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§1. Introduction.

In [8], A. Morimoto proved that the automorphism group of a holo-
morphic principal fiber bundle over a compact complex manifold has a
structure of a complex Lie group with the compact-open topology. The
purpose of this paper is to get similar results on the automorphism groups
of more general types of locally trivial fiber spaces over complex spaces.
We study automorphisms of a holomorphic fiber bundle over a complex
space which has a complex space Y as the fiber and a (not necessarily
complex Lie) group G of holomorphic automorphisms of Y as the structure
group (see Definition 3. 1).

The main result is the following

THEOREM. For any holomorphic fiber bundle B over a complex space X, the
automorphism group of B is a (real) Lie group if the structure group is a locally
compact subgroup of the holomorphic automorphism group of the fiber and X is %-
strongly pseudo-concave (Theorem 4. 1).

As a special case of this, we see that the group of all fiber-preserving
holomorphic automorphisms of a locally trivial fiber space over a s-strongly
pseudo-concave complex space is a Lie group if the holomorphic automor-
phism group of the fiber is locally compact.

Let B be a holomorphic fiber bundle over a compact normal complex
space X and M be an analytic set of codimension =2 in X. We can prove

Received February 5, 1969
1 In this paper, a complex space means a reduced complex analytic space which is always
assumed to be o-compact and irreducible.
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that any automorphism of the portion B|X — M of B over X — M sufficiently
near to the identity is the restriction of an automorphism of B if the struc-
ture group G is a locally compact subgroup of the holomorphic automor-
phism group of the fiber. In this case, the automorphism group F(B|X—M)
of B|X— M is a Lie group. Moreover, if G is a complex Lie transforma-
tion group of the fiber, F(B|X — M) is shown to be a complex Lie group.

§2. Holomorphic maps of complex spaces into mapping spaces.

Let X, Y and Z be complex spaces. We denote the space of all
holomorphic maps of Y into Z with the compact-open topology by Hol(Y, Z)
and the space of all holomorphic automorphisms of ¥ as a subspace of
Hol (Y): = Hol (Y, Y) by Aut(Y).

DermiTioN 2. 1.  Take an arbitrary subset H of Hol (Y,Z). A map g:
X—H is called to be holomorphic if the induced map §(z,¥y): = g(z) (¥) (€ X,
yeY) of XxY into Y is holomorphic (c.f. W. Kaup [5], p. 75).

By Hol (X, H) we denote again the space of all holomorphic maps
of X into H with the compact-open topology, where H is considered
as a topological subspace of Hol(Y,Z). Obviously, we may consider
Hol (X, Hol (Y, Z)) = Hol (XX, Z).

Let #: X" — X be a holomorphic map for another complex space X'.
For any g € Hol (X, H) (H < Hol (Y, Z)), the composite g-h: X’'—H is also
holomorphic. Particularly, the normalization p: X*¥—>X of X gives the
map g*: Hol (X, H)— Hol (X*, H) defined as p*(g) = g- ¢ for each geHol(X, H).

(2. 2) The topological space Hol (X, H) can be canonically identified with a
closed subspace of Hol (X*, H).

The injectivity of ¢#* is evident. While, Hol (XxY, Z) can be identified
with a closed subspace of Hol (X*¥xY,Z2) because pgx1ly: X¥XY—XXY is a
proper, nowhere degenerate surjective map, where 1y: Y=Y is the identity
map. Since we may consider Hol (X, H) c Hol (XxY, Z) and Hol (X*, H) c
Hol (X*xY, Z), we conclude easily the assertion (2. 2).

Each g Hol (X, Hol (Y)) gives a map g¢*: =1yx§e Hol(XXY) (ie.
g% (x, ¥y) = (v, g (x)y) for any z € X, y€Y). By this correspondence,
Hol (X, Hol (Y)) is homeomorphic with the subspace

Hol,(XxY):={g € Hol (XXY); 79 = nx}
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of Hol (XXY), where ny: XXY — X is the canonical projection. Moreover,
we see easily

(2. 3) Each g* = Aut (XXY) with the property nxg* = ny corresponds exactly
to a map g < Hol (X, Aut(Y)) whose inverse g7': X — Aut (Y) is also holomorphic,
where g~ (x) = g(x) Yz e X).

