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Abstract

We introduce a notion of embedding codimension of an arbitrary local ring, establish some general properties and
study in detail the case of arc spaces of schemes of finite type over a field. Viewing the embedding codimension
as a measure of singularities, our main result can be interpreted as saying that the singularities of the arc space
are maximal at the arcs that are fully embedded in the singular locus of the underlying scheme, and progressively
improve as we move away from said locus. As an application, we complement a theorem of Drinfeld, Grinberg
and Kazhdan on formal neighbourhoods in arc spaces by providing a converse to their theorem, an optimal
bound for the embedding codimension of the formal model appearing in the statement, a precise formula for the
embedding dimension of the model constructed in Drinfeld’s proof and a geometric meaningful way of realising
the decomposition stated in the theorem.
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1. Introduction

In this paper we define the embedding codimension of an arbitrary local ring and use it to quantify
singularities of arc spaces.
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The embedding codimension is a familiar notion in the Noetherian setting, where it is defined,
for local rings, as the difference between the embedding dimension and the Krull dimension. It was
studied, for instance, in [35] under the name of regularity defect. Note, however, that if the ring is not
Noetherian, then both of these quantities can be infinite, and even when they are finite it can happen that
the embedding dimension is smaller than the dimension. Rank 2 valuation rings give simple examples
where this phenomenon occurs.

Arc spaces provide a situation of geometric interest where non-Noetherian rings and rings of infinite
embedding dimension naturally arise. With this in mind, we extend the definition of the embedding
codimension to arbitrary local rings (A, m, k) by setting

ecodim(A) := ht(ker(y)),

where y: Sym, (m/ m?) — gr(A) is the natural homomorphism. Geometrically, we may think of
ecodim(A) as the codimension of the tangent cone of A inside its tangent space. Note that when A is
Noetherian, this notion agrees with the classical definition of the embedding codimension, as in this case
dim(A) = dim(gr(A)). When A is a k-algebra, we have ecodim(A) = 0if and only if A is formally smooth
over k, and therefore one can view the embedding codimension as a (rough) measure of singularity.

If (A, m, k) is equicharacteristic, then an alternative definition can be given by considering the
infimum of ht(ker(7)) for all surjective continuous 7: k[[x; | i € I]] — A. We call the resulting notion
the formal embedding codimension, and denote it by fcodim(A). In this paper we establish the following
comparison theorem:

Theorem A. For every equicharacteristic local ring (A, m, k), we have
ecodim(A) < fcodim(A),

and equality holds in the following cases:

1. the ring A has embedding dimension edim(A) < oo or
2. there exists a scheme X of finite type over k such that A is isomorphic to the local ring of the arc
space of X at a k-rational point.

In order to prove Theorem A and related results on the formal embedding codimension, we make
use of various results concerning infinite-variate power series rings and their localisations, which are of
independent interest in the study of non-Noetherian rings.

Local rings of arc spaces and their completions were studied in [31, 24, 40, 41, 42, 37, 21]; [21]
looks at the embedding dimension of the local rings to characterise stable points of arc spaces, which
were originally studied in [23, 40]. In this paper, we consider the embedding codimension.

Let X be a scheme of finite type over a field k, and let X, be its arc space. A point @ € X, corresponds
to a formal arc @: Spec K[[t]] — X, where K is the residue field, and defines a valuation ord,, on the
local ring of X at the base point @(0) of the arc (the image of the closed point of Spec K[[¢]]). It is
convenient to denote by a/(77) the image of the generic point of Spec K[[¢]]. With this notation, we can
state our next theorem.

Theorem B. Let X be a scheme of finite type over a field k, and let @ € X.

1. Assume that either k has characteristic 0 or @ € X (k). Then we have that ecodim(Ox,, o) < o if
and only if a(n) € X¢m.
2. Assume that k is perfect and a(n) € Xgm, and let X° C X be the irreducible component containing
a(n). Then
ecodim (Ox,, o) < ord, (Jacxo),

where Jacyo is the Jacobian ideal of X°.
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One of the motivations behind this result comes from the following theorem, originally conjectured
by Drinfeld and proved by Grinberg and Kazhdan in characteristic 0 and then by Drinfeld in arbitrary
characteristic. Here and in the following, we exclude the trivial case where X is, locally, just a reduced
point.

Theorem 1.1 ([31, 24, 25]). Let X be a scheme of finite type over a field k, and let @ € X« (k) be a
k-rational point. If a(n) € X¢m, then there exists a decomposition

S

Xeo.a = Z XAV,

where Z is the formal completion of a scheme Z of finite type over k at a point z € Z(k), AN =
Spf(k[[x; | i € N]]) and X denotes the product in the category of formal k-schemes.

Given the existence of an isomorphism as in Theorem 1.1, we say that X, admits a DGK decompo-
sition at . The germ (Z, z) (given by Spec Oz ) and its completion Z = Spf (62 ) are often referred
to as a formal model for «. Drinfeld’s proof yields an algorithm for computing such a model; we will
refer to it as a Drinfeld model.

Partial converses of Theorem 1.1 were obtained in [9], where an explicit example of a k-valued
constant arc through the singular locus of X is given for which a DGK decomposition does not exist, and
in [19], where it is shown that in characteristic 0, if @ is any constant arc contained in the singular locus
of X then there are no smooth factors in )70_;, at all. Examples of nonconstant arcs that are contained
in the singular locus for which there is no DGK decomposition can easily be constructed from these
results; see also [43, 11] for related results. An extension of the theorem to formal schemes is given in
[10]. Formal models of toric singularities are studied in [13].

As an application of our methods, we give a sharp converse to Theorem 1.1 and provide an optimal
bound to the embedded codimension of the formal model.

Theorem C. Let X be a scheme of finite type over a field k, and let @ € X (k) be a k-rational point.

1. If Xo admits a DGK decomposition at «, then a(n) € Xyn.
2. Assume that k is perfect and a(n) € Xgm, and let X° C X be the irreducible component containing
a(n). Then for any formal model (Z, 7) for a, we have

ecodim (O ;) < ord, (Jacxo) .

Moreover, for every e € N there exist X and « such that both sides in this formula are equal to e.

The next result, which combines results of this paper with Theorem 1.1, provides a geometrically
meaningful way of realising a DGK decomposition and gives an explicit formula for the embedding
dimension of a Drinfeld model.

Theorem D. Let X be an affine scheme of finite type over a perfect field k, let @ € X (k) be a k-rational
point with a(n) € Xy and let d = dimy () (X). Let f: X =Y = A4 be a general linear projection.

1. The map fo: Xoo — Yoo induces an isomorphism from the Zariski tangent space of X at a to the
Zariski tangent space of Yo at B = fw(@), and hence a closed embedding

foo,(y: Xoo,(l — Yoo,ﬁ-

2. For a suitable isomorphism )@ ~ Speck[[u; | i € N]|, the scheme )Z.C\H is defined in this
embedding by finitely many polynomials in the variables u ;, and hence the embedding gives a DGK
decomposition of X, at .

3. Let X° X be the irreducible component containing a(n), and set e = ord,(Jacyo). Denote by
Yz:l_,ﬁz_l the completion of the (2e — 1)-jet scheme of Y at the truncation of B. If (Z, z) is a Drinfeld
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model compatible with the projection f, then the composition of maps

Z; = Xeo,a ™ Yoo, 5 > Yaem1,85,

gives an embedding of Z into Yzﬂe:”g\zm, and this embedding induces an isomorphism at the level
of continuous tangent spaces. In particular, the local ring Oz , has embedding dimension

edim (Oz ;) = 2d ord, (Jacxo) .

By combining Theorems C and D, one sees that all Drinfeld models (Z, z) have the same dimension,
and this dimension satisfies

(2d = 1) ord, (Jacyo) < dim(Z) < 2d ord, (Jacxo) .

In general, Drinfeld models are different from the minimal formal model. Theorem D implies that
2d ord, (Jacyo) is an upper bound on the embedding dimension of the minimal formal model.

The proofs of Theorems B and D rely on a formula on the sheaf of differentials of X, from [21]. A
result related to Theorem D(1), dealing with the case where f: X — Y is a generically finite morphism
of equidimensional schemes with X smooth, was obtained in [27] using a more direct computation of
the map induced at the level of Zariski tangent spaces. General projections to A? are also used in [24]
to set up the proof for the Weierstrass preparation theorem; however, Drinfeld’s proof does not lead to
the same conclusions about ﬁ>0 « or about the embedding of Z into YZ(TIAB? General projections to
A were also used in [42, 37], and in fact our results give a new proof of one of the theorems of [37].

There have been several attempts to extend Theorem 1.1 to amore global statement; see [ 16, 38, 15, 33]
(see also the more recent [14], which supersedes [15]), which at their core all rely on the Weierstrass
preparation theorem. The question stems from the expectation that there should exist a well-behaved
theory of perverse sheaves on arc spaces (as well as on other closely related infinite dimensional spaces).
Theorem 1.1 suggests that one could try to define such perverse sheaves in terms of the intersection
complexes of the formal models, but one needs a more global version of the DGK decomposition to
make sense out of this. We refer to the citations already given for the motivations behind these questions.

Our interest in Theorem D comes from the observation that the same projection f: X — A¢ works
for all arcs @’ € X (k) in a neighbourhood of @ and having the same order of contact with Jacyo. The
order of contact with the Jacobian ideals of the irreducible components of X gives a stratification of X,
and the hope is that the theorem may turn out to be useful in understanding how the DGK decomposition
varies along strata.

This paper is organised as follows. In the first few sections we review some basic properties of power
series rings in an arbitrary number of indeterminates and establish various properties that we have been
unable to locate in the literature. Ideals of finite definition, which provide the algebraic interpretation
of a DGK decomposition, are discussed in Section 5. These sections provide some general results on
non-Noetherian rings and are independent of our applications to the study of singularities of arc spaces.
In the next two sections the embedding codimension and its formal counterpart are defined and general
properties of these notions are studied. Starting from Section 8, we focus on the case of arc spaces,
proving some technical theorems in Section 8 and then addressing the theorem of Drinfeld, Grinberg
and Kazhdan in Sections 9 and 10. The last section is devoted to some applications related to Mather—
Jacobian discrepancies, among others to the case of toric singularities using results of [13].

Theorem A follows from Theorem 7.8 and Corollaries 7.5 and 9.7. Theorem B follows from Corollary
8.8 and Theorem 8.5. Theorem C follows from Theorem 9.4 and Example 9.6. Theorem D follows from
Theorems 9.8 and 10.2.
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2. Rings of formal power series

In this paper we will work with rings of power series in an arbitrary number of indeterminates. For our
purposes, we adopt the definition of these rings as completions of polynomial rings, a definition that
differs from other standard approaches to the theory. In this section, we briefly review the notions of
completions, graded rings, and rings of power series. All of the material here is standard, but we want to
fix notation and bring attention to some of the subtleties that appear in the infinite-dimensional setting.
_Let A be aring and m C A an ideal. We do not assume that m is a maximal ideal. We denote by
A= l<i£1nA/ m” the m-adic completion of A and regard it as a topological ring with respect to its limit

topology. Given an ideal a C A, we denote by aC Athe completion of a as a topological A-submodule.
A basis for all neighbourhoods U C A of 0 is given by the descending chain of ideals

m” = ker (A\—> A/m") .

The ideal @ then coincides with the topological closure of a inside A — that is,
a= ﬂ (a + nT") .

Note that if m is not finitely generated, then the natural topology on A may differ from the m-adic
topology of A (see Remark 2.3).

We will denote by gr,, (A) = ), ., m" Jm™! the graded algebra of A with respect to the m-
adic filtration. If m is understood from context, we simply write gr(A) for gr,, (A). We will regard
A as endowed with the filtration {m"} induced by the completion, and therefore its graded algebra
is given by gr(g) = @nzorﬁ\"/m”“. There are natural isomorphisms mP/md =~ mP/m4 for all
p < q. This gives a natural identification between gr(zz\\) and gr(A). If a € A is an ideal of A, then
we write in(a) := @nzo(a N m™)/m"™! for the corresponding initial ideal. Similarly, for a C A, we
setin(a) := 6P, ,o(a N m”)/m+! . For an element f € A (or f € A), we write in(f) € gr(A) for the
corresponding initial form.

Let S be a ring, and let {x; | i € I} be a collection of indeterminates indexed by an arbitrary set I.
We consider the polynomial ring P = S[x; | i € I] and denote by P=5 [[x; | i € I]] the completion of
P with respect to the ideal (x; | i € I) — that is,

S[lxi [i €11 :=1lim S[x; |ie)/(x;|iel)".

Definition 2.1. We call S[[x; | i € I]] the power series ring in the indeterminates x;, with i € I, and
with coefficients in S.

