectors,

P⃗ = (P1 , P2 , . . . , Pn), Q⃗ = (Q1 ,Q2 , . . . ,Qn).

We use p⃗ and q⃗ to denote the vectors of density functions, or density vectors, for P⃗
and Q⃗ respectively,

dP⃗
dµ

= p⃗ = (p1 , p2 , . . . , pn),
dQ⃗
dµ

= q⃗ = (q1 , q2 , . . . , qn).

We make the convention that 0 ⋅ ∞ = 0.
Denote by R+ = {x ∈ R ∶ x ≥ 0}. Let f ∶ (0,∞) → R+ be a non-negative convex or

concave function. _e ∗-adjoint function f ∗∶ (0,∞) → R+ of f is deûned by

f ∗(t) = t f (1/t).

It is obvious that ( f ∗)∗ = f and that f ∗ is again convex (resp. concave) if f is convex
(resp. concave).

Let f i ∶ (0,∞) → R+, 1 ≤ i ≤ n, be either convex or concave functions. Denote by
f⃗ = ( f1 , f2 , . . . , fn) the vector of functions. We write

f⃗∗ = ( f ∗1 , f
∗

2 , . . . , f
∗

n )

to be the ∗-adjoint vector for f⃗ .
Now we introduce the mixed f -divergence for (f⃗ , P⃗, Q⃗) as follows.

Deûnition 2.1 Let (X , µ) be ameasure space. Let P⃗ and Q⃗ be twoprobability vectors
on X with density vectors p⃗ and q⃗, respectively. _emixed f -divergenceDf⃗(P⃗, Q⃗) for
(f⃗ , P⃗, Q⃗) is deûned by

(2.1) Df⃗(P⃗, Q⃗) = ∫
X

n
∏
i=1

[ f i(
p i

q i
)q i]

1
n
dµ.

Similarly, we deûne the mixed f -divergence for (f⃗ , Q⃗, P⃗) by

(2.2) Df⃗(Q⃗, P⃗) = ∫X

n
∏
i=1

[ f i(
q i

p i
) p i]

1
n
dµ.

A special case is when all distributions Pi and Q i are identical and equal to a proba-
bility distribution P. In this case,

Df⃗(P⃗, Q⃗) = D( f1 , f2 , . . . , fn)((P, P, . . . , P), (P, P, . . . , P)) =
n
∏
i=1

[ f i(1)]
1
n .

Let π ∈ Sn denote a permutation on {1, 2, . . . , n} and denote

π(p⃗) = (pπ(1) , pπ(2) , . . . , pπ(n)).

One immediate result from Deûnition 2.1 is the following permutation invariance for
Df⃗(P⃗, Q⃗).

Proposition 2.2 (Permutation invariance) Let the vectors f⃗ , P⃗, Q⃗ be as above, and let
π ∈ S(n) be a permutation on {1, 2, . . . , n}. _en

Df⃗(P⃗, Q⃗) = Dπ(f⃗)(π(P⃗), π(Q⃗)) .
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When all ( f i , Pi ,Q i) are equal to ( f , P,Q), the mixed f -divergence is equal to the
classical f -divergence, denoted by D f (P,Q), which takes the form

D f (P,Q) = D( f , f , . . . , f )((P, P, . . . , P), (Q ,Q , . . . ,Q)) = ∫
X
f (

p
q
)qdµ.

As f ∗(t) = t f (1/t), one easily obtains a fundamental property for the classical f -di-
vergence D f (P,Q), namely,

D f (P,Q) = D f ∗(Q , P),

for all ( f , P,Q). Similar results hold true for the mixed f -divergence. We show this
now.

Let 0 ≤ k ≤ n. We write Df⃗ ,k(P⃗, Q⃗) for

Df⃗ ,k(P⃗, Q⃗) = ∫
X

k
∏
i=1

[ f i(
p i

q i
)q i]

1
n
×

n
∏

i=k+1
[ f ∗i (

q i

p i
) p i]

1
n
dµ.

Clearly, Df⃗ ,n(P⃗, Q⃗) = Df⃗(P⃗, Q⃗) and Df⃗ ,0(P⃗, Q⃗) = Df⃗∗(Q⃗, P⃗), where

f⃗∗ = ( f ∗1 , f
∗

2 , . . . , f
∗

n ).

_en we have the following result for changing order of distributions.

