
Canad. Math. Bull. Vol. 25 (2), 1982 

I N T E G R A L R E P R E S E N T A T I O N B Y B O U N D A R Y 
V E C T O R M E A S U R E S 

BY 

P A U L E T T E S A A B 

ABSTRACT. In this paper we show that if X is a compact Haus-
dorff space, A is an arbitrary linear subspace of C(X, C), and if E is 
a Banach space, then each element L of (A<E>E)* can be rep­
resented by a boundary E*-valued vector measure of the same 
norm as L. 

Introduction. All the results obtained in this paper are valid for real and 
complex Banach spaces. However we shall deal only with complex Banach 
spaces. 

Let X be a compact Hausdorff space and let E be a Banach space with dual 
E*. Let C(X, E) denote the Banach space of all continuous E-valued functions 
defined on X under the supremum norm. In [6] O. Hustad showed that if A is 
a linear subspace of C(X, C) that separates the points of X and contains the 
constant functions, then each continuous linear function I on A can be 
represented by a "boundary measure" that has the same norm as I Later 
Choquet [2] and Fuhr and Phelps [5] independently extended Hustad's 
theorem to the case in which the subspace A does not contain the constant 
functions. In [9], we showed that if the compact space X is metrizable and E is 
an arbitrary Banach space, then it is possible to extend Hustad's theorem to 
those subspaces of C(X, E) that are of the form A ® E, where A is a linear 
subspace of C(X, C) that separates points of X and A <8> E is the closed linear 
subspace of C(X, E) generated by elements of the form a ® v, with a in A and 
v in E and where for all x in X we have; 

a<g)v(x) = a(x) - v 

In this paper we shall prove, using the technique we developed in [8], an 
extension of our result in [9]. Namely, we shall show that for any compact 
Hausdorff space X and any linear subspace A of C(X, C), each continuous 
linear functional L on A®E can be represented by a boundary JB*-valued 
vector measure that has the same norm as L. 

First let us collect some notations. 
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If V is a Banach space, we shall denote by V* its topological dual. 
It is known [7] that if Y is a compact Hausdorff space and E is a Banach 

space, the dual of C(Y, E) is isometrically isomorphic to M(Y, E*), the space 
of w*-regular E*-valued vector measures defined on the or-field of Borel 
subsets of Y and that are of bounded variation [3]. 

The space of all complex valued regular Borel measures on Y will simply be 
denoted by M(Y). The subset of M(Y) consisting of probability measures 
(resp., the positive measures) will be denoted MX(Y) (resp., M+(Y)). 

If jut is in M(Y, JE*), and x is in E, we denote by (x, JUL) the element of M{Y) 
defined as follows: 

(x, jLt)(JB) = |Lt(B)x for each Borel subset B of X 

1. A representation theorem for point separating subspaces of 
C(X, C). Throughout this section X is a compact Hausdorff space, A is a 
linear subspace of C(X, C) that separates points of X, and E is a Banach space. 
We shall denote by A ® E the closed linear subspace of C(X, E) generated by 
elements of the form a (8) x, where a is in A and x is in E. Also we shall denote 
by U the unit ball of A*, by </> : X—» U the canonical map, and by T the unit 
circle in the plane. 

DEFINITION 1.1. A measure JLL in M(X, JE*) is called a boundary vector 
measure for A if its variation |JLL| (when carried via </>) is maximal for the 
Choquet ordering on M+(U) [1]. 

The following Lemma can easily be obtained using the characterization of 
maximal measures on compact convex sets [1, 27.4]. 

LEMMA 1.2. A vector measure JUL in M(X, E*) is a boundary vector measure 
for A if and only if for each x in E the scalar measure (x, JUL) is a boundary 
measure for A. 

We are now ready to prove the main result of this section. 

THEOREM 1.3. Let Xbe a compact Hausdorff space, let Abe a linear subspace 
of C(X, C) that separates points of X, and let E be a Banach space. Then for 
each L in (A®JE)* there exists a vector measure JLI in M(X,E*) such that 

0) HnlHIH 
(ii) Jx b d[L = L(b) for all b in A®E, and 

(iii) the measure jit is a boundary vector measure for A. 

Proof. If A(U,E) denotes the Banach space of all continuous affine E-
valued functions on U, then A®E embeds isometrically in A(U,E) as 
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follows: For b =X?=i at (S>xt we let j(b) denote the element of A(U, E) defined 
by 

n 

j(b)(a*) = £ a*(ai) • x,, for all a* in U. 
i = l 

The mapping / is obviously linear. It is an isometry since the set of extreme 
points of U is included in T • <f>(X). Let L be an element of (A ® E)*. With the 
help of the Hahn-Banach theorem, pick 4> in A (17, E)* such that, <!> when 
restricted to /(A(8>E), is equal to L and ||</>|| = ||L||. 

By [8] the functional L can be represented by a measure A in M(U, E*) such 
that 

(i) L{b) = iuj(b)dk for all b in A(g)E, 
(ii>||A|| = ||L||, and 

(iii) the variation |A| of A is maximal for the Choquet ordering on M+{U). 
Since the measure |A| is maximal it is supported by T • 4>(X) [5]. Let 

s: T - <^(X)-» T x X b e the Borel selection map defined by Fuhr and Phelps 
[5, Lemma 7.2]. Denote by s(k) the E*-valued set function defined on Borel 
subsets of T x X as follows: 

s(A)(J5) = \(s~\B)) for each Borel subset B of T x X . 

It is easily checked that s(A) is in M(TxX, E*). Let JLL be equal to H*s(A), 
where for every v in M(TxX, E*) and every / in C(X, E) 

H*y(/)= f t-/di;. 
• T x X 

It can easily be checked that /x is in M(X, E*), and that for each x in E 

<x,H*s(A)> = Hs«x,A» 

where H is Hustad's map see [6] or [5]. 
We claim that JUL is our required element. For this, note that for each a in A 

and for each e in E 

ILL (a <g> e) = <e, H*s(A)>(a) = Hs«e, A))(a) 

= I j ( a (2 )e )dA=L(a®e) . 
•>T-<MX) 

This shows that H^5(A) and L agree on A (g)E. This proves (ii). To prove (i), it 
is easy to check that 

||H*s(A)N||A|| = ||L||, 

hence ||H„,s(A)|| = ||L||. 
Finally, since \k\ is maximal for the Choquet ordering on M+(U), then for 

each x in E, the scalar measure \(x, \)\ is also maximal. This implies that 
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Hs((x, À)) is a boundary measure for A. An appeal to Lemma 1.2 shows that 
the vector measure H*s(\) is a boundary vector measure for A since for each x 
in E (x, H*s(\)) = Hs({x, À)). This completes the proof. 

2. A representation theorem for arbitrary subspaces of C(X, C). We shall 
now proceed to prove Theorem 1.3 for an arbitrary linear subspace A of 
C(X,C). 

For each a in A denote by à the element of C(<j>(X), C) defined by: 

â(<t>(x)) = a{x) for all x in X 

It is clear the element à is well defined. Denote by A the set {a: ae A}. If E is 
a Banach space, consider Â®E the corresponding linear subspace of 
C(</>(X), E). The spaces A(g)E and A<8>E are isometrically isomorphic. We 
can now prove the main result of this paper. 

THEOREM 2.1. Let A be an arbitrary linear subspace of C(X, C) and let E be a 
Banach space. Then for each L in (A®E)* there exists a measure JULL in 
M(X, E*) such that 

(i) W\\ = \\L\l 
(ii) Jx bd|ULL = L(b) for all b in A®E, and 

(iii) the measure JULL is a boundary vector measure for A. 

Proof. Let L be in (A(g)E)* with | |L | |=1. By virtue of the isometry of 
A®E and A ® £ we may and do assume that L is in (A(g)E)*. Apply 
Theorem 1.3 for A and <f>(X) to get a measure v in M(<£(X), E*) such that 

(i) MHlLll, 
(ii) $bdv = L(b) for all b in A ® E , and 

(iii) the measure \v\ is maximal for the Choquet ordering on M+(U). 
Since |v| is in Mt(</>(X)), there is a net of positive discrete measures (vi)ieI 

such that vt = Y^Li aje^^j) and ĤH = 1 for each i in I, and such that vt converges 
to \v\ in the weak* topology of Mt(<j5>(X)). 

For each i e I, let 
n. 

J = I 

and note that the measure ^ is in the weak* compact convex set MX(X). Let /x 
be a weak* cluster point of the net (M-i)ier in MX(X). It is a straightforward 
computation to show that <KM<)

 = \v\- Since v is in M(</>(X), E*), it follows from 
[4, p. 389] that there exists a mapping g: </>(X)->E* that is |i/|-essentially 
bounded by one, (scalarly) weak*-Borel measurable, and such that v = g • \v\. 
Let JLLL = g ° ĉ> • fx be the E*-valued set function defined on Borel subset B of 
X b y : 

JUIL(JB)(X) = (g ° </)(w), x) d|u(û>) for each x in E. 
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It is clear that JLLL is in M(X, E*) and that the variation |JLLL| < fx. We claim that 
|LLL is our required element. To this end, note that for each a in A and for each 
x in E we have 

J a®xdiAL= (g° cj)(ù)),a(ù))'x)diJL((o) 
x Jx 

= 1 (g°(f)(w), x)â((j>(ù))) dn(o>) 

= â®xdv = L{a®x). 
4(x> 

This shows that JULL = L on A (8) E. Since | /xL | < JUL, it follows that ||{xj| = ||JUL|| = 1. 
Hence |JULL| = JLL. Finally, the measure fxL is a boundary vector measure for A 
since <M|MXJ) = |Ï ' | *S maximal for the Choquet ordering on M+(U). This 
completes the proof. 
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