Let G be an effective complex Lie transformation group of Y. We
may identify G with a subset of Aut(Y). Since the given transforming map
¢(g,y) =9-¥y@gEG, yeY) of GXY into Y is holomorphic, we have easily

(2.4) If a map g2 X— G is holomorphic with respect to the given complex
structure of G, it is also holomorphic in the sense of Definition 2. 1.

Conversely, we can prove

ProrosiTION 2. 5.  For a normal X, if g1 X— G (< Aut(Y)) is holomorphic
in the sense of Definition 2.1, then g is holomorphic with respect to the complex
structure of G.

To prove this, we give

Lemma 2. 6. Let X, H, Y and Z be complex spaces and ¢: HXY —Z be
a holomorphic map such that X is normal and Z is holomorphically separable and
o(h,y) = o(h’,y) for any yeY only if h=h'(h,h’'sH). For a map g: X—H,
if the map o(g(x),y) (x€X, yeY) of XXY into Z is holomorphic, then g is also
a holomorphic map of X into H.

Proof of Lemma 2. 6. It suffices to show that the graph I',: = {(z,g(2));
zeX} of g is analytic in XxH. Indeed, in this case, z¢|l,: I',—> X is a
bijective holomorphic map. Then (zx|I,)"': X— I, is also holomorphic by
the normality of X(c.f. (9] and so g = zu(xx|l,)': X— H is holomorphic.
Now, we consider the family &~ of all holomorphic functions ¢”¥ on XxH
defined as

o7V (@, h): = flo(h,y)) — flelg(x), )  (v€X, heH)
for any y<Y and holomorphic function f on Z. And we put
= {(2, h)eXXY; ¢z, k) =0 for any g F}.

Since A is the set of the common zeros of a family of holomorphic func-
tions on X X H, it is analytic in X X H by the well-known H. Cartan’s
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theorem. We want to show Iy, =A. Evidently, I'yc A. Conversely, if
(x, B)EA, i.e. flolh,y) = fle(g(x),y)) for any yeY and holomorphic f on
Z, ¢(h,y) = ¢(g(zx),y) for any y €Y because Z is holomorphically separable.
By the assumption, we conclude % = g(x), which shows (x,%) e I',. This
completes the proof of Lemma 2. 6.

Proof of Proposition 2.5, Let ¢: G XY =Y be the given transforming
map. We can take an open neighborhood N of the identity in G such
that

N = {geG; ¢(g,y)€Y” for any yeY¥'},

where Y”’ is a holomorphically separable open set in ¥ and Y’ (eY”) is a
non-empty open set. If ¢(g,¥) = ¢(¢',y) for any y€Y’ (9,¢9’€N), it remains
valid for any y € Y by the theorem of identity and hence g =g’ by the
assumption of the effectivity. This shows that the map ¢:=¢|NxY": NxY’
— Y satisfies the conditions in Lemma 2. 6 for the spaces H: =N, Y: =Y’
and Z: =Y.

Now, take a map g: X— G which is holomorphic in the sense of Defi-
nition 2. 1. Each z,&X has obviously a neighborhood U such that A(x):=
g(z)g(xe)*eN for any 2€U. By Lemma 2, 6, since 2: U — N is holomorphic
in the sense of Definition 2. 1, % is holomorphic with respect to the complex
structure of G. So, g is also holomorphic on U in the same sense.

For later uses, we give the following proposition on the continuability
of holomorphic maps.’

Proposition 2. 7. Let G be a locally compact subgroup of Aut(Y). Then
we can find a neighborhood N of the identity in G satisfying the following conditions :

For any connected open VX and analytically thin set M in V a holomorphic
map g:V— M- G is holomorphically continuable to V if there is an open set
D(cV — M) such that g(D)CN and every holomorphic function on D is continuable
to V.