Remark 2.2. The polynomial ring S[x; | i € I] is always the colimit (that is, the union) of all
S[xj | j € J] with J c [ finite. On the other hand, if / infinite, then S[[x; | i € I]] is not the colimit
of all S[[x; | j € J]] with J C [ finite; it is, however, the colimit of all S[[x; | j € J]] with J C I
countable.

Remark 2.3. Denoting m = (x; | i € I), we have the exact sequence
0o mt — S[[x; |iel]] = S[x;|iel]l/m"— 0.

If 7 is infinite then S[[x; | i € I]] is not m-adically complete — that is, the natural topology on
S[[x; | i € I]] coming from the completion does not coincide with the m-adic one, as for instance the

inclusion m? c m?2 is strict in this case [44, Tag 05JA].
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Remark 2.4. Let us contrast the foregoing definition of S[[x; | i € I]] with the ring of formal power
series defined in [8, Chapter III, Section 2.11], which we want to briefly recall. For any set / we
denote by N) the set of functions / — N that take only finitely many nonzero values. Then N() is
a monoid, which we identify with the collection of monomials in the variables {x; | i € I} by writing
x = [lier, H(i)#)xi”(i) for every @ € NU). The S-module S can be made into an S-algebra as
follows: writing an element a = (a4 )y e aS A = 3, 4y Aox®, multiplication is defined via formal
extension of x - x8 := x**B. We call SN’ the ring of Bourbaki power series.

Notice that there is a natural inclusion of rings S[[x; | i € I]] C S This inclusion is an equality

if |[I| < o0, and is a strict inclusion if | /| = co, as in this case ) ;¢; x; is in S but not in S{[x; |i€I]].

Remark 2.5. It is often convenient to expand a formal power series in a subset of the indeterminates,
but this becomes delicate in the infinite-dimensional case. Let / and J be arbitrary sets, and let x; and
v; be indeterminates indexed by i € I and j € J, respectively. Dropping for short the index sets from
the notation, we have the following natural injections:

STl ®s S [[v]] = Sx [[v;]] = S[[xiy;]] = STxaD™ .

The first inclusion is always strict, and the other two are equalities if and only if J is finite. For
example, if x = x;, and y = y;, are two respective indeterminates, then the series ., x"y" belongs
to S[[x;]1[[y;]] but is not in the image of S[[x;]] ®s S[[y;]], and if N C J and x = x;, is one of the
indeterminates, then the series 3}, 5| y,x" belongs to S[[x;, y;]] but not to S[[x;]][[y;]]. Notice that

. . L 107 DN N
Bourbaki power series are better behaved in this respect, as s (SN( N = (SN( W "

Remark 2.6. Let I be an arbitrary set, possibly infinite. We have natural identifications
gr(S[lx; | i € 1]]) = gr(Sx; | i€ 1]) = S[x; [ i €1].

Any nonzero power series f € S[[x; | 7 € I]] can be written as f = Y7, fn, where f, € S[x; | i € I]
is homogeneous of degree n and f,,, # 0. Under the given identification, the initial form of f is given by
in(f) = fu,- If a € S[[x; | i € I]] is an ideal, then in(a) gets identified with the ideal of S[x; | i € I]
generated by the initial forms of elements of a.

Proposition 2.7. Let P = S[x; | i € I] and P= S[lxi | i € I1], where S is a ring and I a set. Let a C P
be an ideal such that in(a) C P is finitely generated. Then a is finitely generated and is closed in P.

Proof. This is proven in [28, Proposition 7.12] for any ring R which is complete with respect to some
filtration m;. |

Question 2.8. Does the converse of Proposition 2.7 hold? That is, is the initial ideal in(a) finitely
generated for any finitely generated ideal a of P? Alternatively, is any finitely generated a already closed
inside P?

3. Embedding dimension

In this section we briefly recall the notion of embedding dimension and review some basic properties.

Definition 3.1. The embedding dimension of a local ring (A, m, k) is defined to be
edim(A) := dimy (m/mz) .

The k-vector space m/m? is called the Zariski cotangent space of A.
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When the local ring is equicharacteristic, the embedding dimension can equivalently be computed
as the dimension of an embedding of the completion in a formal power series ring. Even more, if A is
essentially of finite type over an infinite field k, then this embedding exists already at a Zariski-local
level (see Theorem 3.15). Before we review these facts, it is convenient to introduce some terminology
and discuss some general properties.

Definition 3.2. Let (A, m, k) be an equicharacteristic local ring. A formal coefficient field of A is a
subfield K C A that maps isomorphically to A/ via the residue map.

As it is well known, every equicharacteristic local ring (A, m, k) admits a formal coefficient field
K c A (see Remark 3.11).

In order to talk about a well-behaved notion of cotangent map between completions of non-Noetherian
rings, we make the following definition:

Definition 3.3. Let (A, m, k) be a local ring. The k-vector space m/ m2 is called the continuous Zariski
cotangent space of A. A collection of elements a; € A, i € I, are called formal coordinates if their

images a; in m/m? form a basis.

Remark 3.4. The continuous Zariski cotangent space m/m? of Ais naturally isomorphic to the Zariski
cotangent space m/m? of A, but in general it is not the same as the Zariski cotangent space 1 /m? of A,
as seen in Remark 2.3.

Remark §.5. If (A,m, k) is a local ring admitting a coefficient field, then the continuous cotangent
space of A is isomorphic to Q4 ® k, where

Qayk =M Qe mn) /k

n

is defined as in [32, Chapter Oy, Section 20.7].

Definition 3.6. Let (A, m, k) be an equicharacteristic local ring. A formal embedding of A is a surjective
continuous homomorphism 7: P — A, where P = k[[x; | i € I]] is a power series ring. A formal
embedding 7 is called efficient if the induced map at the level of continuous Zariski cotangent spaces

1/n? — m/m? is an isomorphism.

Proposition 3.7. Let (A, m, k) be an equicharacteristic local ring. Let K C A bea formal coefficient
Jfield, and let a; € A, i € I, be formal coordinates. Then there exists a unique efficient formal embedding
7:P= k[[x; | i € I1] = A such that T(k) = K and 7(x;) = a;. Every efficient formal embedding of A
is of this form.

Proof. First, note that for every n > 1 the composition K — A— A Jm” is injective (since K maps
isomorphically to the residue field k = A /m) and hence gives an embedding K € A/m" via the natural
isomorphism A/mi = Ajm". Letting P = k[x; | i € I] andn = (x; | i € I) C P, we have compatible
homomorphisms 7,,: P/n" — A/m" such that 7,,(k) = K and 7,,(x;) = a; + m". Taking limits, these
maps define 7 and determine it uniquely. By construction, gr(7) is surjective, and hence 7 is surjective
by [7, Chapter III, Section 2.8, Corollary 2]. Since 7 induces an isomorphism at the level of continuous
Zariski cotangent spaces, we see that it is an efficient formal embedding. For the last statement, notice
that if 7 is an efficient formal embedding, then clearly K = 7(k) is a formal coefficient field and 7(x;),
i € I, are formal coordinates. O

The map 7 in Proposition 3.7 can be 1nterpreted as follows. For short, let P := Sym, (m/ m?). Every
choice of formal coefficient field K C A and formal coordinates a; € Aiel, determmes an embedding
m/m? — A as a K-vector space, and hence a map 7p: P — A. Letting x; = a; + m? € P, we geta
natural identification P = k[x; | i € I]. Then the map 7 is obtained from 7y by completing the domain P.
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Remark 3.8. There is also a natural embedding m/m?> < gr(A) as a k-vector space, which induces
amap y: P — gr(A). It is immediate from the construction that gr(7) = . In particular we see that
gr(7) is independent of any choices. On the other hand, 7 itself certainly depends on the choices of the
formal coeficient field K and formal coordinates a; € A,i € I.

The following result addresses the dependence of 7 on K and {a; | i € I}:

Proposition 3.9. Let (A, m, k) be an equicharacteristic local ring, let K,K' C A be two formal
coefficient fields and let {a; | i € I} C A and {a] | i € I} C A be two sets of formal coordinates.

Consider the two maps T: P = kl[x; | i elI]] —» Aand t': P’ = k[[x; | iel]] - Zgiven by
Proposition 3.7. Then there exists an isomorphism ¢ P’ — P suchthat v/ = o ®.

The proof of this proposition relies on the following basic property of formally smooth algebras. The
statement is a natural generalisation of the definition of formal smoothness, which guarantees lifting not
only via extensions with nilpotent kernel but also via extensions with topologically nilpotent kernel.

Proposition 3.10. Let k( be a topological ring and k a formally smooth ky-algebra. Let C be a complete
metrisable topological ko-algebra and T C C a closed ideal such that {I"} tends to zero. Then every

continuous ko-algebra homomorphismu: k — C/T factors as k Leooc /Z, where v is a continuous
ko-algebra homomorphism:

ko ——C
| o
s/
7/
7 u
k——C/T.
Proof. See [32, Chapter Oy, Proposition 19.3.10]. m|

Remark 3.11. Proposition 3.10 implies the existence of formal coefficient fields for any equicharac-
teristic local ring (A, m, k). In this case, C = A, Z = m, ko is the prime field contained in A, k is the
residue field and u is the identity. Notice that k is perfect, and therefore k is separable over k¢ (hence
formally smooth). Then K = v(k) is a formal coefficient field.

Let S be any discrete topological ring. For any two topological S-algebras T and 7’, the tensor
product T ®s T’ is endowed with the final topology with respect to its natural maps. The completed
tensor product T®sT’ is defined to be the completion of T ®g T’. Note that the operation &g is the
coproduct in the category of complete topological S-algebras.

Lemma 3.12. Let (S, 1, k) be a local k-algebra. Any continuous S-algebra map
¢: S®ckllt; | i€ I]] — S&k[lz |i€1]]

which induces an isomorphism of continuous cotangent spaces is an isomorphism.

Proof. Note that a basis for the topology on S ® k[[#; | i € I]] is given by the filtration

m, = Z n o+ ((1; i € DY

d+e=n

Thus it follows that for the associated graded rings we have
gr (S&ck[[r; | i€ 1]) ~ gr(S @k k[1; | i € I]) = gr(S) & k[1; | i € 1].
The map ¢ induces a gr(S)-algebra map
gr(S)[ti | i€ Il — gr(S)[z | i € 1],
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which by assumption is an 1som0rphrsrn Thus we can use [3, Lemma 10.23] to see that ¢ is bijective.
It is easy to check that ¢! is continuous, and we are done. O

Proof of Proposition 3.9. Let k¢ be the prime field contained in X Notice that k is formally smooth
over ko. We apply Proposition 3.10 in the situation in which C = P,T= ker(r) andu: k > A=C/T
is the map such that u(k) = K. ’. Notice that Z = 77! (0) is closed because Ais separated, and that {Z"}
tends to zero because 7" C n”". We getamap v: k — P verifying 7(v(k)) = K’.

Since 7 is surjective, there exist power series f; € P such that 7(fi) = a;. The map ¢ is given by
¢(x]) = f; and | = v. Lemma 3.12 shows that ¢ is an isomorphism. O

Remark 3.13. By the same argument as in the proof of Proposition 3.9, one can see that given any
two formal embeddlngs 7:P > Aand7: P’ - A (not necessarily efficient), there is always a map
@: P’ — Psuchthatt/ =70 ¢, and if 7 is efficient then ¢ is surjective.

Proposition 3.14. For every equicharacteristic local ring (A, m, k) we have

edim(A) = min dim P,
T

where the minimum is taken over all choices of formal embeddings 7: P — A and is achieved whenever
7 is an efficient formal embedding.

Proof. Lett: P — A be a formal embedding, and write P = k[x; |i € []andn = (x; |i € I) C P.
Since 7 is continuous, we have that 7(11¢) C i for some c. As i is maximal, this forces 7(1) C m,
and continuity gives (1) c m” for all n. Hence we get an induced map at the level of graded rings
gr(t): P — gr(A). Since 7 is surjective, gr(7) is also surjective and 7(n") = m?” for every n. In
particular, 7 induces a surjection at the level of Zariski cotangent spaces n/n*> — m/m?, and we see
that edim(A) < dim P. If 7 is an efficient formal embedding, then the map n/n? — m/m? is an
isomorphism and we have edim(A) = dim P. O

We finish this section by recalling the following result, which guarantees the existence of a Zariski-
local minimal embedding for singular points of a scheme of finite type over an infinite field. This is well
known in the case of complex varieties (see, for example, [6, Theorem 3]) and we provide an extension
of the proof to the more general case considered here.

Theorem 3.15. Let X be a scheme of finite type over an infinite field k and let x € X (k). Ifedim(X,x) = d
and X is not smooth at x, then there exist a closed subscheme Y C Ad, a point 'y € Y (k) and an
isomorphism

Oyyy =~ OX,x~

Proof. We may assume that X is projective and embedded in P" for some n > d. Denote by k the
algebraic closure of k and write X := X Xj Spec(k) and x for the k-point on X corresponding to x. As
Oy ; is not a regular ring, we have

dimg (X) < edim (X, %) = edim(X,x) = d

Suppose we can find a linear projection 7 : P" — P9 defined over k such that if ¥ denotes the scheme-
theoretic image of X under 7 and y = 7(¥), then the induced map Oy ; — Ox ; is an isomorphism.
Since ¥ = Y x; Spec(k), where Y is the scheme-theoretic image of X under the linear projection centred
at x, we obtain a map Oy , — Ox_, whose base change to k gives the foregoing map. Thus, by faithfully
flat descent, we get that Oy , ~ Ox .

Now, in order to prove the claim, let T C P” be the unique linear space passing through X whose
tangent space at ¥ agrees with that of X, Furthermore let S be the closure of the set of all lines connecting
7 with X, where 7 € X, 7 # X. Note that dim(§) = dim(X) + 1 < d. Consider now the closure Z of the set
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X UT US, equipped with its reduced scheme structure. Since dim(S) < d the set of all linear spaces L
with L N Z = ( is open inside Gr(n — d — 1, n) X; Spec(k). The preimage of this set in Gr(n —d — 1, n)
is a nonempty open set, and since k is infinite, it has a k-rational point, which we denote by L. Hence
we have that the corresponding projection 7y : P* — P9, defined over k, satisfies ﬂ’l ) NnX={x}
set-theoretically, where y corresponds to the k-point y := 7y (x). ertlng Y =np (X) we get that the
map of local rings Oy 3 — Oy  is injective and finite. Since L NT = 0, the tangent spaces of ¥ and y
are isomorphic and thus m;Ox ; = myx. The claim now follows from the Nakayama lemma. m]

4. Flatness of completion

Let A be aring and m an ideal in A. Given an A-module E, we will consider the m-adic topology on E
and we will denote by E its m-adic completion. We are interested in conditions guaranteeing that the
natural map A — A is flat.

Definition 4.1. Let E be an A-module and F a submodule of E. We say that F C E has the Artin—Rees
property with respect to m if there exists a ¢ € N such that for all n > ¢, we have

M'ENF=m""“(m°ENF).

The smallest such c is called the Artin—Rees index of F C E with respect to m. We say that A has
the Artin—Rees property with respect to m if so does every finitely generated submodule of a finitely
generated free A-module.

The Artin—Rees property for F C E guarantees that the m-adic topology of F coincides with the
topology induced by the m-adic topology of E. In this context it is natural to consider the Rees algebra
=P, m" and the graded A*-modules

E* =@m”E and F*:@m”EmF.

n>0 n>0

Lemma 4.2. F C E has the Artin—Rees property if and only if there exists a ¢ € N such that F* is
generated as a graded A*-module by elements of degree < c. Moreover, the Artin—Rees index of F C E
is the smallest such c.

Proof. This is immediate from the definitions. Compare with [7, Chapter III, Section 3.1, Theorem 1]
or [36, Theorem 8.5] or [3, Lemma 10.8], but notice that no finite generation hypotheses are needed for
the statement of the lemma. O

Remark 4.3. By the classical Artin—Rees lemma [36, Theorem 8.5], any Noetherian ring A has the
Artin—Rees property with respect to any ideal m C A. By contrast, there exist non-Noetherian rings,
even finite dimensional, which do not have the Artin—Rees property. A zero-dimensional example is
given by

A=klx i eN)/(x - m22)+ (a3 [n 2 1),
withm = (x; | i € N) and F = (x;) C E = A. Clearly x; € m” for all n, but there is no f € m such that

X1 Z)le.

In complete analogy with the Noetherian case, we prove that the Artin—Rees property implies flatness
of the completion. We recall that a ring is coherent if every finitely generated ideal is finitely presented.

Proposition 4.4. Let A be a coherent ring with the Artin—Rees property with respect to m C A, and let
A be its m-adic completion. Then A — A is flat. Moreover, if a C A is a finitely generated ideal, then
aA is closed in A (that is, aA = a).
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Proof. Let a be a finitely generated ideal of A. Since A is coherent, there exists an exact sequence

AP a1 % 44 0.

Moreover, since the Artin—-Rees property holds for ker ¢ c A7, the m-adic topology on ker ¢ agrees
with the one induced by the inclusion ker ¢ ¢ A4. From [7, Chapter III, Section 2.12, Lemma 2] or [3,
Lemma 10.3], the sequence remains exact after taking m-adic completions, and we have a commutative
diagram

AP®AX%A‘1®AX%a®AZ%O

T

— — @

AP Ad 0

with exact rows. Since taking completlon commutes with finite direct sums, the map a ®4 A dis
an isomorphism. As the natural map @ — Aisan injection, the flatness of A — A follows from [36,
Theorem 7.7]. The fact that a ®4 A — @ is an isomorphism also shows that aA = 1. ]

The following theorem gives a first example of a non-Noetherian ring with the Artin—Rees property.
We were not able to find a reference for this statement in the literature.

Theorem 4.5. Let S be a Noetherian ring and n any ideal of S. For any set I, consider P = S|x; | i € I]
and m = (x; | i € I) + n. Then P has the Artin—Rees property with respect to m.

Proof. Let E be a finitely generated free P-module and F C E a finitely generated submodule. Assume
that E is freely generated by ey, ..., es.

Given any subset J C I, we write Py := S[x; | i € J], and for any ideala C P we denote ay := anP;y.
Wedefine Ej :=Pj-e1 @ --® Py - e, and for any P-submodule G C E we write Gy := E; N G. Note
that P, m, a, E, G are the colimits of Py, my,ay, E;, Gy for J C I finite. We have

Gy;NG;=(GNG')y, a;Gy € (aG)y, a;E; = (aE)y, (mp)" = (m"),.

In particular, for all n,d € N with n > d, we have

mE; N Fy=(m"ENF);, and  m (ij, N F,) c (m"—d (de N F))J

Assume that F is generated by fi, . . ., f». Then there exists afinite set L C I suchthat fi,..., f, € Fr,
and forany JwithL cJ CIwehave Fy =Py - fi+---+Py-fr, =Py Fr.

Since Py, is Noetherian, it has the Artin—Rees property with respect to ntz, and hence there exists a
¢ € N such that

mZEL N FL = mz_c (szL N FL)

for all n > c. The smallest such c is the Artin—Rees index of F; C Ep . Since for any finite set J with
L cJ cIwehave F; = Py - Fr, we can apply Lemma 4.6, and we see that the Artin—Rees index of
F; C Ej is again c. This implies that

(M'ENF); Cc(m"™“(m°ENF));.
Taking the colimit for all finite J C I, we get
m'ENFCm" ™ “(m°ENF).
The reversed inclusion is immediate, and the theorem follows. O
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Lemma 4.6. Let Ay be a Noetherian ring, mog C Ag an ideal, Ey a finitely generated Ag-module and
Fy C Eyasubmodule. Let 7 be a new variable and consider the ring A = Ag[z], the ideal m = myA+(z2),
the extension E = A ®4, Eo = Eo[z] and F = A ®4, Fy = Fo[z]. Then the Artin—Rees index of F C E
with respect to m equals the Artin—Rees index of Fy C Eq with respect to my.

Proof. Let cg and ¢ be the Artin—Rees indexes of Fy C Eg and F C E. As in Lemma 4.2, consider the

Rees algebras
Agz@m{)‘ and A*:@m"

n>0 n>0

and the graded modules

ng@ngomFo and F*:@m”EmF.

n>0 n>0

Then Fj is generated in degree < cg as a graded Ag-algebra (and not in any lower degree), and similarly
for F.

Any element f € m"E N F can be written as f = >\" fiz", where f; € méEo N Fy. In particular,
F* is generated by F|j as an A*-algebra, and therefore ¢ < co. Conversely, if F* is generated by

homogeneous elements (1, ..., f) with f(/) = 3. fi(j)z"f‘i, then Fj is generated by JASI ,fr”

10

We see that ¢y < ¢, and the result follows. O

Remark 4.7. If A and m are as in Remark 4.3, then we have A = h_r)n A, where
m

Ay = k[xl,...,xm]/(xl —xf,x”]), 1 <i<m.

It is easy to check that the Artin—Rees index of (x;) C A, is m and A does not have the Artin—Rees
property.

Recall that for any discrete topological ring S and any two topological S-algebras T and 7’, the
completed tensor product T&gT”’ is defined to be the completion of T ®g T’ with respect to its natural
topology.

Corollary 4.8. Let S — T be a map of Noetherian rings. As before, suppose that S has the discrete
topology, and let T be equipped with the n-adic topology where n C T is an ideal. Then the natural map

Tlx; |i€ll=T®sS[x; |i€l] > T&sS[x; |iecl]

is flat. In particular:

1. for any index set I, the completion map S[x; | i € Il — S[[x; | i € I]] is flat and
2. for every finite subset J C I, the inclusion S[[x; | j € J]] — S[[x; | i € I]] is flat.

Proof. Observe that a basis for the topology on T'[x; | i € I] is given by

n[x;|liell+(x;|ieD”, m,neN,

which is easily seen to be equivalent to the m-adic one, where m := (x; |[i € [) +n. AsT[x; | i € I]
is coherent (see, for example, [30, Theorem 6.2.2]), the first assertion follows from Theorem 4.5 and
Proposition 4.4. Regarding the last two assertions, (1) follows by observing that S&gS[x; | i € I] =
S[[x; | i € I1], and (2) by taking T = S[[x; | j € J]] with the (x; | j € J)-adic topology and observing
that the given inclusion factors as

S{lxjljed]] = S[[xjljeJ]|xiliel\J] - S[[xi|i€lll,
and so is flat. m]
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Remark 4.9. For quotients A of k[x; | i € I], the completion map A — A need not be flat, even if the
topology of A is separated. Consider the ideal

a= (yxl,yx:’l - zx;‘j | n > 1)

in P = k[x,,y,z | n € N5g] and the quotient A = P/a. Let m = (x,,y,z | n € N5g) C A. As m is
weighted homogeneous with respect to the positive weights w(x,,) = w(y) = 1, w(z) = 2, it follows that
the m-adic topology on A is separated. Consider the element y — z, which is annihilated by the series
f = 2us1x0. If A were flat over A, there would exist polynomials ay,...,a, € A annihilating y — z
such that f could be written as f' = 3"_; a;b;, where b; € A

Considering this equation modulo (y, z), we have written f as a linear combination of polynomials
in k[x, | n € N5¢], which is clearly impossible.

We close this section with the following analogue to Proposition 2.7 for polynomial rings:

Proposition 4.10. Let P = S{x; | i € Il and m = (x; | i € I), where S is a ring and I a set. Let a C Py,
be an ideal such that in(a) C P is finitely generated. Then a is finitely generated.

Proof. Let fi,..., fr € a be such that in(f1),...,in(f,) generate in(a). Since in(a) = in(a), we can
apply Proposition 2.7 to see thata = (fi, ..., fr)P By Corollary 4.8, the map Py, — Pis faithfully flat
andthusa c aN Py = (fi, ..., f)Pm. The other inclusion is trivial, so a = (fi,..., fr). O

5. Ideals of finite definition

In this section, we fix a field k and a set / and consider the polynomial ring P = k[x; | i € I] and the
power series ring pP= k[[x; | i € I]1]. An important class of ideals in P are those generated by finitely
many power series involving only finitely many variables. We study their properties in this section.

For any subset J C I, we write Py = k[x; | i € J] and Py = k[[x; | i € J]], and for any ideal a C P
we denote ay :=a N 13].

Definition 5.1. Let a ¢ P be an ideal.

1. We say that a is of finite definition with respect to the indeterminates x; if there exists a finite subset
J c I'suchthata = a;ﬁ.

2. Similarly, a is of finite polynomial definition with respect to the indeterminates x; if it is generated
by finitely many polynomials — that is, elements in P.

3. We say that a is of finite (polynomial) definition if there exists a k-isomorphism P=~ k[[x! |iel]]
such that a is of finite (polynomial) definition with respect to the formal coordinates x;.

Definition 5.2. Let (A, m, k) be an equicharacteristic local ring.

1. A weak DGK decomposition for A is an isomorphism A=~ k[[x; | i € I1]/a, where a is an ideal of
finite definition. _

2. A DGK decomposition for A is an isomorphism A ~ k[[x; | i € I]]/a with a of finite polynomial
definition. R

3. We say that a (weak) DGK decomposition A = k[[x; | i € I]]/a is efficient if the quotient map
k[[x; | i € I]] — A is an efficient formal embedding.

Remark 5.3. If A has a DGK decomposition, then we have an isomorphism A ~ B&; P, where P is
a power series ring and (B, 1, k) is a local k-algebra which is essentially of finite type. Geometrically,
this means that Spf(A) ~ Z, XA, where AT = Spf(k[[x; | i € I]]) and Z, is the formal neighbourhood
of a scheme Z of finite type over k at a point z € Z(k). If A has a weak DGK decomposition, then
A=~ B®kP where B is a Noetherian complete local ring with residue field .
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Example 5.4. The existence of a weak DGK decomposition for a ring A does not imply the existence of
a DGK decomposition for A. This can be seen by considering the following example given by Whitney.
Let f(¢) be a transcendental power series with complex coefficients and with f(0) = 0, and consider
the equation

g=xy(y=x)(y = B+0)x)(y = (4+ f(1)x).

It is proven in [46, Example 14.1] that B = C[[x, y,?]]/(g) is not isomorphic to the completion of a
local ring of a C-scheme of finite type. In particular, any local ring A for which A ~ B (for example, B
itself) admits a weak DGK decomposition but not a DGK decomposition.

We now give another example of a local ring A such that A ~ B. This example has the advantage
of being explicitly presented as the localisation of a quotient of a polynomial ring in countably many
variables. Write f(¢) = Y;5; a;t' € C[[¢]]. Consider the polynomial ring P = C[x, y,,z, | n > 0] and
the ideal

a=(hzo-1—zZnt —aunt | n>1),
where
h=xy(y —=x)(y = 3+0x)(y — (4+20)x).
Let A be the localisation of P/a at the ideal (x, y,t,z, | n = 0). Then in A we have, for each m > 1,

0= f() =zt = ) ait €W,

i>m+l

and foreachm > n+1,

n — Z al_tifn — thmfn _ Z al_tifn c T’ﬁmfn'

i>n+l i>m+1

Thus it follows that A ~ Cllx,y,t,20]1/(hyzo — (1)) = C[[x, y,]]/(g) = B.

Remark 5.5. An analogous definition of finite definition can be given for ideals in a polynomial ring
P = k[x; | i € I].Itis easy to see that the definition does not depend on the choice of indeterminates, and
that an ideal of P is of finite definition if and only if it is finitely generated. By contrast, in a power series
ring not every ideal of finite definition is so with respect to the given indeterminates x;, and not every
finitely generated ideal is of finite definition. For instance, consider P= k[[x, | n € N]]. The principal
ideal generated by f = ), x): is of finite definition by Lemma 3.12 but not in the indeterminates
x;. As for the second claim, an example is given by the principal ideal generated by g = 3,5 X"+,
which, as we shall discuss next, is not of finite definition if & is of characteristic 0. Indeed, assume by
contradiction that there exists an isomorphism P~k [[yn | n € N]] such that gﬁ is of finite definition
with respect to the indeterminates y,. Pick a variable y, not appearing in the generators for gﬁ, and
consider the regular continuous derivation d = 4/dy, on P. Notice that d (g) = 0. By regularity, we
have d(x,,) € P* for some m > 1. Writing d(g) = X,»1(n+ 1)xd(x,), we see that ordy, (d(g)) < oo,
contradicting d(g) = 0.

Ideals of finite definition form a class of ideals of P for which Question 2.8 has a positive answer. We
give only a sketch of the proof of the next lemma here, and refer the reader to [18, Section 1.5] for details.

Lemma5.6. Leta C P be anideal such that there exists J C I finite witha = ay P. Then in(a) = in(ay)P.

Proof. Choose a local monomial order < compatible with the standard filtration on ﬁ; for example,
take the order defined by x¢ < xP if xP <grex X%, Where <gex denotes the usual graded lexicographic

order. Then < restricts to a local monomial order <; on P 7. Choose a standard basis S = {f1,..., f}
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of ay with respect to <j. By [4, Theorem 4.1], this is equivalent to S being closed under s-series. Note
that [4, Theorem 4.1] extends directly to the case of infinitely many indeterminates, and thus it follows
immediately that S is a standard basis of a with respect to <. Clearly we have in(a) = (in(f}), ..., in(f;)),
which proves the claim.

We are interested now in understanding heights of ideals of finite definition. Let us start by looking
at their minimal primes.

Proposition 5.7. Ifa C P is an ideal of finite definition, then it has a finite number of minimal primes,
and each of them is of finite definition. More precisely, let J C I be a finite subset and assume that
a= ajﬁ Ifp C P is a minimal prime of a, then p = p,ﬁ. Moreover, the assignment p +— Py gives a
bijection between the minimal primes of a and the minimal primes of aj.

Proof. Notice that if p C Pisa prime ideal, then p; C P, remains prime. Moreover, by Corollary 4.8
we have that P; — P is faithfully flat and thus q = (qﬁ) N Py for any ideal q C Py. 1t is therefore
sufficient to show that for every prime ideal q C Py, the extension qﬁ is prime. By Remark 2.4 we have
an injection P (13 J)N(’\J) . Since J is finite, P is Noetherian and q is finitely generated. This implies
that q(1a J)N(I\J) = qN(m) — that is, the elements of the extension q(1a J)N<I\J) are precisely the Bourbaki
power series that, when expanded in the variables indexed by I \ J, have coefficients in q. Therefore we
have an injection

PR . NI\
PlaP = (Psja)

and the ring in the right-hand side is clearly a domain. Thus qﬁ is prime. O

Remark 5.8. In the setup of the proof of Proposmon 5.7, if J is infinite then it is no longer true that
q(PHN" = @Y for an arbitrary prime q ¢ P. For example, let J = N, pick ig € 1\ J, let q = i,

be the maximal ideal in P, ;7 and consider the series f = ), en xnx;(’). Then f belongs to qN(I\J) but not to

q(P. _])N(I\J). We do not know if the extension qP remains prime when J is infinite.

Remark 5.9. Proposition 5.7 shows that the ideal (x; | i € J )P is prime whenever J is finite. Since
colimits of prime ideals remain prime, one sees that (x; | i € J )P is prime for an arbitrary subset J. In
particular, my = (x; | i € I)P is prime. Notice that P/mg has infinite dimension when [ is infinite.

The proof of the following theorem uses the results of the previous section and Proposition 5.13:
Theorem 5.10. If J C I is a finite subset and a = ay P, then ht(a) = ht(ay).

Proof. From Proposition 5.7 we can assume thata = p = py Pis aprime ideal. Notice thatp C b := (x; |
j € J). From Proposition 5.13, the localisation Py is Noetherian, and therefore Pp, which is a further

localisation of Pb, is also Noetherian. By Corollary 4.8, the extension P J C P is flat, and therefore
the extension (P. J)p, C Pp is also flat. Since Pp is Noetherian, it follows from [36, Theorem 15.1] that

ht(p) = ht(py). o

Corollary 5.11. Let a C P be any ideal of finite definition. For every minimal prime p of a, we have
ht(p) < co.

Remark 5.12. In the case of polynomial rings, the analogues of Theorem 5.10 and Corollary 5.11 are
well known and easy to prove, and in fact there is a strong converse to the analogue of Corollary 5.11,
since every prime ideal of finite height in a polynomial ring P = k[x; | i € I] is finitely generated. To
see this, suppose p C k[x; | i € I] is a prime ideal that is not finitely generated. Recall that p is the
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colimit of the ideals p N Py as J ranges among the finite subsets of /. This implies that we can fix an
embedding N c [ and find an increasing sequence {r, | n € N} c N such that if p,, C k[x; | i € I]
is the ideal generated by p N k[xy,...,x,, ], then p, < P, for all n. Since p, are all prime and are
contained in p, it follows that ht(p) = oco.

Moreover, for arbitrary ideals a of P it is proven in [29, Theorem 3.3] that a is finitely generated if
and only if it has finitely many associated primes, each of which is of finite height.

Proposition 5.13. For every finite J C I, the localisation E xj|jer) is Noetherian.

Proof. As discussed in Remark 2.5, since J is finite we have an isomorphism
Pk[[x; |iel\J[[x;1jeJ]].

The proposition now follows from the next lemma: O

Lemma 5.14. For any n € N, let P, = ﬁ[[yl, ..., ynl] and consider the ideal b, := (y1,...,y,) in
Py,. Then the localisation (P,)y, is a Noetherian ring.

The proof of this lemma uses the following straightforward generalisation of the Weierstrass division
theorem, whose proof is a simple adaptation of the proof of [7, VII, Section 3.8] where the adic topology
on P, is replaced with the inverse limit topology. We say that f € P, is yn-regular of order d if its
image under the canonical map ﬁ,, — k[[ya]] is nonzero of order d.

Theorem 5.15. Let f € P be Yn+1-regular of order d. For every g € P there exist unique q € Pt
andr € Py[yn+1] such that g = qf +r and r has degree < r as a polynomial in y,.

The next lemma ensures that we can apply Theorem 5.15 to prove Lemma 5.14.

Lemma 5.16. Let f € Pt :,f’; [[y1,-...,Yn+1]] be a nonzero element. Then there exists a continuous
k-automorphism ¢: Ppy1 — Py such that ¢(b,41) = b1 and @(f) is yne1-regular.

Proof. 1f f is already y,.;-regular, then we are done. If not, then pick any monomial of the form
dy

X, e

L4

€n+l

x;‘i’ yi' -y appearing in the expansion of f. Then decompose f as

fzf/+f”’ f/ek[[xip---,xi,.,y],---,)’nﬂ]],

such that f’ cannot be decomposed further. By [1, Lemma 6.11] there exist new coordinates x;'_,- =
Xi; + yZil, yy =+ yﬁﬂrl and y! | := yn+1 such that f’(xlfj,y;) is y/ ,,-regular. We may extend this
change of coordinates trivially to a continuous automorphism ¢: P,;; — Py by setting x] = x;
for all indices i that are different from i; for all j. Then clearly ¢(f) is y,ii-regular and ¢ fixes
Bpe1 = (V15 o5 Yna1)- O

Proof of Lemma 5.14. We prove the lemma by induction onn. Let Q,, := (ﬁ,,)bn. Clearly Q¢ =~ Quot(ﬁ),
so let us assume that Q,, is Noetherian. We have injections Q,, — Q,+1. Let a be an ideal of 0,4 and
let f € a, f # 0. After multiplication by a unit, we may assume f € Poit: by Lemma 5.16 we may also
assume f is y-regular. Consider the ideal a’ := a N Q, [yn+1]. Since Q,, is Noetherian, so is O, [Vu+1],
and thus there exist f1,..., f € Qn[yn+1] that generate a’. We claim thata = (f, f1,..., fr)On+1-
Let g € a. By Theorem 5.15, there exist a unit u € Qu+1, g € ﬁm] and r € ﬁn [yn+1] such that
ug = qf +r. Since r € a’, we can find vy,...,v, € Q, such that r = Z;:l v; fj. Hence we have

g=u"qf + X u"'v,f;, which proves our claim. O
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6. Embedding codimension

Let (A, m, k) be alocal ring. The inclusion of m/m? in the graded ring gr(A) induces a natural surjective
homomorphism of k-algebras

y: Sym, (m/mz) — gr(A).
Definition 6.1. The embedding codimension of (A, m, k) is defined to be
ecodim(A) := ht(ker(y)).
Proposition 6.2. For any local ring (A, m, k), we have
edim(A) = dim(gr(A)) + ecodim(A).

In particular, if A is Noetherian then edim(A) = dim(A) + ecodim(A).

Proof. This follows from the fact that for every polynomial ring P = k[x; | i € I] and every ideal
a C P, we have dim(P) = dim(P/a) + ht(a) (compare Remark 5.12). For the last assertion we use the
fact that dim(gr(A)) = dim(A) if A is Noetherian. O

Remark 6.3. The formula in Proposition 6.2 is still valid, and informative, when some of the quantities
involved are infinite.

Remark 6.4. Higher-rank valuation rings provide examples of finite-dimensional non-Noetherian
rings whose embedding dimension is smaller than their dimension. For example, let A C
k(x,y) be the valuation ring associated to the valuation v: k(x,y)" — Zfex given by v(f) =
(ordy (f), ordy(fx"’rdx(f) |x=0))- This is a 2-dimensional ring whose maximal ideal is principal, which
implies that the embedding dimension is 1. In particular, the second equation in Proposition 6.2 does
not hold for such rings.

Remark 6.5. The embedding codimension of a local ring was studied in the Noetherian setting in [35]
under the name regularity defect. One of the main results proved there is that if p is a prime ideal of a
Noetherian local ring (A, m) such that dim(A) = dim(A/p) +dim(A;), then ecodim(A,) < ecodim(A)
[35, Theorem 3]. It would be interesting to find suitable conditions for the same property to hold in the
non-Noetherian setting.

We now come to the main result of this section, which gives bounds for the embedding codimension
of A from maps into A.

Proposition 6.6. Let ¢: (B, 1, ko) — (A, m, k) be a homomorphism of local rings, and assume that
(B,n) has finite embedding dimension. Let ¢*: n/n> ®, k — m/m? be the induced k-linear map on
the Zariski cotangent spaces. Then

ecodim(A) > rank(¢*) — dim(gr(B)).

In particular, if B is Noetherian then ecodim(A) > rank(¢*) — dim(B).

Remark 6.7. A stronger form of Proposition 6.6 is obtained by replacing dim(gr(B)) with
dim(gr(B/ker(gr(¢)))) in the displayed formula. Note, in fact, that this sharper form of the proposition
follows from the special case of the proposition where ¢ is assumed to be injective.

Remark 6.8. Consider the special case where ¢ is a homomorphism of local k-algebras with residue
fields k (that is, such that the natural maps k — B/n and k — A/m are isomorphisms) and with B
essentially of finite type. The geometric interpretation is the following. Let f: X — Y be a morphism
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of schemes over k, with Y of finite type over k, and let p € X(k) and g = f(p) € Y (k). Denote by
T,f:T,X — T,Y the map induced on Zariski tangent spaces. Then the proposition gives

ecodim (Ox ) > dim (Im (7, f)) — dim, (Im(f)),

where Im(f) C Y is the scheme-theoretic image of f. Note in particular that if X is Noetherian, then this
formula reduces to the intuitive statement that

dim (T, X) — dim,,(X) > dim (Im (7}, f)) — dim, (Im(f)).

Another special case is when f is a submersion onto Y, in which case the formula reduces to the inequality
ecodim(Ox_p) > ecodim(Oy 4).

Proof of Proposition 6.6. We have the commutative diagram

Symy, (n/n?) —— Sym; (Im(¢*))——— Sym, (m/m?)

| | d
ar(B) — > Im(gr(g)) @, k2 gr(A).
\ k /

The existence of o follows from the fact that Im(x) ®, k = Sym, (Im(¢*)). The map ¢ is a linear
extension of polynomial rings, and hence is faithfully flat. Since ¢! (ker(y)) = ker(o-), we see that

ht(ker(y)) > ht(ker(c))
by the going-down theorem. On the other hand,
ht(ker(o)) = rank(¢*) — dim(Im(o)).

Since the inclusion Im(o) C Im(gr(¢)) ®k, k is an inclusion of Noetherian local rings with the same
residue field, and Im(gr(¢)) is a quotient of gr(B), we have

dim(Im(o)) < dim(gr(B)).
Combining these formulas, we get
ht(ker(y)) > rank(¢*) — dim(gr(B)).

To conclude, notice that dim(gr(B)) = dim(B) if B is Noetherian. O

The following result shows that the embedding codimension of A is invariant under change of the
base field, provided the residue field is already contained in A:

Proposition 6.9. Let (A, m, k) be a local k-algebra such that the natural map k — A/m is an isomor-
phism, and let k C k' be a field extension. Denoting A’ .= A ® k', we have

ecodim(A”) = ecodim(A).

Proof. First, observe that A’ is a local k’-algebra with maximal ideal m’ = m ®; k’. We have
ecodim(A) = ht(ker(y)), where

v: Sym, (m/mz) — gr(A)
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is defined, as at the beginning. Since for every n we have (m’)"/(m’)™*! = m" /n"*! ®; k’, we see that
v induces, by base change, the analogous map

y': Sym, (m'/(m')z) — gr(A’).
The next lemma gives ht(ker(y’)) = ht(ker(y)), and the assertion follows. O

Lemma 6.10. Let P = k[x; |i € Il and P' = P®y k' = k’[x; | i € I], where k C k' is a field extension.
Then for every ideal a C P we have ht(a) = ht(aP’).

Proof. For short, let a’ = aP’. If I is finite, then the lemma follows from dimension theory. In general,
suppose by contradiction that ht(a) # ht(a’). Then we can find a finite subset J C [ such that
ht(ay) # ht(a’) (compare Remark 5.12). Since a’, = a; P/, this contradicts the finite-dimensional
case. O

7. Formal embedding codimension

In the case of equicharacteristic local rings, looking at the completion instead of the associated graded
provides a different way of defining the embedding codimension. To distinguish the two, we introduce
the following terminology:

Definition 7.1. The formal embedding codimension of an equicharacteristic local ring (A, m, k) is
defined to be

fcodim(A) := inf ht(ker(7)),

where the infimum is taken over all choices of formal embeddings 7: P— A (see Definition 3.6).

Proposition 7.2. In this definition, we have fcodim(A) = ht(ker(7)) for every efficient formal embedding
7. P— A

Proof. Given two formal embeddings 7: P > Aand 7': P’ - A with 7 efficient, by Remark 3.13
there is a surjection ¢: P’ — P such that 7" = 7 o ¢, and hence ht(ker(7’)) > ht(ker(7)). )

Remark 7.3. If A is a local k-algebra such that the residue field A/m is separable over k, then it follows
by [32, Chapter Oy, Corollary 19.5.4] that the following are equivalent:

1. A is formally smooth over k.
2. ecodim(A) = 0.
3. fcodim(A) = 0.

Proposition 7.4. For every equicharacteristic local ring (A, m, k), we have
edim(A) > dim (Z) + fcodim(A),

and equality holds if A has finite embedding dimension. In particular, if A is Noetherian then edim(A) =
dim(A) + fcodim(A).

Proof. Consider an efficient formal embedding 7: P = kl[x; | i € I]] — A. Note that dim(ﬁ) =
edim(A) by Proposition 3.14. The first formula follows from the simple fact that dim(P) > ht(ker(1)) +
dim(ﬁ /ker(7)). If A has finite embedding dimension, then the set [ is finite, and equality holds in the
formula because a power series ring in finitely many variables is catenary of dimension equal to the
number of variables. The second formula follows from the first and the fact that dim(A) = dim(A) if A
is Noetherian. O
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Corollary 7.5. If (A, m, k) is an equicharacteristic local ring of finite embedding dimension, then

ecodim(A) = fcodim(A).

Proof. By Propositions 7.4 and 6.2, it suffices to show that dim(gr(A)) = dim(A\). By Proposition
3.7, the completion A is the quotient of a power series ring in finitely many variables, and therefore is
Noetherian and carries the ni-adic topology. The result now follows from [36, Theorem 15.7] and the
identification gr(A) =~ gr(A). O

Proposition 7.6. Let (A, m, k) be an equicharacteristic local ring. If A admits a DGK decomposition
A =~ B& P, then

ecodim(A) = fcodim(A) = ecodim(B) < co.
Proof. Since B is Noetherian, we have edim(B) < oo. By Corollary 7.5, we have that ecodim(B) =

fcodim(B). Now we make use of the fact that A =~ k[[x; | i € I]]/a with a of finite definition.
Note that there exists J C [ finite such that a is the extension of a; = a N k[[x; | j € J]] and
B =~ k[[x; | j € J]]/a;. We may assume that the surjection 75: k[[x; | j € J]] — B is an efficient
formal embedding; then so is 74: k[[x; | i € I]] — A By Remark 5.3 and Theorem 5.10, it follows
that fcodim(B) = fcodim(A). It remains to show that ecodim(B) = ecodim(A).

To that end, note that gr(z) factors through the natural surjection Sym, (m/m?) — gr(A), and
similarly for gr(7p). We have the commutative diagram

k[x; | i € I —— Sym, (m/m?) —— gr(A)

T ]

k[xj1j €] —— Symy (n/n*) —— gr(B),
and thus the claim follows by Lemma 5.6. O

Remark 7.7. The analogous statement of Proposition 7.6 holds for equicharacteristic local rings
(A, m, k) admitting a weak DGK decomposition.

The proof of Corollary 7.5 does not extend beyond the case of finite embedding dimension. Nonethe-
less, the following general comparison theorem holds:

Theorem 7.8. For every equicharacteristic local ring (A, m, k), we have

ecodim(A) < fcodim(A).
Proof. Fix an efficient formal embedding 7: P — A, and let gr(7): P — gr(A) be the induced map on
associated graded rings (as in Remark 2.6, we identify gr(P) = gr(P) = P). As explained in Remark

3.8, P ~ Sym, (m/m?) and gr(r) gets identified with the canonical surjection y. In particular, it is
enough to show that

ht(ker(7)) > ht(ker(gr(7))).

Write a = ker(7). By [7, Chapter III, Section 2.4, Proposition 2], we have ker(gr(7)) = in(a). To
conclude, it is therefore enough to prove that

ht(a) > ht(in(a)).
This follows from the next proposition. O
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Proposition 7.9. Let P = k[x; | i € I] and P = k[[x; | i € I1], where k is a field. Let a C P be an ideal
and in(a) C P the corresponding initial ideal. Then ht(a) > ht(in(a)).

Proof. If ht(in(a)) < oo, then in(a) is finitely generated and there exists a finite subset J C I such that
in(a); has the same height as in(a) (see Remark 5.12). Otherwise, if ht(in(a)) = oo, then we can pick
a finite J C I such that the height of in(a), is arbitrary large. Define ¢ := ht(in(a)y).

By [17, Proposition 1.5.11], we can fix homogeneous elements g, . . ., g € in(a); forming a regular
sequence in P;. By the definition of initial ideal, there are elements fi, ..., fc € a such that m( fi) =8
for all i. Let R = R(P) := B, ez m” " be the extended Rees algebra of P, where we set m" = P
whenever n < 0. For every i, let f- = u~ o4 f; € R. Note thatﬁlu -0 = in(f;) = g; via the identification
R/uR ~ P.

We claim that for every 1 < r < ¢, the elements ﬁ, cees f; form a regular sequence in R and
R/(f1,..., fr) is flat over k[u]. We argue by induction on r, the assertion being clear if r = 0. Setting
for short B R/( f1 , -5 fr—1), we know by induction that B is flat over k [u]. Assume that there exists
h € P with h = Zr | ai f, and in(hk) not divisible by g1, . . ., g,—1. Writing

r—1
Z uord(ﬁ)al_]?i' _ uord(h)il"

i=1

Lemma 7.10 yields that B has torsion over k[u], which gives a contradiction. Thus in(fi, ..., fr-1) =
(g1,-.-,8—-1) and B is isomorphic to the algebra @nEZ b,u™", where b, := (n/f" +
(fis--os fr=1))/(f1seoos fr—1) forn > 0 and b, = B for n < 0. It follows by Proposition 2.7 that
(MNy>1bn = {0}. Then Lemma 7.11 implies that B is (u)-adically separated, and Lemma 7.12 (with
t = u) implies that the class b of fr inBisa regular element and B /bB is flat over k[u].

The natural isomorphism R/(ux — 1)R ~ P sends fl to f;, and hence we see by Lemma 7.12 (with
t=u—1)that fi,..., f. form aregular sequence in P. This implies that depth(a, P) > c¢. We conclude
using the fact that ht(a) > depth(a, P) (see, for example, [2, Proposition 2.3 and Lemma 3.2]). m]

Lemma 7.10. Set fi,..., f, € P.If h € P, then in(h) € (in(f1),....in(f,)) if and only if there exist
elements by, . .., b, in the Rees algebra R = R(P) such that

=Y i

Proof. Given h= > bl-f:-, we may assume that b; is homogeneous in R — that is, of the form b;
yu~ord(m+ord(f) 4. “with a; € P. But then ord(a;) > ord(h) — ord(f;) and the claim follows.

Lemma 7.11. Let A be a ring and (a,),>0 a graded sequence of ideals of A, and let R(A) :
P,z @nu™", where we set a, = A for n < 0. Assume that (51 6, = {0}. Then R(A) is (u)-adically
separated.

Proof. Let a € R(A) be any element. Write a = 3 a;u™" for some a; € Pand p,q € Z. By the
definition of Rees algebra, we have a; € qa; for all i. The condition that a € u" R(A) is equivalent to
having a; € a,4; forall i. If a € (,,5; u"R(A), then we have a; € (), a, = {0} for all i, and hence
a=0. m]

Lemma 7.12. Let B be a flat and k|[t]-algebra. For any given b € B, consider the following
properties:
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L. b is a regular element of B and B/bB is flat over k|t].
2. The image b of b in B/tB is regular.

Then (1) = (2), and the converse holds if B is (t)-adically separated.

Proof. The proof is an adaptation of the proof of [36, Theorem 22.5]. The implication (1) = (2) follows
by the snake lemma applied to the commutative diagram

b

B B B/bB
B—2 B B/bB
|

B/tB—— B/tB

after observing that the map B — B given by multiplication by b is injective, since b is regular, and so
is the map B/bB — B/bB given by multiplication by ¢, since B/bB is flat over k|[¢].

In order to prove the implication (2) = (1) when B is (¢)-adically separated, suppose x € B is an
element such that bx = 0. Then bx = 0 in B/tB, and hence ¥ = 0. This means that x € ¢B. Suppose
x € 1" B for some positive integer n, and write x = ¢y in B. Then " (by) = bx = 0 and hence by = 0,
since B is flat over k[¢]. This implies that y € ¢B, and hence x € "*! B. Therefore x € (1,5, t"B, and
since B is (t)-adically separated, this means that x = 0. This proves that b is a regular element. To
conclude that B/bB is flat over k[¢], we just compute Torlf [t] (k, B/bB) = 0 from the exact sequence
0 — B — B — B/bB — 0 and apply [36, Theorem 22.3]. O

Question 7.13. We do not know of any example where the inequality in Theorem 7.8 is strict. The
question whether ecodim(A) = fcodim(A) holds for all equicharacteristic local rings (A, m, k) is, to
our knowledge, still open.

8. Embedding codimension of arc spaces

Let X be a scheme of finite type over a field k. The arc space X, of X is the scheme over k rep-
resenting the functor of points given, for any k-algebra R, by R +— l(ianXm(R), where X,,(R) =

Homy (Spec(R[t]/(t™*1)), X) is the functor of points of the mth jet scheme of X. By [5, Remark 4.6],
the functor X (R) is naturally isomorphic to Homy (Spec(R[[?]]), X). A point @ € X, is called an arc
on X and corresponds to a morphism Spec(L[[7]]) — X, where L is the residue field of @. A point
a € X is said to be constructible if it is the generic point of an irreducible constructible subset of X,
(compare [21, Section 10]).

Given an arc a: Spec(k[[t]]) — X, we will denote by a(0) and a(n) the images in X of the closed
point and the generic point of Spec(k[[z]]); we call @(0) the special point of @ and a(n) the the generic
point of «.

Given an open set U C X, we have a(n) € U if and only if the morphism «: Spec(k[[t]]) — X does
not factor through the complement X \ U. We will be interested in the case where U = Xy, the smooth
locus of X. Note that if k is perfect, then the complement X \ Xy, is the singular locus Sing(X) of X.

We following result is a variant of [21, Theorems 9.2 and 9.3]:

Theorem 8.1. Suppose that X is an affine scheme over a perfect field k. Let @ € X, be an arc and let
d := dimg (o (5)) (RLx/x Ok k(a(n))), where k(a(n)) is the residue field of a(n) € X. Assume that one
of the following occurs:

1. kis a field of characteristic O or
2. a € X (k).
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Fix a closed embedding X ¢ AN, let f: X — Y = A? be the morphism induced by a general linear
projection AN — A9 and let B = fo(a) € Yoo. Let m C Ox_ o and 1t C Oy, g be the respective
maximal ideals and L and L’ the residue fields. Then the induced L-linear map

(Tofoo)™: M/0? @1 L — m/m?

is an isomorphism.

Proof. By assumption, we have that ord (Fitt? (Qyx /k)) < oo, and by taking a general linear projection
we can ensure that ord, (Fitt‘l(QX/k)) =ord, (FittO(QX/y)).
Since k is perfect, we have a commutative diagram with exact rows

0 *)Tl/nz QL —— QYm/k ®0y,, L 4)91//]( QL —0

J(T(tfm)* J‘P Jé

0———m/m?> ——— Qx_/x ®oy. L Qr/k 0.

The main step is to understand the map ¢. As in the proof of [21, Theorem 9.2], denote for short
By = L[[t]] and P := L((t))/tL[[t]].
Note that, by [21, Theorem 5.3], there are natural isomorphisms
Qx_/k ®oy., L = Qx/k ®oy PL
and

Qy,./k ®oy,, L = Qy /i ®oy PL.

We will use these isomorphisms to study ¢.
By pulling back the terms of the exact sequence

Qy/k ®0, Ox — Qx/x — Qx;y — 0
along a, we obtain the exact sequence
Qy /i ®oy BL — Qx ik ®ox BL — Qx vy ®0x BL — 0.

Since Y is smooth, we see that the term Fy := Qy /x ®¢, By is a free By -module. Write Qx /x ®0, B =
Fx & Tx, where Fx is free and Tx is torsion. Since Orda(Fitto(Qx/y)) < oo, the term Txy :
Qxy ®oy By is a torsion By -module, and we get an exact sequence

0—-Fy > FxoTx — Tx)y — 0.

Since Py, is a divisible By -module, tensoring with Py, kills torsion, and hence this sequence gives the
exact sequence

’

0— TorfL (Tx,Pr) — TorfL (Tx,v,PL) = Fy ®g, PL ANy ®p, PL — 0.

Note that ¢’ = ¢ under the aforementioned isomorphisms. We have Tori9 L(Tx,Pr) =~ Tx, and
this has dimension ordQ(Fittd(QX/k)) over L. Similarly, TorfL (Tx)y,Pr) = Txy has dimension
ord,, (Fitt? (Qyx sv)) over L. Since these two dimensions are equal, the map ¢’ in the sequence is an
isomorphism. We conclude that ¢ is an isomorphism.

The surjectivity of ¢ implies that ¢ is surjective, and the injectivity of § follows from our assumption
that either (1) or (2) holds. We conclude that (T, fi)* is an isomorphism. ]
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Corollary 8.2. Keeping the assumptions and notation from Theorem 8.1, let ay,, B, denote the images
of a, B under the projections Xoo — X, and Yoo — Yy, and m,, C Ox,, qo,, M, C Oy, g, denote the
corresponding ideals with residue fields L, L),. Then the induced L-linear map

(Toy fr)" : Mp /M2 ®p; L — my, /m?% @p, L

is injective for all n € N.

Proof. This follows from the diagram

n/n? @y L —— m/m?

T |

M, /n2 @, L —— my,/m2 e, L
and the fact that the top horizontal and left vertical arrows are injections. O

Theorem 8.3. Let X be a scheme of finite type over a perfect field k and let @ € Xo. Assume that one of
the following occurs:

1. kis a field of characteristic O or
2. @ € Xoo(k).

Then we have

ecodim (Ox,, o) < limsupecodim (Ox,, q,)

n—oo

where ay, is the image of « under the truncation map nt,,: Xoo — Xj.

Proof. We can assume without loss of generality that X is affine. Given a map
f:X—>Y:= A?,

we let B := fo(@) € Y. For every n, we denote by a, € X, and B, € Y, the images of a and 8
at the respective n-jet schemes. It is convenient, within this proof, to change notation from before to
let Aw = Ox_ o and B = Oy, g, and denote by My C A and ne C Bo the respective maximal
ideals and by Lo = As/Me and LY := B /Mo the residue fields. Similarly, for every n € N, we let
A, = Ox,,a, and B, := Oy, g,, and denote by m,, C A,, and n,, C B,, the respective maximal ideals
and by L, = A, /m, and L), := B, /n, the residue fields.

Note that we have direct systems {A,, — A,+1 | n € N}and {B,, C B,+1 | n € N},and A, = li_r)nn A,
and By = h_n)ln B,,. Moreover, we have commutative diagrams

Be —225 Ao

)

n»

@n
B, —

where 1, = ¢! (m,), n, =M N B, and m,, = My, N A,,.
For every n € N U {oo}, let

don: My /n2 ®p Ly — my, /me

be the induced L,,-linear map.
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We pick f as in Theorem 8.1. For every n € N U {co}, there is an associated map of graded rings
gr(p,): gr(B,) — gr(A,). We denote by

Yn: gr(By) ®r;, Lo — gr(A,) ®r, Lo

the map induced by gr(¢,) by the indicated base changes.

Note that m., = h_H)ln m, and hence m/, = h_r)nn m;, for all r. Indeed, if a € m[, for some r > 2, then
we can write @ = ay - - a, with a; € m; then we can pick »n such that a; € m,, for all i, and hence
a € m),. It follows that

gr(Ax) = lim gr(An) ®r, Lo,
and similarly we have
gr(B) = lim gr(By) ®r;, L.
Since n!, = ¢, (m”,) for all r, for every n we have a commutative diagram

gr(Bw) ®1;, Loo — (4w

L]

gr(B,) ®r;, Lo —— g1(A;) ®r,, Leo.

For short, let R,, := gr(A,) ®r,, Lo, Sy := gr(By) ®1; Lo and K, := ker(y,,).
Lemma 8.4. ht(K.,) = limsup,, ht(K},).

Proof. First, note that Ko, = limn K,,. Indeed, the inclusion Ko D limn K, is clear, and conversely, if
b € K and we fix n € N such that b € S,,, then y,,,(b) is in the kernel of R,, — R for all m > n and
hence, since each i, (b) maps to ¥,+1(b) via R, — R4, it follows that ¢, (b) is zero for m > n,
which means that b € K,,, for m > n.

We are now ready to prove that

ht(K) = limsup ht(K},).
n

Note that the maps S, — S« are extensions of polynomial rings over the same field L. Thus they are
faithfully flat, and hence for every prime p,, C S, its extension p, Se is prime.

Consider first the case where ht(K.) < oo and let p C So be a minimal prime over Ko, with
ht(p) = ht(K«). By Remark 5.12 we have that p is finitely generated by elements fi, ..., fr € Se. For
each n > 0, let p,, be any minimal prime over K, contained in p N S,,. Then p’ := h'_r)n” pp is a prime of
S With Koo € p” Cp,sop’ =p. Letn; > Obe suchthat fi,..., f € py;thenp, =pNS, forn > n;.
Given any chain of primes

O)=qCa G Saq=pC S,

pick s; € g; \ ;-1 and fix ny such that sy, ..., s; € S,,. Then for every n > max{n;,n,} we get a chain
of primes

0)=q0nNS, cqnNS, c---Sa NS, =p,.

Thus ht(K») < limsup, ht(K,). The other inequality follows by the going-down theorem applied to
Sy — Seo.
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If ht(Ks) = oo, then, since ht(Ks) > ht(K,S«), a similar argument shows that the sequence
{ht(K},)}, is unbounded. O

We can now finish the proof of the theorem. Since B, is formally smooth, for every n € N U {co} the
natural map

Symy; (1a/n2) = er(Ba)
is an isomorphism (see Remark 7.3 for the case n = o). Furthermore, the diagram

S, Y R,

Symg, (M /n2) ®1; Lo LN Sym; (m,/m2) ®r, Lo

is commutative.
By Theorem 8.1, the map 0 is an isomorphism, and hence

ht(Ks) = ht(ker(ye)) = ecodim(A).
Similarly, by Corollary 8.2, o, is an injective Lo,-linear map of polynomial rings, and we have
ht(K,) < ht(ker(y,)) = ecodim(A,).

Then we conclude by Lemma 8.4. O
Theorem 8.5. Let X be a scheme of finite type over a perfect field k and let @ € Xo. Assume that either
k is a field of characteristic 0 or « is a k-rational point. Then we have

ecodim (Ox,, o) < ordy (Fittd (Qx/k)) ,

where d = dim () (X). In particular:

1. If X is a variety, then ecodim(Ox_, o) < ord,(Jacx).
2. Ifa(n) € Xsm and X° C X is the irreducible component containing a(n), then ecodim(Ox,, o) <
ord, (Jacyo) < oo.

Proof. First note that it suffices to prove the theorem when a(n) € Xgp, as otherwise the right-hand side
of the stated inequality is infinite and the statement is trivial. Let us therefore assume that a(n) € Xgn.

For every r, let J, := Fitt"(Qx/x) € Ox. On the one hand, for every finite n we have by [21,
Lemma 8.1]

edim (Ox,, q,) = (n+ 1)d, — dim (m) +ordy (Ja,),

where d, = d(a,, Qx/k) is the Betti number of Qy /x with respect to a,, [21, Definition 6.1] and {,, }
the closure of @, in X,. On the other hand, since « is not in an irreducible component of X, that is
fully contained in (Sing(X)), we have

dim (Ox,.a,) = (n+ 1)d — dim (@)

for all finite n. Since for all n large enough we have d, = d, we deduce by Proposition 6.2 that
ecodim(Ox, o,) < ord,(Jq) for all n > 1. We conclude by Theorem 8.3 that ecodim(Ox,, o) <
ord, (Jg), as stated.
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Regarding the last two assertions of the theorem, (1) follows by the fact that if X is a variety,
then by definition, Jacx = Fittd(QX/k) As for (2), if a(n) € Xgy, then by Lemma 8.6 we have

Oxw a = (’)Xo , and hence we can apply (1) to X’; note also that in this case we have o € X and
hence orda(Jach) < 0o, O
We include a proof of the following property, which is well known to experts and is remarked in [24]:
Lemma 8.6. Let X be a scheme of finite type over a field k and @ € X« an arc with a(n) € Xsm. Let
X% ¢ X be the irreducible component containing a(n). Then Oxw o= OXo
Proof. We may assume that X = Spec(R) is affine. By abuse of notation, we write a for the map
R — A[[f]]. Let a := ker(a). If (0) = []; q; € R is a primary decomposition with qo the minimal
prime defining X°, then the condition () € X° translates to g9 € a and q; ¢ a fori # 0. Let A be a
test-ring — that is, it is local with maximal ideal m, residue field K equal to the residue field of @ € X,
and m" = 0 for some n € N. Let @’ be any A-deformation of @ — that is, given by a map R — A[[7]].
To prove the lemma, it suffices to show that a’ := ker(a’) D go. We have the commutative diagram

R—%5 AL[t]] — LI[1]]

N

A((1)) —— L((1)),

where A((t)) denotes the localisation of A[[¢]] at the ideal m. Since A[[¢]] — A((?)) is injective, we
have a’ = ker(y’). Let f € qo. Take any f; € g; \ a fori # 0. Then g := f []; f; € a’. Since y'(f;) # 0
modulo m, we have that y’( f;) is a unit. Thus 0 = y’(g) = y’(f)u, where u is a unit, and in particular
fea. O

Theorem 8.7. Let X be a scheme of finite type over a perfect field k. For @ € X, suchthat a(n) € X\ Xgm,
we have ecodim(Ox., o) = o

Proof. Note that since k is perfect, we have X \ Xsn = Sing(X), and in particular the condition that
a(n) € X \ Xsn is equivalent to having @ € (Sing(X))co-

For every n € N, let 7,: Xoo — X, be the truncation morphism, and let @, := m,(a) € X,. Note
that for n = 0 we have @y = @(0). Let L and L,, denote the residue fields of X, at @ and of X,, at «,,. By
[21, Lemma 8.3] (see also [21, Remark 7.4]), for all n sufficiently large the differential map

(Tomp)*: m,yn/mf,n ®r, L — ma/mf,
has rank at least (n + 1)d(a) — dim({a_n}), where
d(@) = dimg(a () (RLx/x ® k(a(n))) .
Then by Proposition 6.6 we have
ecodim (Ox,, o) > (n+ 1)d(a) — trdeg, (L,) — dim (Om,an)
= (n+ Dd(@) - dimg, (7,(X))
where m denotes the Zariski closure of 7, (X) in X,,.

Since X is of finite type, X has finitely many irreducible components (see [41, Theorem 2.9] and
[39, Corollary 3.16]). This implies that for n sufficiently large, we have

dimg,, (ﬂ'n(Xoo)) = max dim (ﬂ'n (C)) ,
Coa
where the maximum is taken over the irreducible components C of X, that contain a.
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Let C be one of the irreducible components of X, containing a, let 8 € C be its generic point and
let Z C X be the closure of B(n) in X. From [21, Lemma 8.6], we have

dim (nn(C)) < (n+1)dim(Z) < (n+1) dimg g (X).
Since a(n7) € Sing(X), we see by the definition of d(«a) that d(a) > dim(g)(X), and therefore
lim ((n +1)d(a) — dim (nn(C))) > lim (n+1) (d(a) — dimg(g) (X)) = .
n—oo n—oo

We conclude that ecodim(Ox,_, o) = oo, as claimed. O

Corollary 8.8. Let X be a scheme of finite type over a field k and let @ € X. Assume that either k has
characteristic 0 or @ € Xoo (k). Then we have a(n) € Xem if and only if ecodim(Ox,, o) < o0.

Proof. If k has characteristic 0, then the corollary follows by Theorems 8.5 and 8.7.

Let then k be any field, and assume that @ € X, (k). For a field extension k C k’, we denote
X’ 1= X Xspec(k) Spec(k’) and let a’: Spec(k’[[t]]) — X’ be the arc obtained by base change from a.
Since a point of X is in the smooth locus if and only if it is geometrically regular, we can find a field
extension k C k’ such that &’ is not a regular point of X’. By faithfully flat descent of regularity, we can
replace k’ with a larger field extension and assume without loss of generality that k” is perfect. Note
that X/, ~ Xoo Xspec(k) Spec(k’), and hence Ox;, o = Ox,, o ®k k’. Then by Proposition 6.9 we have

ecodim (Ox;, o) = ecodim (Ox_, q) -

This reduces to the case of perfect fields, where the result follows again by Theorems 8.5 and 8.7. O

9. On Drinfeld, Grinberg and Kazhdan’s theorem

Theorem 8.5 can be seen as a finiteness statement for singularities of the arc space at arcs that are not
fully contained in the singular locus. One of the first major results in this direction is the theorem of
Drinfeld, Grinberg and Kazhdan, which we will state here in its version from [24]. Recall that for any
equicharacteristic local ring (A, m, k), a DGK decomposition is an isomorphism A ~ k[[¢#; | i € I]]/a,
where a is an ideal of finite polynomial definition.

Theorem 9.1 ([31, Theorem 2.1], [24, Theorem 0.1]). Let X be a scheme of finite type over a field k,
and let @ € Xoo (k). If (1) € Xsm, then the local ring Ox., o admits a DGK decomposition.

As mentioned in Remark 5.3, any DGK decomposition of Ox,, , induces an isomorphism of formal
schemes

S

Xeo.a = Z XAV,

with Z a scheme of finite type over k, z € Z(k) and A = Spf(k[[7]]). The formal scheme Z is often
referred to as a formal model for . While Z, is not unique, there exists a unique minimal one in the
following sense:

Theorem 9.2 ([10, Theorem 7.1], [12, Theorem 1.2]). Let Z and W; be two formal models &r a Lv@ch
are indecomposable — that is, they are not of the form YXA, with Y a formal scheme. Then Z, =~ W,,,.

Definition 9.3. The indecomposable formal model of « is called the minimal formal model and denoted

by Zmin,

Note that the formal model provided by Theorem 9.1 is not minimal in general, which we will see in
Section 10.
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Combining Theorem 9.1 with the results of this paper, we obtain the next result, which provides a
characterisation of k-rational arcs admitting a DGK decomposition. The result also gives an explicit
bound for the embedding codimension; we should stress that such a bound does not follow from the
proofs in [31, 24, 25].

Theorem 9.4. Let X be a scheme of finite type over a field k. For any @ € X, (k), the following are
equivalent:

a(n) € Xsm.

Ox.,.a admits a DGK decomposition.
Ox.,.a admits a weak DGK decomposition.
ecodim(Ox,, o) < oo.

S

Moreover, if k is perfect and a(n) € Xy, then
ecodim (Ox,, ) < ord, (Jacxo),

where X° C X is the irreducible component containing ().

Proof. The implication (1) = (2) is Theorem 9.1, the implication (2) = (3) is obvious, the implication
(3) = (4) follows from Corollary 5.11 and finally Corollary 8.8 gives the implication (4) = (1). The
last statement follows from Theorem 8.5. m}

Example 9.5. Let X be the hypersurface defined by xox,+1 + f(x1,...,x,) = 0 and @ € X (k) the
arc given by (£,0,...,0) € k[[¢]]"™*>. Assume further that the hypersurface H c A" given by
f(x1,...,x,) = 0 has a singularity at 0. Then, as shown in [24], a DGK decomposition for Ox,, o
is given by

Oxe,a = kl[x1,. . oxall/f (1. x0) @k k[t |1 € N

The singularity of « is thus again given by H and ecodim(Ox,, o) = 1. On the other hand, the order of
a with respect to the Jacobian ideal Jacy is 1, and hence the bound in Theorem 9.4 is sharp in this case.

Example 9.6. Similar to the previous example, let X be the hypersurface defined by xox,.1 +
f(x1,...,x,) = 0, where f is a polynomial of multiplicity 2, and take this time @ € X (k) to be
the arc given by (1,0, ...,0) € k[[¢]]"*?. Denoting by g/ the jth Hasse—Schmidt derivative of an
element g € k[xg,...,x1] and setting for short 7 = {0,1,...,n+ 1} and J = Z¢, X is defined
by the ideal a = ((xoxps1 + ) | j € J) of P := k[x\ | (i, ) € I x J] [45]. Let m C P be the

maximal ideal at @. Since x(()m>

by the elements xr(zj+)1 for j € Jand in(f) for 0 < < m — 1. As long as f is chosen so that in(f),
0 <1 <m -1, form a regular sequence (for example, f = x;x2 would work), we get that Ox,_ , has
embedding codimension m. Since clearly the order of @ with respect to Jacy is also m, this shows that
the bound in Theorem 9.4 is sharp for all possible orders of the arc with the Jacobian ideal of X.

is a unit in the local ring P,,, we see that the ideal in(aPy,) is generated

Let us mention here the following consequence of Theorem 9.4, which implies that the local rings
of closed arcs in the arc space provide plenty of examples of non-Noetherian rings whose embedding
codimension agrees with their formal embedding codimension.

Corollary 9.7. If X is a scheme of finite type over a field k, then
ecodim (Ox,, o) = fcodim (Ox,, o)

for every a@ € X (k). If k is perfect, then the same holds for all constructible points @ € X with
a(n) € Xsm-
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Proof. Assume first that @ € X (k). If a(n) € Xim, then the equality follows by Theorem 9.1 and
Proposition 7.6. If @(r7) € X \ Xim, then we have ecodim(Ox_, o) = oo by Corollary 8.8, and we
conclude by Theorem 7.8. Suppose now that @ € X, is a constructible point with a(n) € Xgy.
By [21, Theorem 10.8], Ox., o has finite embedding dimension, and hence the assertion follows by
Corollary 7.5. O

We now state the following application of Theorems 8.1 and 9.1, which says that a generic projection
of the base scheme induces an efficient DGK decomposition at an arc that is not contained in the singular
locus:

Theorem 9.8. Let X ¢ AN be an affine scheme of finite type over a perfect field k, let a € Xo, (k) with
a(n) € Xsm and let d = dimy ;) (X). Let f: X — Y = A? be the map induced by a general linear
projection AN — A9, and let B := fu(a). Then the associated map

¢: Oy, p— Ox..«

gives an efficient formal embedding of Ox., . Moreover, if kis infinite, then there exist formal coordinates

u; € Oy, p, i € N, such that ker(p) is generated by finitely many polynomials in u;, and hence @ induces
an efficient DGK decomposition.

Proof. The first part follows from Theorem 8.1, together with the fact that Oy, g is formally smooth
over k. Regarding the second assertion, we know by Theorem 9.1 that the map ¢ induces a surjection

: Oy, 5 — Oz &uk[[1i |i € N]J,

with Z a scheme of finite type over k and z € Z(k). If Z is smooth at z, then there is nothing to show.
Otherwise, by Theorem 3.15 we may assume that Z ¢ A", where n = edim(Oz ;). Since ¢ induces an
isomorphism of continuous cotangent spaces, the statement follows from Proposition 3.9. O

The next example illustrates in concrete terms the content of Theorem 9.8 when X is a hypersurface
in an affine space, where the existence of the efficient formal embedding as in the theorem can be verified
directly from the equations.

Example 9.9. Let f € k[x},...,x,,y] and let X be the hypersurface defined by f. For the sake of
convenience, we will write x = (xy,...,x,). Let@ = (x(¢), y(¢)) be an arc on X such that ord,, (Jacy) =
ord,(%(x(t),y(t))) =d > 0. We write x(t) = ¥;a¥t/ and y(r) = ¥; b"¢/; note that a'/) =
(aij), cee, af,j)). Let D = (Dp)p»0 be the universal Hasse—Schmidt derivation on k[xD, yW) | j>0],
where x(/) = (xij), ..., x)). Then X = Spec(Rw), where

Ro=k [x(j)’y(j) |j> 0] /(f<p> Ip= 0),

with f(P) = D, (f). Note that £(P) depends only on x/), y(/) for j < p. The arc a then corresponds
to the ideal m,, of R, given by

m, = (x(n —aW yD) _p) > 0) .

Oxea = k [x(n’y(n] /(f(,;)) .

(x),y ()
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We are going to make use of the following explicit formula from [21, Section 5]:

U (9«
ay(q) =Up-q (9)7 5 q=p.
The condition ord,(%(x(t), y(t))) = d implies that, for p > d,

afp
C’)y(‘]) ’

afP d =0, p-d<q<p,
:f—(a’b):Dp—q(_f)(a,b) p <qg=p
ay(q) 0)1 :ﬁo, q:p—d.

This implies that the initial forms of f (P)_for p = d, can be written as

0)

in ( f(d+i)) =y 4 gld+i),

where g(@ € k[x) | j < d] and, fori > 0, g@*) e k[x),y® | j < d+i,1 < i]. In particular, the
elements x/) and f(4+)) for j > 0, give formal coordinates in k[[x(/),z(/) | j > 0]], and hence the
map

o k Hx(j),z(j) 1j> 0” Sk me,y(j) |j> 0”’ X0 s xU)) 00 pGrD,

is an isomorphism. Write h; := gp‘l(f(i)) and a := (ho,...,hq_1), where h; is obtained from h; by
setting z(/) = 0 for all j > 0. Then we get

Oxera =k [« 172 0|| /&

Observe that the map k[[x/) | j > 0]] — @ is the efficient formal embedding from Theorem
9.8 with respect to the projection (x,y) +— x. However, this isomorphism does not induce a DGK
decomposition a priori, since the ideal a is not necessarily of finite polynomial definition with respect
to the variables x(/).

10. Efficient embedding of the Drinfeld model

It is useful to compare the formal embedding given by Theorem 9.8 to the one provided by the Drinfeld—
Grinberg—Kazhdan theorem. This comparison is done in Theorem 10.2. We first need to recall the
construction of the Drinfeld models.

Let X c AV be an affine scheme of finite type over a field k, consider a k-rational arc @ € X (k)
such that a(n) € Xy and let d := dimy(,;)(X) and ¢ := N — d. Let XY be the irreducible component of
X containing a(n) (note that d = dim X?), and let X’ > X° be the complete intersection scheme defined
by the vanishing of ¢ general linear combinations py, ..., p. of a set of generators of the ideal of X°
in AV, As explained in [24], the respective inclusions induce isomorphisms O/X;:, ~ (9/)(;, ~ (7);;,
(detailed proofs are given in Lemma 8.6 and [10, Section 4.2]). Pick coordinates x1,...,Xg, ¥1,..., Ve
in the ambient affine space AN Fora general choice of such coordinates, we can assume that

a(p15~"7pc)

ord, [det
( (6(y1,-.-,yc)

)) = ord, (Jacxs) = ord, (Jacyo) =: e < 0.

—_—

Drinfeld defines a specific formal model for Ox_ , depending only on the choices of the coordinates
X;,yj, the equations p; and the order of contact e. Concretely, consider the affine space A™, where
m = e(1+2d + c). We denote by R[t], the space of polynomials of degree < n with coefficients in R.
Denoting by Q,, the scheme representing the functor R — " + R[t]<,, the space of monic polynomials
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of degree n with coefficients in R, we identify A™ with the product Q. X Age_
identification, a k-rational point of A" corresponds to a triple

, X AZ_,. Under this

(q(1),%(1), 5(1)) € (1° + k[1]<e) X (k[t]<ae)® X (k[t]<)° .

In particular, coordinates in A" take the form q(”) s if") R yj.”). Consider the conditions

PR, 5(1) = -+ = pe (¥(1),5(1)) = 0 mod ¢(1),
det(M ()E(l‘),)_)(t))) = 0 mod q(t),
8(y1,...,yc)
5 p1(E@),5(1)\ (0 (10a)
ad'(%(i(r),w» : = | : | mod g(n?.
T pe E0.51)) 0

Here adj(B) denotes the classical adjoint of a matrix B. As explained in [24] and [10, Sec-
tions 3.3 and 3.4], the conditions in formula (10a) are polynomial in the coefficients of ¢(z), x(¢), ¥(1),
and therefore they define a finite-type subscheme Z c A™.

Write the arc « in the coordinates (x,y) of AN as a = (a(t), b(t)), where a(t) € k[[¢]]¢ and
b(t) € k[[t]]¢. To a we associate the point z = (¢, a@(t), b(t)) € Z given by

a(r) = a(r) mod ¢, b(r) = b(¢) mod 7°. (10b)

It is shown in [24] that Z gives a (finite-dimensional) formal model for @ — that is,

IS

Xeo.a = ZXAY. (10¢c)

The isomorphism in formula (10c) can be expressed somewhat explicitly in coordinates. We identify
AZ with an infinite-dimensional affine space A", and we use the notation £(¢) for points in A™. Hence
coordinates in AY take the form g}"), with 1 <i < d and n > 0. The disk A" appearing in formula
(10c) is the formal neighbourhood of ¢(z) in AN, where c(t) := t72¢(a(t))s2. is the truncation of a(t)
to degrees > 2¢ divided by #2¢. Summarising, we have described coordinates (x(¢), y(¢)) in m and
coordinates (g(2),x(1), ¥(t),£(¢)) in Z)?AN. As explained in [24], the isomorphism in formula (10c)
gives the relation

x(1) = q(1)%€(t) + (1),

and we have
#(r) = x(r) mod g(1)?, 5(1) = (1) mod ¢(¢). (10d)

We emphasise that these relations hold only at the level of formal neighbourhoods.

Notice that the point z € Z depends on the arc @, but the scheme Z depends only on the choices
of the coordinates x;, y;, the equations p; and the order of contact e. The choice of coordinates x;, y;
also determines the linear projection AN — A< given by (x,y) — x, and hence the induced map
fi X — A4

Definition 10.1. With the foregoing notation, we say that (Z, z) is a Drinfeld model of X, at «, and that
it is compatible with f.

We are now ready to state and prove our comparison theorem.
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Theorem 10.2. Let X ¢ AN be an affine scheme of finite type over a perfect field k, let @ € X (k) with
a(n) € Xgm and let d := dimg ;) (X). Let f: X — Y = A4 be induced by a general linear projection
AN — A andlet B := fu(). Let (Z, z) be a Drinfeld model compatible with f, and letm o~ Z)?AN
be the corresponding DGK decomposition.

1. The composition map

—_— N —— —

Z XA S X0 > Yoo s

is the completion of a morphism g: Z x AN — Y.
2. If X° ¢ X is the irreducible component of containing a(1) and e = ord, (Jacyo), then the compo-
sition map

= Xeo,a = Yoo,  Yoe-1,8.,
is an efficient formal embedding. Moreover, at the level of associated graded rings, we have that

gr (OZ,Z) =Im (gr (OYZe—lﬁze—l) — gr (OXm,a)) :

Proof. We use the notation introduced at the beginning of the section. In particular: we have coordinates
(x,y) in AN such that the projection AN — Y is given by (x,y) — x; we write @ = (a(t), b(t)), so
B = fo(a@) = a(t); we have a space A™ with coordinates (¢ (z),x(t),¥(¢)), and Z c A™ is defined by
the conditions in formula (10a); the point z € Z is given by z = (#¢, @(x), b(x)) as in formula (10b); the
formal scheme Z?(AN is contained in the completion of A <A at (z, ¢()), where c(1) = 172¢(a(1))s2e¢;
and the coordinates in this affine space have the form (g(z), x(z), (1), £(2)).

We define a map A™ x AN — Y, via

(q(1), %(1), 5(1),£(1)) = q(1)* (1) + %(0),

and we let g: Zx AN — Y,, be the restriction. It is clear from the discussion surrounding formula (10d)
that the completion of g gives the composition of Z)?AN - 5(:, — @, and the first statement of
the theorem follows.

We compute the tangent map of g explicitly. With a small abuse of notation where coordinates of
elements and coordinate functions are written in the same way, we denote a tangent vector on Z x AN
based at a point (z, c(¢)) = (¢¢,a(t), b(r), (1)) by

(£ +dq(t)e, x () + dx(t)e, y(1) + dy(t)e, c(r) + dé(t)e)

where dq(t) € k[t]<e, di(t) € (k[t]<20)?, d¥(t) € (k[t]<e)€, dé(2) € k[t]? and €% = 0. The image of
such a tangent vector under g is given by

(1° + dq(1)€)* (c(1) + dé(r)€) + (R (1) + di(1)€)
= (Pc(r) +7(1)) + (dx(;) +dE(DPe + ZC(t)dq(t)te) €

= a() + (dx(t) +dE(D) + 2c(t)dq(t)te) €.
In other words, the tangent map of g at (z, c(¢)) is given by

dx (1) = dx(t) + dé(0)1% + 2¢(1)dg(1)1€,
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or, in coordinates — recall that ¢ () = t72¢(a(t))s2¢ — by

dxlf") ifn<e,
dxlgn) =dx"™ 425 mne a7 dg D ife <n<2e,
de ) 423 e a0 dg D ifn 2 2e.

From this we see that g induces a surjective map between associated graded rings

oi k|| 255, | = er (Ov.p) — er (0z.2) @k [ag™| 2L, |
We have a commutative diagram
n (4 m
@t s ae(0z.) o [
:
Ye
k [dxi(n) 1";[251] ®r k [dx(n) 1n<>,2<ed] —5 gr (0z.:) ®r k [dfi(m) 1’21'E§Nd] ,

where A is the gr(Oz . )-linear map given by

aE a2 S a0,

k+l=m—e

( is given by dxl.(") — d;—‘l.("‘%) for n > 2e and ¢ agrees with the map gr(Oy,, , g,, ,) — gr(Oz. ;)
induced by the composition

Z - Zx{c()} > ZxAY 5 Yy - Yoe_i,
which is given by

(X(1), 3(1), (1)) = 2(1) + 177 (a(1)) 209 (1)* mod £*¢.

The map A is invertible, and by Theorem 8.1, the map ¢ is surjective, and thus ¥ is surjective as well.
This implies that

gr (Oz,;) =Im (gr (O, prey) = 21 (Ox..a)) >

and hence the last assertion follows. For the first part of (2), the fact that ¢ is surjective implies that the
map induced on completions Oy,,_, g,,., — Oz, ; is surjective as well. The fact that this is an efficient
embedding follows from the injectivity of the corresponding tangent map. O

11. Applications to Mather-Jacobian discrepancies

Throughout this section, let X be a variety over a field k of characteristic 0.
Given a prime divisor E on a normal birational model f: Y — X, we define the Mather discrepancy
kE := ordg (Jacy ) and the Mather—Jacobian discrepancy (or simply Jacobian discrepancy) kMJ =

% g —ordg (Jacy) of E over X. Note that these definitions depend only on the valuation ordg defined by
E and not by the particular model chosen. The definition extends to any divisorial valuation v = g ordg,
where ¢ is a positive integer, by setting k, := gkg and KM := gkM'. When X is smooth, both
discrepancies agree with the usual discrepancy of E over X. We say that X is MJ-terminal if kMJ >0
whenever E is exceptional over X. As proved in [34, 20], this condition is equivalent to the condition
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that if X C Y is a closed embedding with ¥ smooth and ¢ = codim(X,Y), then for any closed subset
T C X the pair (Y, ¢X) has minimal log discrepancy mldy (Y, cX) > 1. We refer to [22, 34, 20, 26] for
general studies related to these invariants.

The results of this article, together with a theorem from [21], yield a new proof of the following
theorem of Mourtada and Reguera:

Theorem 11.1 ([37, Theorem 4.1]). With the foregoing notation, let « € X be the maximal arc defining
a given divisorial valuation q ordg (that is, such that ord, = g ordg ). Then dim(Ox,, o) = q(k%” +1).

Proof. We have edim(Ox, o) = q(EE + 1) by [21, Theorem 11.4], and Theorem 8.5 gives us
ecodim(Oyx_ o) < ord,(Jacy). It follows then by Proposition 7.4 and Corollary 7.5 that

dim ((’)/X;) = edim (Ox.,.o) — ecodim (Ox,_ o) > ¢ (k%” + 1) : O

Assume now that X is an affine toric variety. To fix notation, let T be an algebraic k-torus, N :=
Homy (G,,,T), M := Homz(M,Z), o C Ng a rational convex cone and X := Spec k[c¥ N M]. Note
that every v € o N N defines a T-invariant divisorial valuation on X.

In their recent article [13], Bourqui and Sebag study DGK decompositions of X, at arcs that are not
fully contained in the T-invariant divisor of X. The focus is on the open set X;, C X, consisting of those
arcs whose generic point is in 7. They prove that for any a € X, the local ring Ox_, o, depends only on
the associated valuation ord,, and in particular so does the minimal formal model [13, Corollary 3.3].
In particular, if we set

Xo,, ={ae XS |ordy = v},

then we can denote by Z‘;’i“ the minimal formal model of X, at any arc @ € Xg, ,,.

The next theorem is one of the main results of [13]. A similar, more general property is proved
for elements v satisfying a certain property called P, ; we refer to the original source for the precise
statement.

Theorem 11.2 ([13, Corollary 6.4]). With the foregoing notation, if v is indecomposable in o N\ N, then
the associated minimal formal model Z"™ has dim(Z]"™) = 0 and edim(Z]") = k,,.

Indecomposable elements v € o N N are characterised by the property that their centres on any
resolution of singularity of X are irreducible components of codimension 1 of the exceptional locus
[13, Theorem 2.7]. In the terminology of the Nash problem, these form a particular class of essential
valuations. By combining Theorem 1 1.2 with our results, we obtain the following corollary:

Corollary 11.3. Let X = Spec k[o¥ N M] be an affine toric variety.

1. For any indecomposable element v € o N N, we have k™ < 0.
2. If X is singular and Q-factorial, then X is not MJ-terminal.

Proof. Part (1) follows immediately from Theorems 11.2 and 9.4, and (2) follows from (1) and the
observation that if X is singular and Q-factorial, then o N N necessarily contains an exceptional
indecomposable element. This is just because the exceptional locus of any resolution of singularity of a
Q-factorial variety always has pure codimension 1, and the set of essential (toric) valuations is nonempty
if X is singular. O
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