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A NEW RESULT ON COMMA-FREE CODES OF EVEN 
WORD-LENGTH 

BETTY TANG, SOLOMON W. GOLOMB AND RONALD L. GRAHAM 

1. Introduction. Comma-free codes were first introduced in [1] in 1957 
as a possible genetic coding scheme for protein synthesis. The general 
mathematical setting of such codes was presented in [3], and the 
biochemical and mathematical aspects of the problem were later 
summarized and extended in [4]. 

Using the notation of [3], a set D of /c-tuples or /:-letter words, 
(ala2 . . . ak), where 

at e Zw = {0, 1, 2 , . . . , H - 1}, 

for fixed positive integers k and n, is said to be a comma-free dictionary if 
and only if, whenever (axa2 . . . ak) and (bxb2 . . . bk) are in Z>, the 
"overlaps" 

( * / * , • + 1 • • • « * * i • • • * , • - 1 ) > 2 = 'r = * > 

are not in D. This precludes codewords having a subperiod less than k\ 
and two codewords which are cyclic permutations of one another cannot 
both be in D. Therefore at most one member from the non-periodic cyclic 
equivalence class of (ax . . . ak), i.e., from the set 

{(aj. ..akax . . .aj_x)\\ ^ j ^ k}, 

can be in D. The maximum number of codewords, Wk(n), in the 
comma-free dictionary D therefore cannot exceed the number of 
non-periodic cyclic equivalence classes of sequences of length k formed 
from an alphabet of n letters. Denoting the latter number by Bk(n), we 
have formally, 

Wk(n) fk Bk(n) 

where 

Bk(n) = ) 2 ix(d)nk/d 

k d\k 

The summation is extended over all divisors d of /c, and ji(d) is the Môbius 
function. 

Received November 21, 1983, and in revised form February 12, 1986. This research was 
supported in part by the National Security Agency, under Contract No. MDA904-
83-H-0004. 

513 

https://doi.org/10.4153/CJM-1987-023-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-023-7


514 B. TANG, S. W. GOLOMB AND R. L. GRAHAM 

Golomb, Gordon and Welch [3] proved that Wk(n) attains the upper 
bound Bk(n) for arbitrary n if k = 1,3, 5, 7, 9, 11, 13, 15, and conjectured 
that this is indeed the case for all odd k. The conjecture was proved by 
Eastman [2], who gave a construction for the maximal comma-free 
dictionaries. A simpler construction for these dictionaries was found by 
Scholtz [6]. 

The results for even integers k were less complete. Golomb, Gordon and 
Welch [3] were able to prove that Wk(n) cannot attain the bound Bk(n) for 
n > 3 ' ; and in particular, 

W2(«) = [ y ] 

where [x] is the integral part of x, whereas 
2 

n — n 

H«) = —j— 
It was also mentioned that for k = 4, we in fact have W4(n) < B4(n) 
if n ^ 5, while W4(n) = B4(n) if n = 1, 2, 3. The case for n = 4 was 
later solved in [5] by exhaustive computer search, which found W4(4) = 
57 < B4(4) = 60. 

An improvement on the relation between k and n such that Wk(n) < 
Bk(n) for even k was given by Jiggs [5]: 

Wk(n) < Bk(n) if n > 2k/2 + - . 

We present a further improvement based on Jiggs' proof, which in turn 
gives rise to a very interesting combinatorial problem. We first present 
Jiggs' result (attributed by Jiggs to R. I. Jewett) with some modifications 
of notation. 

We consider only the simpler problem of forming a comma-free 

dictionary D with ( I codewords of length k = 2/, with one represen­

tative from each cyclic class of the type (aOO . . . 0M)0 . . . 0), with 0 ^ 

a < b ^ n — 1 and / — 1 0's between a and b. Clearly if these 

classes cannot be simultaneously represented in a comma-free dictionary, 
the full set of Bk(n) classes cannot be so represented. 

A half-word in D is an /-tuple which is either the initial half or final half 
of some word in D. For each d e Zn and 1 ^ r ^ /c/2, let u(dy r) denote 
the half-word with d at the r-th position and 0 everywhere else. We assign 
a sequence 

X — J iX") . . . Xi 

to each d e rLn where x\. is defined in the following way: 

fe 
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2 if u(d, r) is both initial and final 
d _ i 1 if u(d, r) is final only 

0 if u(d, r) is initial only 
* if u(d, r) is neither initial nor final. 

Jiggs showed that the sequences x have the following two properties: 
(1) If d ¥> b, then xd and xb

r cannot both be 2, for any 1 ë r ^ /. 
Thus at most / of the sequences xd can contain the symbol 2. 

(2) Among the sequences in which the symbol 2 does not occur, if d =£ b, 
there exists 1 ^ r ^ / such that either xd = 0 and xb

r = 1, or jcf = 0 
and xr = 1. (In particular, distinct letters of the alphabet must have 
distinct sequences.) 

We call two sequences, x and x , composed of 0, 1, and *, comparable 
if they have property (2). The two properties imply that the maxi­
mum number of distinct sequences xd containing a 2 is /, and the 
maximum number of distinct sequences x containing no 2 is 2 . Hence if 
|D| = Bk(n\ then n ^ 2h/1 + k/2. 

Our improvement on Jiggs' result is a consequence of the following 
observation. 

THEOREM 1.1. If d =£ b and r ¥= s, we cannot have both xr = x^ = 1 
and xh

r = xd = 0. 

Proof Suppose there exist r ¥= s such that xr = xs = 1 and xr = 
xd = 0. Then we will have words of the following form: 

w1 = (0 . . . QpO . . . OdO . . . 0), 

w2 = (0 . . . 060 . . . O4O . . . 0), 

where the non-zero letters appear at positions r and / 4- r, and 

w3 = (0 . . . 0x0 . . . 060 . . . 0), 

w4 = (0 . . . OdO . . . OyO . . . 0), 

where the non-zero letters appear at positions s and s + /. The overlaps of 
WjW2 and w3w4 therefore contain all members of the cyclic equivalence 
class of (0 . . . 060 . . . OdO . . . 0) and so D cannot contain a representative 
of this class and still be comma-free. 

We will call two sequences x and x compatible if they satisfy the 
exclusion condition in Theorem 1.1. We will now address the combinato­
rial problem of determining the maximum size of a set S of sequences of 
length /, composed of *, 0, and 1 such that the sequences are pairwise 
comparable and compatible. 

2. The minimal array. Let t = t(l) be the maximum number of distinct 
/-tuples of 0's, l's, and *'s which are pairwise comparable and compatible. 
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We will try to determine t indirectly. Suppose we have an array of empty 
boxes with t rows in the array. We must fill in each empty box with either 
*, 0 or 1 such that every two rows, taken as sequences, are comparable and 
compatible. We want to know the minimum number of distinct columns in 
the array when there are / rows. Let/(7) be that minimum number, and 
call the array thus obtained the minimum array Mt. Obviously, f(t) = L 

We define t(\) = 0. The value of f(t) for small t can be obtained 
without much difficulty. (See Table 1). 

TABLE 1 

2, fit) 

M2 

3, fit) = 2 

"o o" 
0 1 

1 1 

M, 

t = 4, f{t) = 3 

MA 

0 1 * 
* 0 1 
1 * 0 

1 1 1 

5, f(t) 

M< 

0 0 0 
0 1 * 
1 * 0 
* 0 1 

1 1 1 

6, f{t) = 4 

0 0 0 0 
0 0 0 
0 1 * 
1 * 0 
* 0 1 

1 1 1 

Note that there can be more than one minimal array Mt for each t. Also, t 
as a function of / is simply the largest number s such tha t / ( s ) = /. From 
Table 1 we get the values of t(l) for some /. (See Table 2.) 

TABLE 2 

/ '(/) 
1 
2 
3 
4 

2 
3 
5 

^ 6 

We can immediately establish a few properties of / ( / ) . 

THEOREM 2.1. f(t) is a monotonically non-decreasing function of t. 

Proof. Let s > /. We can remove any s — t rows from the minimal array 
Ms and the remaining array of t sequences will still be pairwise 
comparable and compatible. Therefore f(t) ^ f(s). 
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THEOREM 2.2. / ( / + 1) S f(t) + 1. 

Proof. From the minimal array Mv construct a set of t + 1 sequences 
a n d / ( / ) + 1 columns in the following way. A 1 is added to the end of 
every sequence in Mt, and a sequence xl of length f(t) + 1 containing 
all O's is adjoined to the set. The sequences in the new set are still pairwise 
comparable and compatible, and so 

/ ( / + 1) ^ / ( / ) + 1. 

THEOREM 2.3. f(t) ^ t - 1. 

Proof. The sequences in the following array of t — 1 columns are 
pairwise comparable and compatible, so f(t) ^ t — \. 

t — 1 columns 

0 0 0 0 0 0 
0 0 0 0 0 1 
0 0 0 
0 0 0 

0 1 
1 * 

* 
* 

0 0 1 * * * 

0 1 * * * * 
] * * * * * 

V 

We now require the minimal array Mt to be such that the number 
of "comparison sites" between every two sequences is as small as possible. 
In other words, if xr = xs = 0 and xr = xs = 1 for some r ^ s, 1 = r, 
s = f(t), we will replace either xs or JC5, or both, by * so long as the 
resulting array is still pairwise comparable and compatible. 

LEMMA 2.4. In a minimal array Mn there exists some column which 
contains *. 

Proof. If the first column contains *, we are done. If not, we can assume 
thatxf = 0, d = 1,. . . , s, andxf = 1, d = s + 1, . . . , t. Let 1 < r ë / ( r ) 
and consider the r-th column. If again xr = 0, d = l , . . . , s , and 
xd

r = 1, d = s + 1, . . . , t, we can eliminate the r-th column and the 
resulting array is still pairwise comparable and compatible, and therefore 
Mt is not a minimal array. Suppose xd

r = 1 for some 1 ^ d ^ s\ then xr 

must be either * or 1 for all ^ -h 1 ^ d ^ / or else we will have 
non-compatible sequences. Since the number of comparison sites between 
every two sequences has to be minimum, all the x/s, s + 1 = d ~ t, in 
fact have to be * because comparison sites already occur at the first 
column. The situation is similar if xr = 0 for some s + 1 ^ d = t. 

THEOREM 2.5. f(2t) > f(t). 
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Proof. We prove this by induction. / (2 ) = 1 > 0 = / ( l ) . Assume 
f(t- 1) < f(2t - 2), but f(2t) = f(t). From Theorems 2.1 and 2.2, we 
must have 

f(2t - 2) i£ f(t - 1) + 1 

and 

f(2t)=f(t)^f(t- 1)4- 1, 

and therefore 

/ (*) = / ( f - 1) + 1 , ^ * ^ 2 / . 

In particular, 

/ ( / + i) = / ( / - i) + i. 

Consider the minimal array M2n and suppose the r-th column contains at 
least one *. The total number of entries which are not * in this column 
therefore cannot be more than 2/ — 1. Without loss of generality, assume 
the number of O's in this column is less than or equal to / — 1. If we now 
remove all rows in M2t with 0 at the r-th position and also remove the r-th 
column, the resulting array has at least t 4- 1 rows and f(t) — 1 columns 
since f(2t) = f(t). The t + 1 rows are still pairwise comparable and 
compatible, whence f(t + 1) ^ / ( / — 1), contradicting 

/ ( / + i) = / < / - i) + i. 

We can now make a rough estimate of / ( / ) . From Table 1 and Theorem 
2.5, the best lower bound we can get is 

/ ( 6 • 2Z) â 4 + i, / = 0, 1, 2, . . . 

Using the substitution / = 6 • 2Z, we get 

f(t) ^ q(t\ t ^ 6, 

where 

, (0 = 4 + 1 O g ' - 1 O g 6 

log 2 

which gives 

/(/) ^ 3 • 2 / _ 3 . 

3. A graph structure on the minimum array. Given a minimal array 
Mt, define a graph Gs, for each 1 ^ s = f(t), on the vertex set 
V = {1, 2, . . . , t} by assigning an edge between vertices b and d, b ¥- dy 

if and only if either xb
s = 0 and xd

s = 1, or xh
s = 1 and xd

s = 0. Let 

As = {b\\ ^ b ^ f, xh
s = 0} 
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and 

Bs = {b\\ ^b^t,xb
s = 1}. 

Gs is then a complete bipartite graph on the vertex sets As and Bs, and is 
non-empty by comparability and the minimality of Mr We have the 
following observation. 

LEMMA 3.1. There do not exist s and sf, 1 = s, s' = fit), such that 
both 

As n Bs, * 0 and As, n Bs * 0. 

Proof. Suppose there exist b and d such that 

b ^ As n Bs, and d e AS, n £,. 

Then 

xj = xf, - 0 and j# = xf = 1, 

which implies xh and x^ are not compatible sequences. 

Now construct a graph G on the vertex set V = {1, 2, . . . , / } by as­
signing an edge between b and d if and only if x and x are comparable 
sequences. Since all the x^'s, 1 = b ^ /, are pairwise comparable, G is a 
complete graph on V. Moreover, the G/s, 1 ^ s ^ / ( / ) are a minimal 
cover of G, that is, 

fit) 
G = U Gs 

s = \ s 

since every edge in G is also an edge in some Gs, and fit) is the minimum 
number of columns in Mt. 

Let Xs = \AS\ - \BS\, which gives the number of edges in the graph Gs. 
Suppose 

X = Xit) = max \ 
\^s^f(t) 

LEMMA 3.2. fit) ^ ( 9 1/X, where ( ? I zs the binomial coefficient. 

Proof. Since G is a complete graph on a set of / vertices, there are 

( 9 I edges in G. The minimal covering of G by all the G/s implies 

fit) 
(2) ^ 2 xs < xfit). 

LEMMA 3.3. There does not exist 1 ^ s ^ / ( f ) such that Gs has an edge 
between two vertices in both As> and Bs, for all 1 = s' = fit). 
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Proof. If Gs has an edge in As, and Bs>, then there exist bh b2, dx, d2 

such that bx, dx e As, with bx e As and dx e Z?s and 62» ^2 e ^s w^ t n 

62 ^ v4v and d2 ^ # r This implies 

As, n Bs ¥= & and ^ n flA, ^ 0. 

In particular, let s' = r where À = Xr and assume without loss of 
generality that \Ar\ i? \Br\. Lemma 3.3 asserts that in the complete graph G, 
the edges between vertices in Ar and those in Br are covered separately. We 
therefore have 

LEMMA 3.4. f(t) ^ / ( \Ar\ ) + / ( \Br\ ). 

So far / is a function defined on the positive integers only. For 
convenience sake, extend / t o a function/defined on all nonnegative real 
numbers by the following: 

?( _ J / ( 0 if ' *s a n m t e ê e r 

I / ( r/~l ) if Ms not an integer 

where Vtl is the smallest integer larger than or equal to t. Henceforth we 
will refer iof(t) as a function defined on all / e [0, 00) when we really 
mean / ( / ) . 

LEMMA 3.5. / ( / ) i£ f(^X) + / ( * ) . 

Proof. We have 

À = A, = \Ar\ • \Br\ â KJ2 , 

or \Ar\ = \/X. Moreover, 

141 - -*- s * 

We then have, from the last lemma and the monotonicity of / 

COROLLARY 3.6. / ( / ) â m a x ( ^ , / (VX) + / ( ; ) ) • 

This additional property of / ( / ) helps establish a larger lower bound for 
it. 

THEOREM 3.7. There exists a constant 0 < c0 < 1 swc/z //za/ 

/ ( / ) g expVcb"log(0 fort^a>0. 

Note. We prove the theorem by actually taking c0 = 0.71. It can be 
shown that 
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q(t) ^ expV0.71 log(/) f or 6 ^ / ^ T{> 

where q(t) is the bound in the last section and T0 = 208, 562 is the largest 
integer / such that 

q(t) ^ expV0.71 log(Fj 

and hence 

f{t) ^ expV0.71 log(0 for 6 ^ / ^ T0. 

Proof of Theorem 3.7. We proceed by induction using Corollary 3.6. All 
we need show is 

f(t) ^ expV0.71 log(0 for t ^ T0 + \. 

Assume 

f(s) ^ expV0.71 log(j) 

for all s ^ t - 1 where / â r 0 + 1. If 

/ ( / ~ ! ) ^ expV0.71 log(0, 
2X(/) 

we are done. Otherwise 

at - i) 
\ ( 0 > 

2expV0.71 log<7)' 

and hence 

+ / ( ' - ' ) • 

V2expV0.71 log(/)/ 

For convenience, let w = exp\/c0 log(V) where c0 = 0.71 and 

-=/(V^)+4^)-
Also, let 

«(,) . « f i> and *„, - «>1. 
2u t 

Simple calculus shows that both g(t) and h(t) are increasing functions, in 
particular for t ^ 6. Moreover, we must have 

6 < Vg(0 < t ~ 1 and 6 < A(/) < / - 1. 
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By the induction hypothesis. 

G(t) ^ expVc0 logVgÔÔ + expVc 0 log/ i (0 , 

/ c \ l / 2 
e x p ^ 0 log t + y 0 (0 J + exp(c0 log t + c0/3(t) ) 1/2 

where 

0 (0 = log 
t - i 

2? 
log w. 

Note that (f — l)/2f is an increasing function of t, and larger than Me for 
? ^ T0. Hence 

/?(?) > - 1 - log u for / â T0 + 1, 

and therefore 

G(/) = e x p ( c 0 

4 / 2 
log / - -^(1 4- log u) 

Since 

4- exp(c0 log / - c0(l 4- log u) ) 1/2 

= exp 

4- exp 

«( log «I 1 
2(log u) 

2(1 + log 

«( ' - c° log u\ 1 
(log w) 

2(1 + log 

(log u) 
2"(1 + log w) < 1, 

1 
G(t) ^ z1 + z 

where 

L 2 V l o 2 w / J 
z = z(t) = e x p | - ^ l l 4-

2 V log 

Note that for / 

exp 

fo 1, 

• ( • 

i 

2 V V^o log(^o + 1) )] > 
V5 - 1 

and therefore z• + z > 1. Hence G(t) > u, or 

f(t) > expV0.71 log(/) 
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for t > T0 also. 

The constant c0 = 0.71 is almost the best possible value, as r0(0.72) = 
132, 284, and in this case 

With 

/ s / ( r ) i£ expV0.71 log(r), 

we get 

and a comma-free dictionary will not have the maximum size Bk(n) if 

Table 3 compares Jiggs' bound and the new bound on n. Asymptotical­
ly, the new lower bound for n is significantly smaller. However, we suspect 
that compatibility is so strong a constraint that the bound on n could be 
dramatically reduced, probably to a polynomial in k. 

TABLE 3 

k Jiggs' bound New bound 
2kn + k/2 [(£/2)exp(log(A72)/0.71) + k/2] 

8 20 18 
10 37 43 
20 1034 1760 
30 3.28 X 104 3.06 X 104 

40 1.05 X 106 3.09 X 105 

80 1.10 X 1012 2.11 X 108 

160 1.21 X 1024 5.57 X 10u 

320 1.46 X 1048 5.69 X 1015 

4. A lower bound for /(/). As before, let t = t(l) be the maximum 
number of /-tuples of 0's, l's, and *'s which are pairwise comparable and 
compatible. In the previous section we obtained the upper bound 

/ ( / ) ^ / l oê / / 0 - 7 1
 = ^ l o g 2 ^ 

The lower bound which we found is 

/(/) è 15/ + 1 for all / = 0 (mod 7). 

The basic construction here is for 1 = 1, with /(/) = 16. 
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0 0 0 0 0 0 0 
1 0 0 * 0 * * 
* 1 0 0 * 0 * 
* * 1 0 0 * 0 
0 * * 1 0 0 * 
* 0 * * 1 0 0 
0 * 0 * * 1 0 
0 0 * 0 * * 1 
0 * * 1 * 1 1 
1 0 * * 1 * 1 
1 1 0 * * 1 * 
* 1 1 0 * * 1 
1 * 1 1 0 * * 
* 1 * 1 1 0 * 
* * 1 * 1 1 0 
1 1 1 1 1 1 1 

It is no loss of generality to assume that the array A which achieves /(/) 
rows with / columns includes an all-0's row, 0, and an all-l's row, 1. Let R 
denote the reduced (t(l) — 2) X / array when 0 and 1 and removed from 
A Let Z be the (/(/) - 2) X / matrix of all 0's, and let J be the (*(/) - 2) 
X / matrix of all l's. Then for any multiplicity m, the following array 
(Table 4), which is (mi(I) — m + 1) X (ml), clearly consists of rows which 
are pairwise comparable and compatible. This also yields the general 
result 

t(ml) â m(t(l) - 1) + 1, 

for all m â 1, / S 1. 

TABLE 4 

(î ÏÏ (î . . ÏÏ o ~o 
z z z . . Z Z R 

Ô* ~0 ( î . . ô> cf T 
z z z . . Z R J 

ô* "o ~3 . . (? T T 
z z z . . R J J 

'o 'o 'S . . T T T 

~o ~fî cT . . T T T 
Z Z R . . J J J 

~6 ~o T . . T T T 
Z R J . . j J J 

o T T . . T T T 
R J J . . J J J 

T T T . . T T T 
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K o 
+ * 

o --

o> 
a 

Ï >:s ° 
G O c« 
<u «5 

C/) G 

T3 al
l O 

o 
G 

0> Î -

O p G 
-C * • " 03 
C/3 îo 

(A 
G 0) o 

nil 

C
ol

 
in

te
 

ve
e 

^ 

si
tiv

e CD 

G 
0 si

tiv
e 

in
 t

h 

•j3 o 0 

ru
e 

u
p 

03 O 

C/l 
03 -a ^ G G o3 

O S> oi G 
CJ 0 
n> <N • — « \ 3 

fS + + di
e * * * 

* * * 
* * * 
o o o 

o o — 
o o * 

o — — 
o * * 
o * * 

o o o o o 

o o o o 

o o o o 

o o o 
o o o 
o o o 

o o 
o o 

o o 

o o 

o o o o o o 

* • * • * * * — 

* * * * * • — 

O O O O O —' 

o o o o o * 

* * * * — — 
* * * * — — 
* * * * — —< 
o o o o — — 

o o o o * * 
o o o o * * 

o o o — — — 

o o o * * * 

o o o * * * 

o o o * * * 

o o — — — — 
o o * * * * 

o o * * * * 

o o * * * * 

o o * * * * 

o * * * * * 

O * -x- * * * 

o * * * * * 
o * * * * * 
o * * * * * 
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5. Postscript. The results presented thus far were all obtained in time 
for inclusion in B. Tang's Ph.D. thesis in May, 1983. Several subsequent 
results on {0, 1, *}-sequences are presented in [7], and include the 
following: 

i) A simpler proof of the upper bound formula, 

/(/) < /dog/, 

attributed to C. L. M. van Pul; 
ii) The constructions illustrating t(\) = 2, t(3) = 5, and t(l) = 16 have 

been generalized. Three students at Eindhoven (F. Abels, W. Janse, and 
J. Verbakel) found three words of length 13, all of whose cyclic shifts can 
be used simultaneously in a dictionary, along with the "all 0's" and "all 
l 's" words, to obtain /(13) ^ 41. Three M.I.T. students (K. Collins, P. 
Shor, and J. Stembridge) found a general construction which yields 

t(n2 + n + 1) â n(n2 + n + 1) + 2 

for all positive integers n, from which the lower bound result 

/(/) > cl3/2 

clearly follows. This construction is illustrated for 1 ^ « ^ 5 in 
Table 5. 

The large gap which still remains between the upper and lower bound 
formulas is a clear invitation to further research. 
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