Proof. By the assumption, G has a relatively compact neighborhood
N of the identity in G which can be written

N={ge G; ¢(;) c Y7 for any j(l <j=<5s)},

where Y7, Y7 are Stein open sets in Y with Y,eY?. We shall show that
N satisfies the desired conditions. Let g: V— M— G be a holomorphic map
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with g(D)c N. Since g(z) (V%) cY% for any x€ D, we see §(DxY})cY” for
each j1<j<s), where §(x,y)=g9(2) () (x€V—M, yeY). Then ¢;: =
§|DxY} is continuable to a holomorphic map ¢;: VxY;—Y7 by H. Kerner’s
theorem, because every holomorphic function on DxY} is continuable to
VxY} (e.g. [1], Corollary 1 to Theorem 10, p. 63) and Y7 is Stein. This
shows also g(z) (Y))cY/1<j=<s) i.e. g(x)eN for any 2V — M. Take an
arbitrary M. For any sequence {z,} in V— M with limz, =z, {g(z,)}

n—rco

has a convergent subsequence in N whose limit g,(x) satisfies the condition
%(2) (¥) = ¢s(z,y) for any yY}. And any convergent subsequence of {g(z,)}
has the same limit g,(z) by the theorem of identity. So, we obtain g,(x)=
lim g(x")eNc G for any xeM. Obviously, g, is continuous on V and so §,:
xV_;Y—)Y is also continuous. Since §|(V — M)xXY =g is holomorphic, g§,:
VxY —Y is also holomorphic according to Riemann’s theorem on removable

singularities. This shows that g has a holomorphic continuation g,: V— NcG.

§3. Holomorphic fiber bundles over complex spaces.

Let B, X and Y be complex spaces, z: B—X be a holomorphic map
and G be a subgroup of Aut(Y).

DermirioN 3. 1. The space B is said to have a structure of a holomor-
phic fiber bundle over X with fiber Y and structure group G if X has an open
covering {U;; i€l} such that each =~ (U,) (i€l) is mapped onto U;xY by
a biholomorphic map 7; with the property =y, -7,=rz on z"YU,), where =z, :
U,xY —=U, is the canonical projection, and each 7;77'€Holy, ny, (U;NU;)XY)
(i,jeI) can be written 7,77 (x,¥y) = (%, g;;(2)y) (x € U; N U;, y<Y) with a
holomorphic map g;;: U;NU; = G which we say a transition function. Another
structure on B given by an open covering {V;: k< K} and the biholomor-
phic maps 7;: 27 (V) = VXY with the property as the above is said to be
equivalent to the above structure if there is a holomorphic map g,;: V,UU;—>G
such that 7,r7%(x, y) = (@, §u(2)y) (x€V,NU,;, y€Y) for each icl, kK. As
usual, a holomorphic fiber bundle is defined to be an equivalence class of
structures of holomorphic fiber bundles attached to a fixed space B. For
brevity, we denote a holomorphic fiber bundle over X with fiber ¥ and
structure group G by B = B(X,Y,G,z), or simply B.

Let B= B(X,Y,G,z) and B = B'(X',Y,G,x') be two holomorphic fiber
bundles with the same fiber ¥ and the same structure group G.
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DerFintTion 3. 2. By a homomorphism ¢ of B into B’ we mean a holo-
morphic map ¢: B— B’ with the following properties;

(i) =z¢ =¢nr for a suitable geHol (X, X"),

(11) taking structures {(U,,7;); ¢€I} on B and {(Vi,7;); kK} on B as
in Definition 3.1, we can write 777 = ¢X§ on (U;N¢" (V)XY with holo-
morphic maps gy;: U;Ng" (Vi) = Gliel, keK), where §y(x, y) = gu(2) (¥).

If a homomorphism ¢: B— B has the inverse homomorphism, it is said
to be an automorphism of B. By F(B) we denote the set of all automor-
phisms of B.

