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A NEW RESULT ON COMMA-FREE CODES OF EVEN
WORD-LENGTH

BETTY TANG, SOLOMON W. GOLOMB AND RONALD L. GRAHAM

1. Introduction. Comma-free codes were first introduced in [1] in 1957
as a possible genetic coding scheme for protein synthesis. The general
mathematical setting of such codes was presented in [3], and the
biochemical and mathematical aspects of the problem were later
summarized and extended in [4].

Using the notation of [3], a set D of k-tuples or k-letter words,
(a1a, ... ay), where

a,€Z,={0,12,....,n— 1},
for fixed positive integers k and n, is said to be a comma-free dictionary if
and only if, whenever (aya,...a,) and (bb,...b,) are in D, the
“overlaps”

(@a;;y...qb,...b_), 2=i=k,

are not in D. This precludes codewords having a subperiod less than k;
and two codewords which are cyclic permutations of one another cannot
both be in D. Therefore at most one member from the non-periodic cyclic
equivalence class of (q, ... q;), i.e., from the set

{(@...qa,...q_)I1 =)=k},

can be in D. The maximum number of codewords, W,(n), in the
comma-free dictionary D therefore cannot exceed the number of
non-periodic cyclic equivalence classes of sequences of length k formed
from an alphabet of n letters. Denoting the latter number by B, (n), we
have formally,

W,(n) = B,(n)

where
]
B.(n) = — 2 wdn*
k alk

The summation is extended over all divisors d of k, and u(d) is the Mobius
function.
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Golomb, Gordon and Welch [3] proved that W, (n) attains the upper
bound B (n) for arbitrary nif k = 1,3,5,7,9, 11, 13, 15, and conjectured
that this is indeed the case for all odd k. The conjecture was proved by
Eastman [2], who gave a construction for the maximal comma-free
dictionaries. A simpler construction for these dictionaries was found by
Scholtz [6].

The results for even integers k were less complete. Golomb, Gordon and
Welch [3] were able to prove that W, (n) cannot attain the bound B, (n) for
n > 3/‘/2; and in particular,

W()—[n—z]
oAn) = 3

where [x] is the integral part of x, whereas
2

—n
2

It was also mentioned that for k = 4, we in fact have W (n) << By(n)
if n = 5, while Wj(n) = By(n) if n = 1, 2, 3. The case for n = 4 was
later solved in [5] by exhaustive computer search, which found W,(4) =
57 < By(4) = 60.

An improvement on the relation between k£ and » such that W (n) <
B, (n) for even k was given by Jiggs [5]:

By(n) = =

k
W,(n) < B,(n)if n > 2K% + >

We present a further improvement based on Jiggs’ proof, which in turn
gives rise to a very interesting combinatorial problem. We first present
Jiggs’ result (attributed by Jiggs to R. I. Jewett) with some modifications
of notation.

We consider only the simpler problem of forming a comma-free

dictionary D with ’21 codewords of length k = 2/, with one represen-
tative from each cyclic class of the type (a00 ...0500...0), with 0 =
a<b=n—1and! — 1 Os between a and b. Clearly if these (g)

classes cannot be simultaneously represented in a comma-free dictionary,
the full set of B, (n) classes cannot be so represented.

A half-word in D is an [-tuple which is either the initial half or final half
of some word in D. Foreachd € Z, and 1 = r = k/2, let u(d, r) denote
the half-word with d at the r-th position and 0 everywhere else. We assign
a sequence

X = XX

to each d € Z, where x4 is defined in the following way:
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2 if u(d, r) is both initial and final
W 1 if u(d, r) is final only
| 0 if u(d, r) is initial only
*

if u(d, r) is neither initial nor final.

Jiggs showed that the sequences x? have the following two properties:

(1) If d # b, then x‘f and xf cannot both be 2, forany 1 = r = L.
Thus at most / of the sequences x4 can contain the symbol 2.

(2) Among the sequences in which the symbol 2 does not occur, if d # b,
there exists | = r = [ such that either xY = 0 and x” = 1, or xlr’ =0
and le = 1. (In particular, distinct letters of the alphabet must have
distinct sequences.)

We call two sequences, x? and xb, composed of 0, 1, and *, comparable
if they have property (2). The two properties imply that the maxi-
mum number of distinct sequences x“ containing a 2 is /, and the
maximum number of distinct sequences x4 containing no 2 is 2. Hence if
ID| = B,(n), then n = 2 + k/2.

Our improvement on Jiggs’ result is a consequence of the following
observation.

THEOREM 1.1. If d # b and r # s, we cannot have both x = xi’ = 1

b d
and x, = x; = 0.

Proof. Suppose there exist r # s such that xf = xf.’ = 1 and xf,’ =

x;[ = 0. Then we will have words of the following form:
w, =(0...0p0...0d0...0),
wy = (0...000...0¢0...0),

where the non-zero letters appear at positions  and / + r, and
wy = (0...0x0...060...0),
wy =(0...0d0...0y0...0),

where the non-zero letters appear at positions s and s + /. The overlaps of
w,w, and w;yw, therefore contain all members of the cyclic equivalence
class of (O...0b0...0d0...0) and so D cannot contain a representative
of this class and still be comma-free.

We will call two sequences x? and x” compatible if they satisfy the
exclusion condition in Theorem 1.1. We will now address the combinato-
rial problem of determining the maximum size of a set S of sequences of
length /, composed of *, 0, and 1 such that the sequences are pairwise
comparable and compatible.

2. The minimal array. Let t = ¢(/) be the maximum number of distinct
I-tuples of 0’s, 1’s, and *’s which are pairwise comparable and compatible.
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We will try to determine ¢ indirectly. Suppose we have an array of empty
boxes with 7 rows in the array. We must fill in each empty box with either
*. 0 or 1 such that every two rows, taken as sequences, are comparable and
compatible. We want to know the minimum number of distinct columns in
the array when there are ¢ rows. Let f(¢) be that minimum number, and
call the array thus obtained the minimum array M,. Obviously, f(t) = I.

We define #(1) = 0. The value of f(¢z) for small ¢ can be obtained
without much difficulty. (See Table 1).

TABLE 1
t =2 f@) =1 t=35,f(t)y =3
0 00 0
M2=[1} 0 1 *
Msg= [1 * 0
* 0 1
t=3f(t) =2 111
0 0
My =10 1 t =6, f(t) =4
11
00 00
0 0 0 1
t=4, f(1) =3 0o 1 * 1
f Mh_ * 0 1
0o 1 * * 0 1 1
0 1 1 1 1 1
MA_ *
1

Note that there can be more than one minimal array M, for each ¢. Also, ¢
as a function of / is simply the largest number s such that f(s) = /. From
Table 1 we get the values of #(/) for some /. (See Table 2.)

TABLE 2

H WO -~

We can immediately establish a few properties of f(r).
THEOREM 2.1. f(t) is a monotonically non-decreasing function of t.

Proof. Let s > t. We can remove any s — ¢ rows from the minimal array
M, and the remaining array of ¢ sequences will still be pairwise
comparable and compatible. Therefore f(¢) = f(s).
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THEOREM 2.2. f(t + 1) = f(¢) + 1.

Proof. From the minimal array M,, construct a set of + + 1 sequences
and f(r) + 1 columns in the following way. A 1 is added to the end of
every sequence in M,, and a sequence x' 1 of length f(z) + 1 containing
all 0’s is adjoined to the set. The sequences in the new set are still pairwise
comparable and compatible, and so

[+ 1) = f@o) + 1.
THEOREM 2.3. f(1) =t — 1.

Proof. The sequences in the following array of 1 — 1 columns are
pairwise comparable and compatible, so f(¢1) =t — 1.

t — 1 columns
V.

7 N\
0 0 0 0 0 0
0 0 O 0 0 1
0 0 O o 1 *
0 0 0 I * *
t rOWS< .....................
0 O 1 * * *
0 1 * * % %
1 * * * *
\

We now require the minimal array M, to be such that the number
of “comparison sites” between every two sequences 1s as small as possible.

In other words, if xﬁ] = xf = 0 and x',’ = xﬁ.’ = lforsomer # s, 1=,
s = f(¢), we will replace either xf or xf, or both, by * so long as the

resulting array is still pairwise comparable and compatible.

LEMMA 2.4. In a minimal array M,, there exists some column which
contains *.

Proof. If the first column contains *, we are done. If not, we can assume
thatx! = 0,d = 1,...,s,andx{ = 1, d=s+ 1,....t. Let 1 <r = f(1)
and consider the r-th column. If again xj,l =0,d =1,...,s, and
xf =1,d =s + 1,...,t, we can eliminate the r-th column and the
resulting array is still pairwise comparable and compatible, and therefore
M, is not a minimal array. Suppose x‘,l = 1 for some 1 = d = s; then x‘,’
must be either * or 1 for all s + 1 = d = ¢ or else we will have
non-compatible sequences. Since the number of comparison sites between
every two sequences has to be minimum, all the xj.]’s, s+ 1 =d=1t1in
fact have to be * because comparison sites already occur at the first
column. The situation is similar if x‘,j =0forsomes + 1 =d=1

THEOREM 2.5. f(2t) > f(¢).
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Proof. We prove this by induction. f(2) = 1 > 0 = f(1). Assume
f— 1) < fQ2t — 2), but f(2t) = f(¢). From Theorems 2.1 and 2.2, we
must have

fQr == fa—1) + 1

and

fQy =/ =fae—-1n+1
and therefore

SO =ft—DH+ Lt=s =2
In particular,

fa+ ) =f—1+1

Consider the minimal array M,,, and suppose the r-th column contains at
least one *. The total number of entries which are not * in this column
therefore cannot be more than 2t — 1. Without loss of generality, assume
the number of 0’s in this column is less than or equal to ¢z — 1. If we now
remove all rows in M,, with 0 at the r-th position and also remove the r-th
column, the resulting array has at least  + 1 rows and f(t) — 1 columns
since f(2t) = f(r). The t + 1 rows are still pairwise comparable and
compatible, whence f(tr + 1) = f(t+ — 1), contradicting

fe+ 1) =ft—1) + L

We can now make a rough estimate of f(z). From Table 1 and Theorem
2.5, the best lower bound we can get is

f6-2y=4+i, i=0,12...
Using the substitution ¢t = 6 - 2 we get
S() =q@), t=6,

where
] —
g0 = 4+ ogt — log 6
log 2
which gives
() = 3-273,

3. A graph structure on the minimum array. Given a minimal array
M,, define a graph G,, for each 1 = s = f(¢), on the vertex set
V= {1, 2,...,t} by assigning an edge between vertices b and d, b # d,
if and only if either xX’ = 0 and x? = 1, or x> = 1 and x¢ = 0. Let

A, = (Bl =b =1, x =0)
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and
— 1l =b=0x" =1}

G, is then a complete bipartite graph on the vertex sets 4, and B,, and is
non-empty by comparability and the minimality of M,. We have the
following observation.

LEMMA 3.1. There do not exist s and s, 1 = s, s = [f(t), such that
both

A, N B, #0 and A, N B, # .
Proof. Suppose there exist b and d such that
be A, NB, and d € A, N B,
Then

b _ d _ b _ d _
X, =xy =0 and xy = x; = 1,

which implies x? and x“ are not compatible sequences.

Now construct a graph G on the vertex set V {1, 2,...,1} by as-
signing an edge between b and d if and only if x? and x“ are comparable
sequences. Since all the xs, 1 = b = 1, are pairwise comparable, G is a
complete graph on V. Moreover, the G’s, | = s = f(¢) are a minimal
cover of G, that is,

since every edge in G is also an edge in some G, and f(¢) is the minimum
number of columns in M,.

Let A, = |4,| - |B/, which gives the number of edges in the graph G,.
Suppose

A=At) = max A,
1=s=f(1)

LeMma 3.2, f(1) = ( ;)/)\, where (t) is the binomial coefficient.

2
Proof. Since G is a complete graph on a set of ¢ vertices, there are

( é) edges in G. The minimal covering of G by all the G_’s implies

(2) ﬂEI) A, < Af().

s=1

LEMMA 3.3. There does not exist 1 = s = f(t) such that G has an edge
between two vertices in both A, and B, for all 1 § "= ().
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Proof. 1f G, has an edge in A, and B, then there exist b, b,, d|, d,
such that b, d| € A, with b, € A, and d; € B, and b,, d, € B, with
b, € A, and d, € B,. This implies

A, N B # @ and A, N B, # 0.

In particular, let s = r where A = A, and assume without loss of
generality that |[4,] = |B|. Lemma 3.3 asserts that in the complete graph G,
the edges between vertices in A, and those in B, are covered separately. We
therefore have

LEMMA 34. f(r) = f(14,]) + f(IB)).

So far f is a function defined on the positive integers only. For
convenience sake, extend f'to a functlonf defined on all nonnegative real
numbers by the following:

Fay = S if 7 is an integer
“ | f(r£1) if ¢ is not an integer

where 7] 1s the smallest integer larger than or equal to 7. Henceforth we
will refer to f(¢) as a function defined on all 1 € [0, co) when we really
mean f(1).

LEMMA 3.5. f(t) = f(\/N) +f(?)

Proof. We have
A=A\ =4 B = |4,%
or |[4,] = \/A. Moreover,
A A
|B| = — = -.
I4,] t

We then have, from the last lemma and the monotonicity of f,

f = f(VN +f(?).

COROLLARY 3.6. f(1) = m ( - j(\[) + f( ))

This additional property of f(¢) helps establish a larger lower bound for
it.
THEOREM 3.7. There exists a constant 0 < ¢, << 1 such that
f(t) = exp\/c, log(t) fort = a > 0.

Note. We prove the theorem by actually taking ¢, = 0.71. It can be
shown that
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q(t) = exp/0.71 log(z) for6 =1t =T,

where g(t) is the bound in the last section and T, = 208, 562 is the largest
integer ¢ such that

q(t) = exp/0.71 log(z)

and hence

f(t) = exp\/0.71 log(t) for6 =t = T,

Proof of Theorem 3.7. We proceed by induction using Corollary 3.6. All
we need show is

f(t) = exp\/0.71 log(t) fort = T, + 1.
Assume

f(s) = exp\/0.7T log(s)
foralls = ¢ — 1 wheret = T, + 1. If

w=h = exp\/0.71 log(r),

2A(2)
we are done. Otherwise
t@—1

A(r) > )
) 2expy/0.71 log(?)

and hence

S(VA@)) +f(¥) if( \/2expt\(;‘%”ll)°—g(’))

t — 1
o )
/ 2exp\/0.71 log(?)

For convenience, let u = exp+\/c, log(¢) where ¢, = 0.71 and

o -r(V2) o (5)

Also, let

g(t)

and h(t) = ‘—t—‘

GR)
g(t) = oy

Simple calculus shows that both g(¢) and A(¢) are increasing functions, in
particular for 1 = 6. Moreover, we must have

6 <+gt)<t—1 and 6 < h(t) <t — L
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By the induction hypothesis,
G(t) = exp\/co log\/g(t) + exp\/c, log h(?),

172
exp(q) log ¢t + %,B(I)) + exp(cy log ¢ + ¢yB(¢) )2,

where

B(t) = log !

— log u.

Note that (r — 1)/2¢ is an increasing function of ¢, and larger than 1/e for
t = T,. Hence
Bty > —1—1logu fort =T, + 1,

and therefore

. 1/2
G(t) = exp(co log t — %0(1 + log u))

+ exp(cy log t — ¢o(1 + log u))'/?
[1 (1 9 (141 )”2]
= exp|logull — ——— 0
p|log 2(log u)z( g u)
c 172
+ exp[log u(l - 0 5(1 + log u)) ]
(log u)
Since
— 01 + logu) < 1,
(log u)

1
-G@) = 24z
u

where

z

z(t) = exp[—%q(l + loéu)]'

Note that fort = T, + 1,
ziexp[—@(l-k ! )]>\/§-]
2 Vg log(Ty + 1) 2

and therefore z> + z > 1. Hence G(t) > u, or

f (@) > exp\/0.71 log(t)

https://doi.org/10.4153/CJM-1987-023-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1987-023-7

COMMA-FREE CODES 523

for t > T, also.

The constant ¢, = 0.71 is almost the best possible value, as 7(0.72) =
132, 284, and in this case

2(Ty) < ﬁ—ziml

With
I = f(tr) = expy/0.71 log(z),

we get

t(l) = 110g//0.71

and a comma-free dictionary will not have the maximum size B, (n) if

logk/2)/0.
O R
2 2
Table 3 compares Jiggs’ bound and the new bound on n. Asymptotical-
ly, the new lower bound for n is significantly smaller. However, we suspect
that compatibility is so strong a constraint that the bound on n could be
dramatically reduced, probably to a polynomial in k.

TABLE 3
k Jiggs’ bound New bound
262 4 k2 [ (k/2)exp(log(k/2)/0.71) + k/2)

8 20 18

10 37 43

20 1034 1760

30 3.28 % 10 3.06 % 10*
40 1.05 % 10° 3.09 X 10°
80 1.10 X 10" 2.11 % 108
160 1.21 x 10* 5.57 x 10"
320 1.46 X 10% 569 X 10'°

4. A lower bound for 7(/). As before, let + = ¢(/) be the maximum
number of /-tuples of 0’s, 1’s, and *’s which are pairwise comparable and
compatible. In the previous section we obtained the upper bound

Tl
t(l) é llog[/0.7l e(]()g [.

The lower bound which we found is

t(I) = 15/ + 1 forall/ = 0 (mod 7).

The basic construction here is for | = 7, with 7(/) = 16.
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00 00O0O0OO
1 0 0 * 0 * *
*1.0 0 * 0 *
** 1.0 0 * 0
O * * 1 0 0 *
*0 *x * 1 00
o * 0 * * 120
00 * 0 * * 1
o * * 1 * 11
1 0 * * 1 * 1
1 10 * * 1 *
*1 1 0 * * 1
1 * 1 1 0 * *
*1 * 1 1 0 *
** 1 * 110
111 1 1 11

It is no loss of generality to assume that tﬁ;: array A which achie_yes t(l)
rows with / columns includes an all-0’s row, 0, and anj)lll-l’s row, 1. Let R
denote the reduced (¢(/) — 2) X [ array when 0 and 1 and removed from
A. Let Z be the (¢(/) — 2) X [ matrix of all 0’s, and let J be the (z(/) — 2)
X | matrix of all 1’s. Then for any multiplicity m, the following array
(Table 4), which is (mt(/) — m + 1) X (ml), clearly consists of rows which
are pairwise comparable and compatible. This also yields the general
result

timl) =2 m@() — 1) + 1,

forallm = 1,1= 1.

TABLE 4
000 ..000
zZ 7 Z ... Z Z R
000 ..00T
Z 7Z Z ... Z R J
000 ..0TT
Z Z Z ... R J J
00 0 TTT
o090 ... TTT
Z Z R ... J J J
o0 T ... TTT
Z R J ... J J J
oOT T ...TTT
R J J ... J J J
TTT TTT
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« o« o+ o+ x x O L L 1 1 L I | 1 0L 1L U1 s « | L 1T T 1T % % « | L 1L T % % %« = | 1 % %« % % % | 1
* % % o+ % x 0 * o+« o+ o+« o« 0 0 | T L I T T s« « | I 1T 1 T % % « | I 1T T « s« % | 1 1 % % % % % | I
* x % x x x 0 « + x x x 0 0 « o« % o+ 00 0 | L I I T % « | 1 I 1T % x % % | I T %« % % = x| 1
* * * * * * O * * * * * O o * * * * O c o * * * O o o o — — ~ * * * * — — * * * * * —
« x * x *x % 0 x o« x x x 00 « x +« x 0 0 0 * x » 00 0 0 o+ 00 0 0 0 [ I 1 % % s x % | 1
x x & ox o+ o+ 0 * o« x x x 00 « + + %+ 0 00 « x = 00 0 0 *» «» 00000 » 00 000 0] 1
LSTZEUEIIE =1 + U 4 u'g=u
* o+ x % % 0 | SN O A S [ O O [ LT o+ % % x I
* % % % x 0 * x + x 00 | S O LT o« x « | S B I
* o+ % x x 0 * + x x 0 0 « o« o« 0 0 0 [T 1T I « % « [ I 1 % % x x| 1
* o+ % x x 0 * + % x 0 0 x + » 0 0 0 « « 00 0 0 | 1T I % % % x| 1
« + o« x + 0 * x x « 00 x + x 0.0 0 + x« 00 0 0 «» 00 00 0 1
B=UNNT =1+ U+ U'p=u
* x % 0 | S B [T o« % 1
* % x 0 + +« 0 0 | S - 1
* x x 0 « x= 0 0 + 0 0 0 I
WS (EIel =1+ u+ u'g=u
* x 0 | S I
+ o+ 0 « 00 I
("Areuonorp
Y ure1qo o3 K[aAnoadsar s [/ Jo pue s/ Jo FUNSISUOd | pue () S10109A 3y} utolpe pue | + 9L =WrL=1
- <
U 4 LU = [ q1SUI[ JO SPIOM U Y} JO YOBI 10§ SHIYS JIIAD [[B 3s()) “u s19323ut aanisod e 10§ T +
(I + ¥ + Wu = (] + ¥ 4 ,u)7 18Y1 MOYSs 0} 3FPUQWIIG PUE I0YS ‘SUL[[0) Aq UONONISUOD YL
S dTav]L S=(ENe=1+u+ u'|p=u
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5. Postscript. The results presented thus far were all obtained in time
for inclusion in B. Tang’s Ph.D. thesis in May, 1983. Several subsequent
results on {0, 1, *}-sequences are presented in [7], and include the
following;:

1) A simpler proof of the upper bound formula,

11y < 17¥,

attributed to C. L. M. van Pul;

i1) The constructions illustrating ¢(1) = 2, 1(3) = 5, and #(7) = 16 have
been generalized. Three students at Findhoven (F. Abels, W. Janse, and
J. Verbakel) found three words of length 13, all of whose cyclic shifts can
be used simultaneously in a dictionary, along with the “all 0’s” and “all
I’s” words, to obtain 7(13) = 41. Three M.L.T. students (K. Collins, P.
Shor, and J. Stembridge) found a general construction which yields

"> +n+ ) =n@* +n+1)+2
for all positive integers n, from which the lower bound result
((l) > cl’?

clearly follows. This construction is illustrated for 1 = n = 5 in
Table 5.

The large gap which still remains between the upper and lower bound
formulas is a clear invitation to further research.
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