Proposition 2.3 (Principle for changing order of distributions) Let f⃗ , P⃗, Q⃗ be as
above. _en, for any 0 ≤ k ≤ n, one has Df⃗(P⃗, Q⃗) = Df⃗ ,k(P⃗, Q⃗). In particular,
Df⃗(P⃗, Q⃗) = Df⃗∗(Q⃗, P⃗).

Proof Let 0 ≤ k ≤ n. _en

Df⃗(P⃗, Q⃗) = ∫
X

k
∏
i=1

[ f i(
p i

q i
)q i]

1
n
×

n
∏

i=k+1
[ f i(

p i

q i
)q i]

1
n dµ

= ∫
X

k
∏
i=1

[ f i(
p i

q i
)q i]

1
n
×

n
∏

i=k+1
[ f ∗i (

q i

p i
) p i]

1
n
dµ = Df⃗ ,k(P⃗, Q⃗),

where the second equality follows from f i(
p i
q i
)q i = f ∗i (

q i
p i
)p i .

A direct consequence of Proposition 2.3 is the following symmetry principle for
the mixed f -divergence.

Proposition 2.4 (Symmetry in distributions) Let f⃗ , P⃗, Q⃗ be as above. _en
Df⃗(P⃗, Q⃗) + Df⃗∗(P⃗, Q⃗) is symmetric in P⃗ and Q⃗, namely,

Df⃗(P⃗, Q⃗) + Df⃗∗(P⃗, Q⃗) = Df⃗(Q⃗, P⃗) + Df⃗∗(Q⃗, P⃗).

Remark Proposition 2.3 says that Df⃗(P⃗, Q⃗) remains the same if one replaces any
triple ( f i , Pi ,Q i) by ( f ∗i ,Q i , Pi). It is also easy to see that, for all 0 ≤ k, l ≤ n, one has

Df⃗(P⃗, Q⃗) = Df⃗ ,k(P⃗, Q⃗) = Df⃗∗ , l(Q⃗, P⃗) = Df⃗∗(Q⃗, P⃗).
Hence, for all 0 ≤ k, l ≤ n,

Df⃗ ,k(P⃗, Q⃗) + Df⃗∗ , l(P⃗, Q⃗) = Df⃗(P⃗, Q⃗) + Df⃗∗(P⃗, Q⃗)

is symmetric in P⃗ and Q⃗.
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Herea�er, we only consider the mixed f -divergence Df⃗(P⃗, Q⃗) deûned in formula
(2.1). Properties for the mixed f -divergence Df⃗(Q⃗, P⃗) deûned in (2.2) follow along
the same lines.

Now we list some important mixed f -divergences.

Examples (i) _e total variation is a widely used f -divergence to measure the
diòerence between two probability measures P and Q on (X , µ). It is related to func-
tion f (t) = ∣t − 1∣. Similarly, themixed total variation is deûned by

DTV(P⃗, Q⃗) = ∫
X

n
∏
i=1

∣p i − q i ∣
1
n dµ.

It measures the diòerence between two probability vectors P⃗ and Q⃗.
(ii) For a ∈ R, we denote by a+ = max{a, 0}. _emixed relative entropy or mixed

Kullback–Leibler divergence of P⃗ and Q⃗ is deûned by

DKL( P⃗, Q⃗) = D( f+ , . . . , f+)( P⃗, Q⃗) = ∫
X

n
∏
i=1

[ p i ln (
q i

p i
)]

1
n

+

dµ,

where f (t) = t ln t. When Pi = P = pµ and Q i = Q = qµ for all i = 1, 2, . . . , n, we get
the (modiûed) relative entropy or Kullback–Leibler divergence

DKL(P∣∣Q) = ∫
X
p[ ln(

q
p
)]

+

dµ.

(iii) For the (convex and/or concave) functions fα i (t) = tα i , α i ∈ R for 1 ≤ i ≤ n,
themixed Hellinger integrals is deûned by

D( fα1 , fα2 , . . . , fαn )( P⃗, Q⃗) = ∫
X

n
∏
i=1

[ p
αi
n
i q

1−αi
n

i ]dµ.

In particular,

D(tα ,tα , . . . ,tα)( P⃗, Q⃗) = ∫
X

n
∏
i=1

p
α
n
i q

1−α
n

i dµ.

_ose integrals are related to the Toussaint’s aõnity [37] and can be used to deûne the
mixed α-Rényi divergence

Dα({Pi ∣∣Q i}
n
i=1) =

1
α − 1

ln ( ∫
X

n
∏
i=1

p
α
n
i q

1−α
n

i dµ) =
1

α − 1
ln [D(tα ,tα , . . . ,tα)( P⃗, Q⃗)] .

_e case α i =
1
2 , for all i = 1, 2, . . . , n, gives the mixed Bhattacharyya coeõcient or

mixed Bhattacharyya distance of (P⃗, Q⃗),

D
(
√

t ,
√

t , . . . ,
√

t)
( P⃗, Q⃗) = ∫

X

n
∏
i=1

p
1
2n
i q

1
2n
i dµ.

_is integral is related to the Matusita’s aõnity [26,27]. For more information on the
corresponding f -divergences, we refer the reader to [17].

(iv) In view of existing connections between information theory and convex ge-
ometry (e.g., [32, 38,39]), we deûne the mixed f -divergences for convex bodies (con-
vex and compact subsets in Rn with nonempty interiors) K i with positive curvature
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functions fK i , 1 ≤ i ≤ n, is via the measures

dPK i =
1

hn
K i

dσ and dQK i = fK i hK i dσ , 1 ≤ i ≤ n.

Here, σ is the spherical measure of the unit sphere Sn−1, hK(u) = maxx∈K⟨x , u⟩ is
the support function of K, and fK(u) is the curvature function of K at u ∈ Sn−1, the
reciprocal of the Gauss curvature at x on the boundary of K with unit outer normal
u. If f i ∶ (0,∞) → R+, 1 ≤ i ≤ n, are convex and/or concave functions, then

Df⃗((PK1 , . . . , PKn), (QK1 , . . . ,QKn)) = ∫
Sn−1

n
∏
i=1

[ f i(
1

fK i hn+1
K i

) fK i hK i ]

1
n
dσ ,

are the general mixed aõne surface areas introduced in [41]. We refer to [33] for more
details on convex bodies.

3 Inequalities

_e classical Alexandrov–Fenchel inequality for mixed volumes of convex bodies is
a fundamental result in (convex) geometry. A general version of this inequality for
mixed volumes of convex bodies can be found in [1, 6, 33]. Alexandrov–Fenchel type
inequalities for (mixed) aõne surface areas can be found in [21, 22, 40, 41]. Now we
prove an inequality for themixed f -divergence formeasures, whichwe call anAlexan-
drov–Fenchel type inequality because of its formal resemblance to be an Alexandrov–
Fenchel type inequality for convex bodies.
Following [13], we say that two functions f and g are eòectively proportional if there

are constants a and b, not both zero, such that a f = bg. Functions f1 , . . . , fm are
eòectively proportional if every pair ( f i , f j), 1 ≤ i , j ≤ m is eòectively proportional.
A null function is eòectively proportional to any function. _ese notions will be used
in the following theorems.
For a measure space (X , µ) and probability densities p i and q i , 1 ≤ i ≤ n, we put

(3.1) g0(u) =
n−m
∏
i=1

[ f i(
p i

q i
)q i]

1
n
,

and for j = 0, . . . ,m − 1,

(3.2) g j+1(u) = [ fn− j(
pn− j

qn− j
)qn− j]

1
n
.

For a vector p⃗, we let p⃗ n ,k = (p1 , . . . , pn−m , pk , . . . , pk
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

), k > n −m.

_eorem 3.1 Let (X , µ) be a measure space. For 1 ≤ i ≤ n, let Pi and Q i be prob-
ability measures on (X , µ) with density functions p i and q i , respectively µ-a.e. Let
f i ∶ (0,∞) → R+, 1 ≤ i ≤ n, be convex functions. _en for 1 ≤ m ≤ n,

[Df⃗(P⃗, Q⃗)]
m
≤

n

∏
k=n−m+1

D ⃗f n ,k( P⃗
n ,k , Q⃗n ,k) .
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Equality holds if and only if one of the functions g
1
m
0 g i , 1 ≤ i ≤ m, is null or all are

eòectively proportional µ-a.e.
If m = n,

[Df⃗(P⃗, Q⃗)]
n
≤

n
∏
i=1
D f i (Pi ,Q i),

with equality if and only if one of the functions f j(
p j
q j
)q j , 0 ≤ j ≤ n, is null or all are

eòectively proportional µ-a.e.

Remark 3.2 (i) In particular, equality holds in _eorem 3.1 if all (Pi ,Q i) coin-
cide, and f i = λ i f for some convex positive function f and λ i ≥ 0, i = 1, 2, . . . , n.

(ii) _eorem 3.1 still holds true if the functions f i are concave.

Proof We let g0 and g j+1, j = 0, . . . ,m− 1 as in (3.1) and (3.2). By Hölder’s inequality
(see [13]),

[Df⃗(P⃗, Q⃗)]
m
= (∫

X
g0(u)g1(u) ⋅ ⋅ ⋅ gm(u) dµ)

m

= ( ∫
X

m−1
∏
j=0

[ g0(u)g j+1(u)m]
1
m dµ)

m

≤
m−1
∏
j=0

(∫
X
g0(u)gm

j+1(u) dµ) =
n

∏
k=n−m+1

D ⃗f n ,k( P⃗
n ,k , Q⃗n ,k) .

Equality holds in Hölder’s inequality if and only if one of the functions g
1
m
0 g i , 1 ≤ i ≤

m, is null or all are eòectively proportional µ-a.e. In particular, this is the case, if
for all i = 1, . . . , n, (Pi ,Q i) = (P,Q) and f i = λ i f for some convex function f and
λ i ≥ 0.

We require some properties of f -divergences for our next result. Let f ∶ (0,∞) →

R+ be a convex function. By Jensen’s inequality,

(3.3) D f (P,Q) = ∫
X
f (

p
q
)q dµ ≥ f (∫

X
p dµ) = f (1),

for all pairs of probability measures (P,Q) on (X , µ) with nonzero density functions
p and q respectively µ-a.e. When f is linear, equality holds trivially in (3.3) . When
f is strictly convex, equality holds true if and only if p = q µ-a.e. If f is a concave
function, Jensen’s inequality implies

(3.4) D f (P,Q) = ∫
X
f (

p
q
)q dµ ≤ f (∫

X
p dµ) = f (1)

for all pairs of probability measures (P,Q). Again, when f is linear, equality holds
trivially. When f is strictly concave, equality holds true if and only if p = q µ-a.e.
For the mixed f -divergence with concave functions, one has the following result.

_eorem 3.3 Let (X , µ) be a measure space. For all 1 ≤ i ≤ n, let Pi and Q i be
probability measures on X whose density functions p i and q i are nonzero µ-a.e. Let
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f i ∶ (0,∞) → R+, 1 ≤ i ≤ n, be concave functions. _en

(3.5) [Df⃗(P⃗, Q⃗)]
n
≤

n
∏
i=1
D f i (Pi ,Q i) ≤

n
∏
i=1
f i(1).

If in addition, all f i are strictly concave, equality holds if and only if there is a probability
density p such that for all i = 1, 2, . . . , n, p i = q i = p, µ − a.e .

Proof _eorem 3.1 and Remark 3.2 imply that for all concave functions f i ,

[Df⃗(P⃗, Q⃗)]
n
≤

n
∏
i=1
D f i (Pi ,Q i) ≤

n
∏
i=1
f i(1),

where the second inequality follows from inequality (3.4) and f i ≥ 0.
Suppose now that for all i, p i = q i = p, µ-a.e., where p is a ûxed probability den-

sity. _en equality holds trivially in (3.5). Conversely, suppose that equality holds in
(3.5). _en, in particular, equality holds in Jensen’s inequality, which, as noted above,
happens if and only if p i = q i for all i. _us,

Df⃗(P⃗, Q⃗) = (
n
∏
i=1

[ f i(1)]1/n) ∫
X
q1/n
1 ⋅ ⋅ ⋅ q1/n

n dµ.

Note also that if all f i ∶ (0,∞) → R+ are strictly concave, then f i(1) /= 0 for all 1 ≤ i ≤
n. Equality characterization in Hölder’s inequality implies that all q i are eòectively
proportional µ-a.e. As all q i are probability measures, they are all equal (µ-a.e.) to a
probability measure with density function (say) p.

Remark If f i(t) = a i t + b i are all linear and positive, then equality holds if and
only if all p i , q i are equal (µ-a.e.) as convex combinations, i.e., if and only if for all
i , j,

a i

a i + b i
p i +

b i

a i + b i
q i =

a j

a j + b j
p j +

b j

a j + b j
q j , µ − a.e.

4 The i-th Mixed f -divergence

Let (X , µ) be ameasure space. _roughout this section, we assume that the functions

f1 , f2∶ (0,∞) Ð→ {x ∈ R ∶ x > 0},

are convex or concave and that P1 , P2 ,Q1 ,Q2 are probability measures on X with den-
sity functions p1 , p2 , q1 , q2 that are nonzero µ-a.e. We also write

f⃗ = ( f1 , f2), P⃗ = (P1 , P2), Q⃗ = (Q1 ,Q2).

Deûnition 4.1 Let i ∈ R. _e i-th mixed f -divergence for ( f⃗ , P⃗, Q⃗), denoted by
D ⃗f (P⃗, Q⃗; i), is deûned as

(4.1) D ⃗f (P⃗, Q⃗; i) = ∫
X
[ f1(

p1

q1
)q1]

i
n
[ f2(

p2

q2
)q2]

n−i
n
dµ.

Remarks Note that the i-th mixed f -divergence is deûned for any combination of
convexity and concavity of f1 and f2, namely, both f1 and f2 concave, or both f1 and
f2 convex, or one is convex the other is concave.
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It is easily checked that

D ⃗f (P⃗, Q⃗; i) = D( f2 , f1)((P2 ,Q2), (P1 ,Q1); n − i) .

If 0 ≤ i ≤ n is an integer, then the triple ( f1 , P1 ,Q1) appears i-times, while the triple
( f2 , P2 ,Q2) appears (n− i) times inD ⃗f (P⃗, Q⃗; i). Note that if i = 0, thenD ⃗f (P⃗, Q⃗; i) =
D f2(P2 ,Q2), and if i = n, then D ⃗f (P⃗, Q⃗; i) = D f1(P1 ,Q1).
Another special case is when P2 = Q2 = µ almost everywhere and µ is

also a probability measure. _en such an i-th mixed f -divergence, denoted by
D(( f1 , P1 ,Q1), i; f2), has the form

D(( f1 , P1 ,Q1), i; f2) = [ f2(1)]1−i/n
∫
X
[ f1(

p1

q1
)q1]

i
n
dµ.

Examples and Applications (i) For f (t) = ∣t − 1∣, we get the i-th mixed total
variation

DTV( P⃗, Q⃗; i) = ∫
X
∣p1 − q1∣

i
n ∣p2 − q2∣

n−i
n dµ.

(ii) For f1(t) = f2(t) = [t ln t]+, we get the (modiûed) i-th mixed relative entropy
or i-th mixed Kullback–Leibler divergence

DKL( P⃗, Q⃗; i) = ∫
X
[ p1 ln(

p1

q1
)]

i
n

+

[ p2 ln(
p2

q2
)]

n−i
n

+

dµ.

(iii) For the convex or concave functions fα j(t) = tα j , j = 1, 2, we get the i-th
mixed Hellinger integrals

D( fα1 , fα2 )( P⃗, Q⃗; i) = ∫
X
(pα1

1 q1−α1
1 )

i
n (pα22 q1−α2

2 )
n−i
n dµ.

In particular, for α j = α, for j = 1, 2,

D( fα , fα)( P⃗, Q⃗; i) = ∫
X
(pα1 q

1−α
1 )

i
n (pα2 q

1−α
2 )

n−i
n dµ.

_is integral can be used to deûne the i-th mixed α-Rényi divergence

Dα( P⃗, Q⃗; i) =
1

α − 1
ln[D( fα , fα)( P⃗, Q⃗; i)] .

_e case α i =
1
2 for all i gives

D
(

√

t ,
√

t)( P⃗, Q⃗; i) = ∫
X
(p1q1)

i
2n (p2q2)

n−i
2n dµ,

the i-th mixed Bhattacharyya coeõcient or i-th mixed Bhattacharyya distance of p i
and q i .

(iv) Important applications are again in the theory of convex bodies. As in Sec-
tion 2, let K1 and K2 be convex bodies with positive curvature function. For l = 1, 2,
let

dPK l =
1

hn
K l

dσ and dQK l = fK l hK l dσ .
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Let f l ∶ (0,∞) → R, l = 1, 2, be positive convex functions. _en we deûne the i-th
mixed f -divergence for convex bodies K1 and K2 by

D ⃗f ((PK1 , PK2), (QK1 ,QK2); i) =

∫
Sn−1

[ f1(
1

fK1hn+1
K1

) fK1hK1]

i
n
[ f2(

1
fK2hn+1

K2

) fK2hK2]

n−i
n
dσ .

_ese are the general i-th mixed aõne surface areas introduced in [41].

_e following result holds for all possible combinations of convexity and concavity
of f1 and f2.

Proposition 4.2 Let f⃗ , P⃗, Q⃗ be as above. If j ≤ i ≤ k or k ≤ i ≤ j, then

D ⃗f (P⃗, Q⃗; i) ≤ [D ⃗f (P⃗, Q⃗; j)]
k−i
k− j × [D ⃗f (P⃗, Q⃗; k)]

i− j
k− j .

Equality holds trivially if i = k or i = j. Otherwise, equality holds if and only if one of the
functions f i(p i/q i)q i , i = 1, 2, is null, or f1(p1/q1)q1 and f2(p2/q2)q2 are eòectively
proportional µ-a.e. In particular, this holds if (P1 ,Q1) = (P2 ,Q2) and f1 = λ f2 for some
λ > 0.

Proof By formula (4.1), one has

D ⃗f (P⃗, Q⃗; i) = ∫
X
[ f1(

p1

q1
)q1]

i
n
[ f2(

p2

q2
)q2]

n−i
n
dµ

= ∫
X
{[ f1(

p1

q1
)q1]

j
n
[ f2(

p2

q2
)q2]

n− j
n
}

k−i
k− j

× {[ f1(
p1

q1
)q1]

k
n
[ f2(

p2

q2
)q2]

n−k
n
}

i− j
k− j

dµ

≤ [D ⃗f (P⃗, Q⃗; j)]
k−i
k− j × [D ⃗f (P⃗, Q⃗; k)]

i− j
k− j ,

where the last inequality follows from Hölder’s inequality and formula (4.1). _e
equality characterization follows from the one in Hölder inequality. In particular,
if (P1 ,Q1) = (P2 ,Q2), and f1 = λ f2 for some λ > 0, equality holds.

Corollary 4.3 Let f1 and f2 be positive, concave functions on (0,∞). _en for all
P⃗, Q⃗ and for all 0 ≤ i ≤ n,

[D ⃗f (P⃗, Q⃗; i)]
n
≤ [ f1(1)]i[ f2(1)]n−i .

If in addition, f1 and f2 are strictly concave, equality holds if and only if p1 = p2 = q1 =

q2 µ-a.e.

Proof Let j = 0 and k = n in Proposition 4.2. _en for all 0 ≤ i ≤ n,

[D ⃗f (P⃗, Q⃗; i)]
n
≤ [D f1(P1 ,Q1)]

i
[D f2(P2 ,Q2)]

n−i
≤ [ f1(1)]

i
[ f2(1)]

n−i
,

where the last inequality follows from inequality (3.4).
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To have equality, the above inequalities should be equalities. Proposition 4.2 im-
plies that f1(p1/q1)q1 and f2(p2/q2)q2 are eòectively proportional µ-a.e. As both
f1 and f2 are strictly concave, Jensen’s inequality requires that p1 = q1 and p2 = q2
µ-a.e. _erefore, equality holds if and only if f1(1)q1 and f2(1)q2 are eòectively pro-
portional µ-a.e. As both f1(1) and f2(1) are not zero, equality holds if and only if
p1 = p2 = q1 = q2 µ-a.e.

Remark If f1(t) = a1 t + b1 and f2(t) = a2 t + b2 are both linear, equality holds in
Corollary 4.3 if and only if p i , q i , i = 1, 2, are equal as convex combinations, i.e.,

a1
a1 + b1

p1 +
b1

a1 + b1
q1 =

a2

a2 + b2
p2 +

b2

a2 + b2
q2 , µ − a.e.

_is proof can be used to establish the following result for D(( f1 , P1 ,Q1), i; f2).

Corollary 4.4 Let (X , µ) be a probability space. Let f1 be a positive concave function
on (0,∞). _en for all P1 ,Q1, for all (concave or convex) positive functions f2, and for
all 0 ≤ i ≤ n,

[D(( f1 , P1 ,Q1), i; f2)]
n
≤ [ f1(1)]i[ f2(1)]n−i .

If f1 is strictly concave, equality holds if and only if P1 = Q1 = µ. When f1(t) = at + b is
linear, equality holds if and only if ap1 + bq1 = a + b µ-a.e.

Corollary 4.5 Let f1 be a positive convex function and let f2 be a positive concave
function on (0,∞). _en, for all P⃗, Q⃗, and for all k ≥ n,

[D ⃗f ( P⃗, Q⃗; k)]
n
≥ [ f1(1)]k[ f2(1)]n−k .

If in addition, f1 is strictly convex and f2 is strictly concave, equality holds if and only if
p1 = p2 = q1 = q2 µ-a.e.

Proof On the right-hand side of Proposition 4.2, let i = n and j = 0. Let k ≥ n. _en

[D ⃗f ( P⃗, Q⃗; k)]
n
≥ [D f1(P1 ,Q1)]

k
[D f2(P2 ,Q2)]

n−k
≥ [ f1(1)]

k
[ f2(1)]

n−k
.

Here, the last inequality follows from inequalities (3.3), (3.4) and k ≥ n. To have
equality, the above inequalities should be equalities. Proposition 4.2 implies that
f1(p1/q1)q1 and f2(p2/q2)q2 are eòectively proportional µ-a.e. As f1 is strictly con-
vex and f2 is strictly concave, Jensen’s inequality implies that p1 = q1 and p2 = q2
µ-a.e. _erefore, as both f1(1) and f2(1) are not zero, equality holds if and only if
p1 = p2 = q1 = q2 µ-a.e.

Remark If f1(t) = a1 t + b1 and f2(t) = a2 t + b2 are both linear, equality holds in
Corollary 4.5 if and only if p i , q i , i = 1, 2, are equal µ-a.e. as convex combinations,
i.e.,

a1
a1 + b1

p1 +
b1

a1 + b1
q1 =

a2

a2 + b2
p2 +

b2

a2 + b2
q2 , µ − a.e.

_is proof can be used to establish the following result for D(( f1 , P1 ,Q1), k; f2).
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Corollary 4.6 Let (X , µ) be a probability space. Let f1 be a positive convex function
on (0,∞). _en for all P1 ,Q1, for all (positive concave or convex) functions f2, and for
all k ≥ n,

[D(( f1 , P1 ,Q1), k; f2)]
n
≥ [ f1(1)]k[ f2(1)]n−k .

If f1 is strictly convex, equality holds if and only if P1 = Q1 = µ. When f1(t) = at + b is
linear, equality holds if and only if ap1 + bq1 = a + b µ-a.e.

Corollary 4.7 Let f1 be a positive concave function and let f2 be a positive convex
function on (0,∞). _en for all P⃗, Q⃗, and for all k ≤ 0,

[D ⃗f (P⃗, Q⃗; k)]
n
≥ [ f1(1)]k[ f2(1)]n−k .

If in addition, f1 is strictly concave and f2 is strictly convex, equality holds if and only if
p1 = p2 = q1 = q2 µ-a.e.

Proof Let i = 0 and j = n in Proposition 4.2. _en

[D ⃗f ( P⃗, Q⃗; k)]
n
≥ [D f1(P1 ,Q1)]

k
[D f2(P2 ,Q2)]

n−k
≥ [ f1(1)]

k
[ f2(1)]

n−k
.

Here, the last inequality follows from inequalities (3.3), (3.4), and k ≤ 0.
To have equality, the above inequalities should be equalities. Proposition 4.2 im-

plies that f1(p1/q1)q1 and f2(p2/q2)q2 are eòectively proportional µ-a.e. As f1 is
strictly concave and f2 is strictly convex, Jensen’s inequality requires that p1 = q1 and
p2 = q2. _erefore, equality holds if and only if f1(1)q1 and f2(1)q2 are eòectively
proportional µ-a.e. As both f1(1) and f2(1) are not zero, equality holds if and only if
p1 = p2 = q1 = q2 µ-a.e.

_is proof can be used to establish the following result for D(( f1 , P1 ,Q1), k; f2).

Corollary 4.8 Let f1 be a concave function on (0,∞). _en for all P1 ,Q1, for all
(concave or convex) functions f2, and for all k ≤ 0,

[D(( f1 , P1 ,Q1), k; f2)]
n
≥ [ f1(1)]

k
[ f2(1)]

n−k
.

If f1 is strictly concave, equality holds if and only if P1 = Q1 = µ. When f1(t) = at + b is
linear, equality holds if and only if ap1 + bq1 = a + b µ-a.e.
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