By definition an automorphism of B = B(X,Y,G,x) is a holomorphic
automorphism of the space B. So, F(B) is considered as a subspace of
Aut (B) with the compact-open topology. According to the well-known
Bochner-Montgomery’s theorem (c.f. W. Kaup [5], Satz 4, p. 83 and Satz
6, p. 85), we see

(3.3) If F(B) is locally compact, it has a structure of a Lie transformation
group of B.

Exampre 3. 4. (1) A holomorphic principal fiber bundle over a
complex space X in the usual sense defines canonically a holomorphic fiber
bundle over X in the sense of Definition 3.1 by (2. 4). If X is normal, an
automorphism of this bundle is nothing but an automorphism of this as a
holomorphic principal fiber bundle in the usual sense (c.f. [8], p. 158) ac-
cording to Proposition 2. 5,

(ii) Let B= B(X,Y,G,r) be assumed that X is normal and G is an
effective complex Lie transformation group of ¥ with the topology induced
from Aut(Y). In view of Proposition 2.5, B is regarded as an associated
fiber bundle P over X with structure group G which is canonically defined
by the same transition functions as B. Moreover, as is easily seen, F(B)
is topologically isomorphic with the group of all automorphisms of P,

(iii) Let z: B— X be a locally trivial fiber space over a complex space
X with fiber ¥, ie. = be a holomorphic map such that, for a suitable open
covering {U;; i€lI} of X, each = '(U,) is biholomorphic with U,xY by a
map 7; with zy, -7, =2z,  Then we can define canonically a holomorphic
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fiber bundle B = B(X,Y, Aut(Y),n), where the transition functions g;;: U;NU;
—>Aut (Y) are given so as to satisfy 7,77* = 1y, ny, X ;5. In this case, an auto-
morphism of B means exactly a fiber-preserving holomorphic automorphism

of B, i.e. an element ¢=Aut(B) with the property z¢ =gz for some
geAut (X).

Let 2: X’— X be a holomorphic map and B be a holomorphic fiber
bundle over X which is defined by the structure with the transition func-
tions g;;. As usual, the induced bundle %2-Y(B) over X’ can be defined by
the structure with the transition functions g;;-k2. If X’ is an open set in
X and h: X"— X is the inclusion map, we call B|X’: = »~Y(B) the portion
of B over X'.

Take the normalization z#: X*¥*— X of X. A holomorphic fiber bundle
B = B(X,Y, G,z) induces the bundle B*: = r~{(B) = B¥X%,Y, G, =*).

ProposttioN 3,5,  The automorphism group F(B) is topologically isomorphic
with a closed subgroup of F(B%).

Proof. By the definition of the induced bundle, a holomorphic map
f: B¥— B with 7+ = p.z% is defined canonically. And each ¢=F(B) gives
exactly one p¥(¢): = ¥ F(B¥) with fi¢* = ¢Z. The map p*: F(B)—~ F(B¥)
is obviously a continuous injective group homomorphism. It suffices to show
the closedness of p¥(F(B)) in F(B%). Take a sequence {¢,} in F(B) such
that {g*(¢,)} converges to. ¢* in F(B%*). Since £ is a proper nowhere de-
generate, surjective map, we can find easily some ¢=Hol(B) with Z ¢¥=¢ @
and geHol (X) with gz ==x¢. Then, it can be easily proved by (2. 2) that
¢ satisfies the condition (ii) in Definition 3. 2 in its local representation.
On the other hand, {g¥(¢,)™'} converges also to ¢*! in F(B%*). By the
same argument as the above, we have the inverse homomorphism of ¢ and
so o= F(B). Thus p¥(F(B)) is closed in F(B%).

§4. Holomorphic fiber bundles over a =x-strongly pseudo-
concave space.

In this section, we prove the following main theorem.

THEOREM 4. 1. For any B = B(X,Y,G,x), if G is a locally compact subgroup

of Aut(Y) and X is %-strongly pseudo-concave (see Definition 8.1 in [2], p. 104),
then F(B) has a structure of a Lie transformation group of B.
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We need some preparations.

LemMa 4. 2.  Let N be a compact subset of Aut(Y) such that Nc{geAut(Y);
g(Y")cY"'}, where Y' is a non-empty open set and Y'' is relatively compact in some
K-complete open subset of Y.  Then the set

MN: = {geHol (X, Aut (Y)); g(x)EN for any x=X}
s also compact in Hol (X, Aut (Y)).

Proof. By Arzela-Ascoli’s theorem it suffices to show that 9 is equi-
continuous on X with the canonical uniform structure of Aut(Y) because
{g(x); geR} is included in a compact N for any x=X. By the assumption,
the restriction map r: N—Hol (Y",Y") (r(g): = g|Y’ for each geN) is well-
defined. With each ge® we associate the map ¢’ =r-g: X—Hol (Y, Y”)
and §': XxXY'—>Y" with §'(x,y) = ¢'(2) (¥) (x€X, yeY’). In view of the as-
sumption of Y”’, {§’; gM} is relatively compact in Hol (XxY",Y) ([2], Theo-
rem 2.1, p. 86) and so equicontinuous on XxY”’, where Y is considered as a
metric space with a suitable metric. Then {g’; ge®} (c Hol(X, Hol(Y’,Y""))
is also equicontinuous on X. On the other hand, since r is injective by
the theorem of identity, 7 is a topological map of N onto a compact subset
of Hol (Y’,Y”"). Therefore, 9 itself is equicontinuous.

For the proof of Tehrorem 4.1, we have only to show that F(B) is
locally compact by (3. 3). Moreover, X- may be assumed to be normal.
Indeed, in Theorem 4.1, the normalization -X* of X is also s-strongly
pseudo-concave and hence the induced bundle B* of B over X# satisfies all
conditions in Theorem 4. 1. If F(B¥) is shown to be locally compact, F(B)
is also locally compact according to Proposition 3.5. In the following,
B= B(X,Y, G,z) denotes a holomorphic fiber bundle over a normal #-strongly
pseudo-concave space X with a locally compact G(c Aut (Y)).

By definition, there is a positive real-valued continuous function » on
X such that v is %-strongly (dim X — 1)-convex on X — K (see [2], p. 101) for
a suitable compact K< X and {x; v(z)>c}eX for any ¢>0. We put
¢:=min{v(z); x€ K}, X, ={zX; v(®)>c} and B,:=z"'X,) for any
c(0 < ¢ < cy).

LemMA 4. 3. In the above situation, we can find a neighborhood N of the
dentity in F(B) such that, for a suitable ¢(<c,), any sequence {¢,} in N has a
subsequence {¢,,} having the following properties;
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(i) {¢a.|B.} converges to an injective map ¢ in Hol (B, B),
(ii) the limit ¢ is a homomorphism of B|X, into B,
(iii) {@n,} comverges in Aut(X), where & denotes an automorphism of X with

r o = ¢r for each ¢ € F(B).

Proof. The compact set X,, has an open covering {V,;: 1=<i <k} such
that each B|V; has a locally trivial bundle structure, i.e. there are biholo-
morphic maps 7;: z7}(V,) >V, XY with =y, -7, =z on z~}(V;) and holomorphic
maps g;;: V;NV; =G with 777" =1y, ny, X§;; on (V,NV)IXY (1 <1i, j<k).
Moreover we take open coverings {U;; 1<i=<Fk} and {U}; 1<i<Fk} of X
with the property U,eUjeV, for each i. By Theorem 8.3 in [2], p. 105,
Aut (X) is locally compact. There is a compact neighborhood N of 1y in
Aut (X) such that

Nc{geAut (X); g(Uj)cV, for any i}.
We consider the set
N* = {peF(B); the corresponding g=N}.
For each ¢ eN%*, since g(U;)cV,, the holomorphic maps ