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1. Introduction

In "Viability Theory", we select trajectories which are viable in the sense that they
always satisfy a given constraint. Since the fundamental work of Nagumo [26], we
know that in order to guarantee existence of viable trajectories, we need to satisfy
certain tangential conditions. In the case of differential inclusions and using the modern
terminology and notation of tangent cones, this condition takes the form F(t, x) n
TK(x)#0, where F(.,.) is the orientor field involved in the differential inclusion, K is the
viability (constraint) set and T^x) is the tangent cone to K at x. Results on the
existence of viable solutions for differential inclusions can be found in Aubin-Cellina [2]
and Papageorgiou [30,32].

Now suppose that the above sufficient tangential condition is no longer satisfied, but
we still want a dynamical system to provide "viable trajectories" and be as close as
possible to the original one. The natural choice in this case is to replace the original
orientor field F(.,.) by its projection onto the tangent cone Tg[x). This way we pass to
the so called "projected differential inclusion". It is not difficult to show (see Aubin-
Cellina [2, Proposition 2, p. 266]), that the "projected differential inclusion"
x(t) e proj (F(x{t)), TK(x(t))), is in fact equivalent to the differential inclusion
x(t) e F(t, x{t)) - NK(x{t)), which following Aubin-Cellina [2], is called "differential
variational inequality".

Differential variational inequalities, appear naturally in several areas of applied
mathematics, like in mechanics in the study of elastoplastic systems (see Moreau [25]),
in economics in the study of planning procedures (see Henry [19]) and in control theory
in the study of feedback systems (see Aubin-Cellina [21]). We should also mention the
important recent works of Aubin [1], Cellina-Marchi [7], Cornet [10] and Gamal [17].

In this work we examine, mainly in W, differential variational inequalities that arise
in the above mentioned areas and obtain existence theorems for both convex and
nonconvex valued orientor fields.

We also examine the case, where the underlying state space in an infinite dimensional
Hilbert space. Then we present a convergence result and study the dependence of the

•Research supported by N.S.F. Grant D.M.S.-86O2313.
fWork done while on leave at the "University of Thessaloniki, School of Technology, Mathematics

Division, Thessaloniki 54006, Greece".

81

https://doi.org/10.1017/S0013091500006933 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500006933


82 NIKOLAOS S. PAPAGEORGIOU

trajectories on the initial data. Finally we have an existence result for a random version
of the original problem. Parts of our work extend the results of Aubin [1], Aubin-
Cellina [2], Castaing [6], Cellina-Marchi [7], Cornet [10] and Henry [19], who
imposed more restrictive hypotheses on the data of the problem and considered only
autonomous systems. Also our work can be viewed as a perturbed version of Moreau
[25]. Gamal in [17] examined the more general infinite dimensional problem, where
instead of NKU)(x(t)) we have df(t,x(t)), the subdifferential of a normal, convex
integrand. So he was forced to introduce several extra hypotheses, that make his results
noncomparable to ours.

2. Definitions and notation

Let (Q, Z, fi) be a a-finite measure space and X a finite dimensional Banach space. We
will be using the following notation:

Pf{c)(X) = {A^X: nonempty, closed, (convex)}

Pk{c)(X) = {A £ A": nonempty, compact, (convex)}.

A multifunction F:£l-+Pj{X) is said to be a measurable, if for every xeX,co-*
d(x,F(co)) = inf{\\x — z\\:zeF(a>)} is measurable. This definition is equivalent to saying
that there exist fn:Q.-*X measurable functions such that F(co) = cl{fn(ca)}n±l. Further-
more if Z is ji-complete, then the above definitions are equivalent to saying that
GrF = {(a>,x)enxX:xeF{co)}e'LxB{X), B(X) being the Borel <r-field of X (graph
measurability). More on measurable multifunctions can be found in Himmelberg [20]
and Wagner [38].

We will say that F(.) is integrably bounded, if it is measurable and
<u-»|F(cu)| = sup{||z||:zeF(a))} is an Li-function.

Let Sr = {feL(Xy.f(o})eF{aj) fi — a.e.}, l ^ p ^ o o . Having SP we can now define a set
valued integral for F(.), by setting {^nF(w)dn(coy.feSF}. Clearly S>#0=>jnF^0.
Furthermore if F(.) is integrably bounded, then Sp#0.

If Ae2x\{0}, by a(x*,A) x*eX*, we will denote the support function of A i.e.
a(x*,/l) = sup{(x*,z):ze/l}. Let Y,Z be Hausdorff topological spaces and let F: 7->2z\
{0}. We say that F(.) is upper semicontinuous (u.s.c.) (resp. lower semicontinuous (l.s.c.)),
if for all U open in Z, F+(U) = {ye Y:F(y)cU} (resp. F-{U) = {yeY:F{y)nU*Q) is
open Y. More on the continuity of multifunctions and their use in the theory of orientor
fields can be found in Cesari [8]. If Z is a metric space, on Pf(Z) we can define a
generalized metric h(.,.) by setting:

h(A, B) = max [sup (d(a, B),aeA), sup (d(b, A),beB)l
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This metric is known as the Hausdorff metric. A multifunction F: Y->Pj{Z) is said to
be Hausdorff continuous (/i-continuous), if it is continuous from the topological space Y
into the metric space (P/Z),/i). Let Y=T=[0,b] . Then a multifunction F:T-+Pj(Z) is
said to be absolutely continuous, if it is such from the metric space T into the metric
space (Pf(Z),h). In this case there exists r(.)eL\. s.t.

\d(x, F(t)) - d(z, F(t')\ ^ \\x - z\\ + f r(s) ds
c

(see Moreau [25]). The function r(.) is sometimes called the modulus of absolute
continuity of F(.).

Now we will introduce a mode of set convergence, which is in general different from
the convergence in the Hausdorff metric (or pseudometric). So let Z be a metric space
and let {^n}ng ls2z\{0}. We set:

lim An = {x e Z: lim d(x, An) = 0}

Hm An = {xe Z: lim d(x, An) = 0}.

Both sets are always closed and may be empty. We will say that the An's converge to
A in the Kuratowski sense, denoted by An^*A, if and only if lim An = A = lim An. For
more details about this mode of convergence and its relation to the convergence in the
Hausdorff metric, we refer to Salinetti-Wets [36].

In connection with the above mode of set convergence, the following equicontinuity
concept is useful. If Y,Z are metric spaces, a family {F,}ie/ of multi-functions from Y
into Pf{Z) is said to be equi-h*-u.s.c. at x e Y, if for every s > 0, there exists 5(e, x) > 0 s.t.
for ye Y for which dY(y,x)<8=>h*(F,{y),Fl{x)) = sup {d(z,F,{x)):zeFj[y)}<e, for all iel.
We will say that the family {F,(.)}16/ is equi-/i*-u.s.c, if it is equi-/i*-u.s.c. at every xeY.

Finally let K be a nonempty subset of a Banach space Y and let y e K. We define the
(Bouligand) tangent cone to K at y, to be the set

: Y: lim - inf
/i-O+ "*eK

This is a closed but not necessarily convex cone. If K is convex, then T^y) is convex
and coincides with the tangent cone introduced by Clarke [9] (in fact we need only
have that K is locally convex at y in order for Tg(y) to be convex and equal to the
Clarke tangent cone). In this case, the negative polar cone of T^y), is called the "normal
cone to K at y" and is denoted by N^y) i.e. Ng{y) = {y*e Y*:{y*,p)^0, for all peTK{y)}.
It is not difficult to check that Ng{y) = {y*e Y*:(y*,y) = o(y*,K)} = dSK(y), where 5^.) is
the indicator function of K and d denotes the subdifferential in the sense of convex
analysis (see Rockafellar [35]).
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3. Existence theorems

Let T=[0,b] be a closed, bounded interval in R+ and let X = W. We will study the
following differential inclusion:

- x(t) £ Nm(x(t)) + F(t, x(t)) a.e.
x(0) = xo

By a solution of (*), we understand an absolutely continuous function x: T-*R" s.t.
x(0) = xo and for which there exists / e Sp( X( n s.t. — x(t) e NK{t)(x(t))+f(t) a.e.

We will start with an existence result in which the set valued perturbation F(.,.) is
assumed to be nonconvex valued. Cellina-Marchi [7] and Gamal [17] also examined
the case of nonconvex perturbations and assumed that the perturbation is ^-continuous
in both variables t and x. Here we go even further in this direction and assume that
F(t,.) is only l.s.c. Lower semicontinuous fields arise often in applications and in
particular in control theory. Namely if f(t,.,u) ueU, is continuous, then F(t,x) =
U{f(t,x,u):ueU} is l.s.c. in x (see Aubin-Cellina [2, p. 47]). Also the feedback control
multifunctions C(t,x) = {ueU(t,x):f(t,x,u)eT(x)} are l.s.c. (see Aubin-Cellina [2, p.
49]). Moreover in connection with the "bang-bang" and "maximum" principles we are
interested in the multifunction extF(t,x). If F(t,.) is /i-continuous and compact valued,
then ext F(t,.) is l.s.c. (see Papageorgiou [33]). Finally in the problem of regulation of
control systems (i.e. finding controls that produce viable trajectories of x(t)=f(x(t),
u(t)), x(0) = x0, u(t) e U, x(t) e K), we deal with the feedback multifunction C(x) =
{we U:f(x,u)e TK(x) = tangent cone to the viability domain K at x}, which is an example
of a l.s.c. (see Aubin-Cellina [2, pp. 49 and 239]) orientor field (see Aubin-Cellina [2,
pp. 49 and 239]). So it is important to have an existence result for nonconvex, l.s.c.
perturbations. Our result extends those of Bressan [3], Kaczynski-Olech [21], Lojasiew-
icz [24] and Papageorgiou [27, 29], where no viability constraints were present i.e.

= {0} for all xeX.

Theorem 3.1. / / K: T-+PfXX) is an absolutely continuous multifunction with modulus
r(.)eL\ and F.Tx X-*Pf(X) is another multifunction such that

(1) {t,x)->F(t,x) is measurable,
(2) for every teT, x->F(t,x) is l.s.c,

(3) |F(t,x)| ^(011x11 + ^ ( 0 a.e., with 4^.), tf>2(.)eU,
then (*) admits a solution.

Proof. Let us start by obtaining an a priori estimate for the solutions of (*). So let
x(.) be a solution. From Moreau [25] (see also Daures [11]), we know that:

I N I + 1 '(*) ds + J <P2(s) ds + } 01(s)||x(s)|| ds.
0 0 0
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Invoking Gronwall's inequality we get that:

||*W|| ̂  Cll̂ oll + IHIi + W l i ] exp l^ill, = M.

Let (p(t) = <t>1(t)M + 4>2(t), 4>(.)eLl
+. Define F:TxX-+Pj(X) by:

~F(t,x) if ||x||^M

" H>M-

Let pM.X->B(0,M) be the M-radial retraction. We know that p^.) is continuous.
Hence since F(t,x) = F(t,pM{x)), we deduce that (t,x)-^F(t,x) is measurable and
x->F(t,x) is l.s.c. Furthermore note that \F(t,x)\^<p{t) a.e.

We will consider the following evolution inclusion:

- x(t) € Nm(x(t)) + F (t, x(t)) a.e.

We will obtain a solution for this problem and then we will show that this solution
also solves the original problem (*).

Let W^C(T,X) be the following set:

W={yeC(T,X):y(t) = xo + \u(s)ds, teT, \\u(t)\\^r{t) + (f)(t)} a.e.
o

It is easy to check that W is closed and through a straightforward application of the
Arzela-Ascoli theorem, we have that W is compact in C(T,X). Next let R: W->
Pj(L\X)) be the multifunction defined by:

We claim that R(.) is l.s.c. Let yn-*y in W. Then from Theorem 4.1. of [31], we have
that:

Since F(t,.) is l.s.c, for all re T we have:

F(t,y(t))slim Ht,yn(t))
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So from Delahaye-Denel [14], we conclude that R(.) is l.s.c. as claimed. Apply
Fryszkowski's selection theorem [16], to find k: W-*Ll(X) continuous s.t. for all yeW,
k(y) e R(y). Now for y e W, consider the following evolution inclusion:

f - x(y)(t) e Nm(x(y)(t)) + k(y)(t) a.e.

From Daures [11] and Moreau [25], we know that (*)" has a unique solution
x(y)(.)eW. We claim that the map s:y^x(y)(.) from W into itself is continuous. To
prove this, since W is compact, it suffices to show that Grs is closed in W x W. So let
lyn,xn)-*(y,x)e\Vx W in C(T,X) x C(T,X). From the Dunford-Pettis theorem (see
Dunford-Schwartz [15, Theorem 9, p. 292]), we know that {3QTgi is sequentially
w-compact in Ll(X) and so we may assume that xn

!S*v = x in Ll(X).
Let zeSf. Then we have:

( - xJLt) - k(yn)(t), *(t) - xJLt)) ^0 a.e.

=>J(-xn(s)-k(yn)(s),z(s)-xn(s))ds^O, AzT measurable.
A

Recalling that k(yn) -^ k(y) in L^X), by passing to the limit as H-»OO in the above
inequality, we get that:

J ( - x(s) - k(y)(s), z(s) - x(s)) ds g 0.

A

Since A £ T measurable was arbitrary, we deduce that:

(-x(t)-k(y)(t),z(t)-x(t))^O a.e.
From Lemma 1.1 of Hiai-Umegaki [18], we know that K(.) admits a Castaing

representation from elements in S%. So we conclude that:

( - x(t) - k(y)(t), x(t)) = <r( - x(t) - k(y)(t), K(t)) a.e.

=>-x(t)eNm(x(t)) + k(y)(t)a.e.

=>x = s(y) and so s(.) is indeed continuous.

Apply Schauder's fixed point theorem to find y e W s.t. y = x(y). Clearly this solves
(*)'. Then using the definition of F{.,.) and Gronwall's inequality, we have:
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y(0)=xo

>\\y«)\\ =g ||xo|| + 1 r(s) ds + j <t>2(s) ds + J ^1(s)||xCs)|| ds
0 0 0

=>P(t, y(t)) = F(t, y(t)) and so y{.) solves (*). •

Next we will consider the existence of a solution of (*), when the set valued
perturbation is convex valued. Our result extends earlier ones by Aubin-Cellina [2],
Cornet [10], Daures [11] and Moreau [25].

Theorem 3.2. / / K: T->Pfc(X) is an absolutely continuous multifunction with modulus
r(.)6L+ and F: TxX->Pfc(X) is a multifunction s.t.

(1) t—>F(t,x) is measurable

(2) x-*F(t,x) is u.s.c.

(3) |F(t,x)|S4li(0||x|| + </)2(0 a.e. with 01(.),</>2(.)eL1+

then (*) admits a solution.

Proof. As in the proof of Theorem 3.1, we can get an a priori estimate for the
solutions of (*), namely that ||x(t)||^[||xo|| + ||r||1 + ||<^2||i]exp||01||1 = M. As before, we
define the modified orientor field F:TxX^>PfJ(X). Again F(.,.) has the same measura-
bility and continuity properties as F and \F(t,x)\-^4>{t) = (j>l(t)M + ct>2(t) a.e. Once more
we consider the modified evolution equation (*)'. From Lemma 3 of DeBlasi-Myjak
[13], we know that we can find Gn:TxX->Pkc(X) s.t.. . .cG,+ 1((,x)£Gn(l,)c)£ ... and
h(Gn(t,x),F{t,x))->0 as n->oo where F.TxX->Pk£X) is the multifunction postulated by
the lemma (namely F(t, x) £ F(t, x) and if u:T-*X and v: T-*X are measurable and
v(t)eF(t,u(t)) a.e., then v(t)eF(t,u(t)) a.e.). Also from Remark 4.1. of DeBlasi [12], we
know that we can have Gn(t,.) to be locally /j-Lipschitz, while |Gn(r,x)|g(£(t) + 1 a.e.

Now consider the following approximating problems for n ^ 1:

-x(t)eN(x(t)) + Gn(t,x(t)) x(0) = xo

From Theorem 3.1 we know that for every n ^ l , the above problem has a solution.
Let {xn}ngl be this sequence of solutions. These functions live in

W = {y e C(T, X): y(t) = x0 + } y(s) ds, \\y(t)U K0 + *(0 + 2 a.e.}
o

and this set by the Arzela-Ascoli theorem is compact in C(T,X). So by passing to a
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subsequence if necessary, we may assume that xn-*x in C(T,X). Then exploiting the
local Lipschitzness of Gn(t,.) and the fact that h(Gn(t,x),F(t,x))-+0 as n-*co, we get
Gn(t,x,(i))iF(t,x(()) a.e.

Since for all n ^ l , ||xn(t)||^Kf) + (/)(0 + 2 a.e., through a simple application of the
Dunford-Pettis theorem, we can see that {:*„(.)}„& 1 is sequentially w-compact in Ll(X).
So by passing to a subsequence if necessary, we may assume that xn^x in L*(X). Let
£BeSc,,<.,*„(.» s.t.

-xn(t)eNm(xn(t))+gn(t)a.e.

Again, thanks to the Dunford-Pettis theorem, we may assume that gn^*f in L\X).
Invoking Mazur's lemma, we can find zkecon\\Jn^kgn s.t. zk^*f in Ll(X). By passing
to a subsequence if necessary, we may assume that zk(i)^>f{i) a.e. Since h(Gn(t,xn(t)),
F(t,x(r)))->0 as n->oo, a.e., for teT\N', A(AT) = O and e>0, we can find no{e,t)>0 s.t. for
n^n0, we have:

Gn(t, xn(t)) £ F(t, x(t)) + eBt (B, = unit ball in X).

=>/(0econv (J

Let ej.0. We get f(t)eF(t,x(t)) a.e.=>f{t)eF(t,x(t)) a.e.=>/eS>Ux(}). Let x(.) be the
unique solution of

2(0) = X0

(see Daures [11]). We need to show that x = jc. From the monotonicity of the
subdifferential operator, we have:

(xJLt)-*(t),xn(t)-x(t))%(gn(t)-At),xn(t)-x(t)) a.e.

Integrating both sides, we get that:

i||xn(t) -x(t)| |2 ̂  } (gJLs) -f(s), xj[s) - x(s)) ds
0

~f(s), Xn(3) - X(S)) ds + J (gn(S) -f(S), x(s) - x{S)) ds
0 0

(since gn^f in Ll(X) and xn-+x in C(T,X)).
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=>xn->x in C(T,X)

x =

=>x(.) is the desired solution of (*). •

Finally we have an existence result for the case where the perturbation is convex but
not necessarily closed valued. So we have:

Theorem 3.3 / / K:T^Pfc(X) is absolutely continuous with modulus r(.)eL\. and
F: Tx X->2*\{0} is a multifunction s.t.

(1) (t, x)->F(t,x) is graph measurable

(2) for all (t,x)eTxX, F(t,x) is convex with intF(t,x)#0

(3) for every teT, x-*F(t,x) is h-continuous. then (*) admits a solution.

Proof. As in the proof of Theorem 5 of [34], we can find f:TxX->X Caratheodory
function (i.e. measurable in t, continuous in x) s.t. for every (t,x)eTxAT, f(t,x)eF(t,x).
Then consider the following evolution inclusion:

j-x(t)eNm(x(t))+f(t,xm
[x(0) = xo

From Theorem 3.2, we know that (*) has a solution x(.). Clearly x(.) also solves (*).D

4. Hilbert space case

In this section we see what are the necessary modifications in the hypotheses, in order
to accommodate the case where the state space is an infinite dimensional separable
Hilbert space.

For that purpose we consider the evolution inclusion (•), with a convex valued
perturbation F(t,x).

So assume that X is a separable Hilbert space.

Theorem 4.1. If K:T->Pfc(X) is absolutely continuous, with modulus r(.)e L\ and
F: TxX->Pfc(X) is a multifunction s.t.

(1) (t,x)-*F(t,x) is measurable

(2) for every teT, F(t,.) has a sequentially closed graph in XwxXw, where Xw is the
Hilbert space X with the weak topology

(3) |F(r,x)|g<£(t) a.e., with $(.) eL\. then (*) admits a solution.
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Proof. As before we consider the set W^C(T,X) defined by W = {yeC(T,X):y{t) =
^ s , teT,\\u(t)\\Zr(t) + 4>(t) a.e.}

It is easy to see that W is strongly equicontinuous, hence a fortiori weakly
equicontinuous. Also since for every teT, W{t) = {y(t):yeW} is bounded, from Alaoglu's
theorem it is relatively w-compact. So from the Arzela-Ascoli theorem, W is relatively
compact in C(T,XJ. Let yaeW, ya^y in C(T,XW). Then ya(t) = x0 + f0uJLs)ds, teT,
\\ua(t)\\^r{t) + <l)(t) a.e. From the Dunford-Pettis theorem we may assume that ua**a in
Ll(X)=*yJLt)*xo + ¥ou(s)ds, teT^y(t) = x o + $'ou(s)ds, teT wi th | | « ( t ) | | ^ r ( t ) + 0( t ) a.e.
=>W is closed in C(T,XW), hence compact. Finallynote that the CC^A'J-topology on W
is meterizable since it is equal to the topology of pointwise convergence on a countable
dense subset of T=[0,fc].

Also let V^L\X) be defined by

From the Dunford-Pettis theorem (see Dunford-Schwartz [15]), we know that V is
w-compact in Ll{X) and because X is separable, the weak topology on V is metrizable.

For heV consider the following evolution inclusion:

-x(t)eNK(t)(x

From Moreau [25], we know that (*)t has unique solution x(h)e W. Let s: V-*W be
the map that, to each he V, corresponds the unique solution x(h) of (*)j. We claim that
this map is continuous from V with the weak L^-YJ-topology into W with the
C(7^ATw)-topology. Since Wis compact in C(T,XW), it suffices to show that Grs is closed
in VxW. So let (hn,xJeGrs, (hn,xj->(h,x) in (Ll(X), w) x C(T,XW). Let x = s(h). Then
from the monotonicity of the subdifferential, we have:

(xJLt) - x(t), xJLt) - x(t)) ^ (Kt) - K(t), xn(t) - x(t))

>\\\xn(t)-x(t)\\2s\(h(s)-hn(s),xn(s)-x(s))ds
0

\(h(s)-hn(s),x(s)-x(s))ds^O
0

>xn-*x in C(T,X)

=>x =

>Grs is closed and so s(.) is continuous.
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Next let R: V-*Pfc(L
l(X)) be the multifunction defined by

Clearly R{h)^V lor all heV. So, to show, that R(.) is u.s.c, it suffices to show that
GrR is closed, in V x V with the relative weak L'(.Y)-topology. Since the latter is
metrizable, we work with sequences. So let (/in,/n)eGrR(Jin,/n)->(/i,/). Then using
Theorem 3.1 of [31], we get that

f(t) econv w-lim {/in(t)}ns i a.e.

£ conv w-lim F(t,s(hn)(t)) a.e.

£ F{t,s{h)(t)) (hypothesis 2)

=>GrR is closed and so R(.) is u.s.c.

Apply the Kakutani-KyFan fixed point theorem to get heV s.t. heR{h). Then clearly
s(h) is the desired solution of (*). •

Remark. When K(t) = KePkc(X), then we can assume that F(t,.) is u.s.c. from X
into X. This follows from corollary of Theorem 3.1 in [22]. In this case we may assume
that |F(r,x)|s;a(t) + 6(0||x|| a.e. with a(.), b(.)eLl. In [22], the reader can find some
other infinite dimensional results related to the present work.

5. A convergence result

In this section, we will examine the well posedness with respect to the perturbation
F(.,.) and the initial data x0, of the evolution inclusion (*).

So consider the following sequence of evolution inclusions:

1(xn(t)) + Fn(£,xn(t))a.e.]

and a limit problem

(-x(t)eNm(x(t)) + F(t,x(i
jx(0) = xo
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We have the following well posedness (stability) result. Here X = W.

Theorem 5.1. / / K: T->Pfc(X) is absolutely continuous with modulus r(.)eL™ and
Fn,F: Tx X^>Pfc(X) are multifunctions s.t.

(1) for every n^l and every xeX, t-*Fn(t,x) is measurable

(2) for every t e T, {Fn(t, .)}„*, is equi-h*-u.s.c. and GrFn(t, .)$GrF(t,.)

(3) for alln^l, \Fn(t,x)\g0,(1)11x11 + <p2(t) a.e. with <)>,{.), <j>2(.)eL\

(4) zn->x0

then any sequence of solutions <?/(•)„, has a subsequence converging uniformly to a solution
of(*).

Proof. As before, we have the a priori bound

Also recall that the solutions of (*)„ and (•) lie in the set

w = \yeC(T,X):y{t) = x + \u(s)ds, teT, ||x||gsup||zn||, ||M(O||g0W a.e.

where <t>(t) = <p1(t)M+ <j>2{t) a.e. This set, by the Arzela-Ascoli theorem, is compact in
C(T,X). So if {xn}n^1 is a sequence of solutions of (*)„, we can find a subsequence
(denoted for notational simplicity by the same index) s.t. xn->x in C(T,X). Let
fne^Fn(.,xn(.))

 S-t-

-xn(t)eNm(xn(t))+fn(t)a-e-

Once again the Dunford-Pettis theorem allows us to assume that / B ^ / i n Ll(X). Also
from Proposition 2.1 of [28], we know that Fn(t, xn(t)) ** F(t, x(t)) and so as before,
through Mazur's lemma, we can get that /GSJ-, x( (). Let x(.) be the unique solution of
the evolution:

-z(t)eNK{t)(z(t))+f(t)a.c.

As in the proof of Theorem 3.2, using the monotonicity of the subdifferential and the
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fact that fn^f in L\X) and xn-»x in C(T,X), we get that xB->x in C(T,X)=>x = x and
clearly x(.) solves (*). D

This leads us to a result concerning the dependence of the solution set on the initial
data.

Denote by S(x0) the solution set of (*).

Theorem 5.2. If K:T-*Pf£X) is absolutely continuous with modulus r(.)eL™ and
F:TxX->Pfc(X) is a multifunction s.t.

(1) t->F(t,x) is measurable

(2) x->F(r,x) is u.s.c.

(3) \F(t, x)\ ^ ^ ( t ) |M | + 4>2(t) a.e., with ^ ( . ) , <f>2(.) e L\

then xo->S(xo) is an u.s.c. multifunction from X into Pk(C(T,X))

Proof. From Theorem 3.2 we know that for every xoeX, S(xo)#0. Also it is easy to
check that it is closed in C(T,X). Furthermore S(xo)c W (see the proof of Theorem 3.2)
and the latter is compact in C(T,X). So S(xo)ePk(C(T,X)). In order to show that S(.) is
u.s.c, it suffices to show that GrS is closed in XxC(T,X). So let (xS,xn)eGrS,
(xS,xn)->(x0,x) in XxC(T,X). Invoking Theorem 5.1 we get that (xo,x)eGrS=>GrS is
closed and so S(.) is u.s.c. •

6. A random evolution inclusion

In this section we consider a version of the original system (*), in which the data
depend measurably on a random parameter co. Such evolutions represent problems that
involve some inherent randomness due to ignorance or uncertainties. Random differen-
tial systems, have been studied recently by several mathematicians. We refer to the
books of Ladde-Lakshmikantham [23] and Tsokos-Padgett [37] and the references
therein.

The evolution inclusion under consideration is the following:

f - X(GJ, t) e N(x(co, t))+f((o, t, x(o>, £))
\x(co,0) =

By a solution of (•*) we understand a stochastic process x(co, t) with absolutely
continuous realizations, satisfying (**) for all coed and almost all te T.

Assume that (Q, £, fi) is a complete probability space.
The result presented here extends significantly Theorem 4 of Castaing [6], who

studied an unperturbed (i.e. / = 0 ) version of (**) and had more restrictive hypotheses
on the measure space and the other data of the problem. Also, our result is related to
Theorem 5.3 of [27].

https://doi.org/10.1017/S0013091500006933 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500006933


94 NIKOLAOS S. PAPAGEORGIOU

Theorem 6.1. If K:Qx T-*Pkc(X) is a multifunction s.t.

(1) for every teT, a)->K(o),t) is measurable

(2) for every coeQ, t->K(co,t) is absolutely continuous with modulus r(.,.) where r(.,.)
is measurable and for every coeQ, r(a>,.)eLl+.

and f:Qx TxX-*X is a function s.t.

(3) for every xeX, (co, t)-*f(co, t,x) is measurable.

(4) for every (co,t)eQxT, x->f(w,t,x) is continuous.

(5) \\f(a>,t,x)\\£<l>l(<o,t)\\x\\ + 4>2(to,t) a.e. on T, for all coeQ and with 01(.,.), 4>il,-)
both measurable onilxT and for all coeQ 4)^0},.), <t>2(co,.)eLl

+.

then {**) admits a solution.

Proof. Denote by CS(K(a>,.)) the set of continuous selectors of K(co,.), weil. From
Michael's selection theorem, we know that for all coeQ, CS(K{co,.))#0. Define
L:Q^Pf(C(T,X)) by L(w) = CS(K(co,.)). Then we have:

L(co) = {yeC(T,X):y{t)eK(a),t) for all teT}

= {yeC(T,X):d(y{t),K(co,t)) = 0 for all teT}.

Set u(a>, t,y) = d(y(t), K(co, t)). Since co-*K(a>, t) is measurable, we have that
co-*d(y(t),K(a>,t)) is measurable =>co->M(<y,t,y) is measurable. Also let (tn,yn)->(t,y) in
TxC(T,X). Then we have:

\d{yn(t), K(co, tn))-d(y(t), K(co, t))\ g \\yn(t) - y(t)\\ + h(K(co, tn), K(co, t))

~\u(co, tn, yn) - u(co, t,y)\ = \d{yn{t), K(co, tn))-d(y(t), K(co, t))\^0

=>(t,y)->u(ca,t,y) is continuous on Tx C(T,X).

Hence (w,t,y)^>u(co, t,y) is a Caratheodory function and so it is jointly measurable
(see Castaing-Valadier [5, Lemma 111-14]). So if {tn}n2! is a dense subset of T, then

(ct>, y) -> sup u(co, tn,y) = v(co, y)
nil

is measurable. Therefore:

= {(co,y)eQ x C(T,X):v(co,y)=0} e l x B(C{T,X)).

(.) is measurable.
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For fixed coeQ and zeC(T,X), consider the following evolution inclusion:

' - x{t) e NK((O,,>(X(0) + / ( « » ' ' z(0) a-e.]

From Daures [11] (see also Theorem 3.2), we know that (***) has a unique solution.
Let h:ClxC(T,X)^>C(T,X) be the map which to each {co,z)eilxC{T,X) associates this
unique solution of (***). From Theorem 4 of Castaing [6] and the lemma on p. 511 of
[34], we get that a>->h((o,z) is measurable. Also from Brezis [4] we know that if zn-*z
in C(T,X), then we have:

\\h(co, zn)(t) -h(co, z)(t)\\ ̂  J ||/(cu, s, zn(s)) -f(co, s, z(s))\\ ds^O

=>/j(o),zn)->fc(a>,z) in C{T,X) for all coeil.

=>z->h(to,z) is continuous.

=>h(.,.) is Caratheodory, hence jointly measurable.

Let roefi and define W(co)sC(T,X) by:

t) a.e.}
o

where

<Ka>, t) = [||xo(a))|| + ||r(ai, .)||, + ||^2(a», .)||i] exi>{\\<l>i(a>, .)||i)-

Then from the Arzela-Ascoli, theorem, we have that for every coeil, W((o) is compact
in C(T,X). Note also that for every (a>,z)eGrL, h(a>,z)e W(a>). So, if we fix wef i and
apply Schauder's fixed point theorem, we get z e L(co) s.t. z = h(co, z). Then let

=>GrP = {(co,z)eiixC(T,X)\z = h(co,z)} n GrLe E x B(C(T,X)).

So we can apply Aumann's selection theorem to find p:Gl-*C(T,X) measurable s.t. for
all weil, p(co) e P(a>). Then if we set x(co, t) = p(co)(t), from the lemma in [34], we know
that x(.,.) is a stochastic process with absolutely continuous realizations s.t.
x((o,t)gK(co,t) for all {co,t)eQxT and

- x(co, t) e NK(Wi t)(x(co, t))+f(co, t, x(co, t)) a.e.

for all coeil
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*(.,.) is the desired random solution of (**).

Remark. Of course a more interesting and useful stochastic model is the one driven
by white noise, i.e. the perturbation term is f(a>,t,x(t))dw(t) where w(.) is an Revalued
Brownian motion. The techniques in this case are different and some progress in this
direction has already been made by the author.

Acknowledgement. The author wishes to express his deep gratitude to the referee for
his (her) many constructive comments and criticisms, that improved the final version of
this paper considerably.
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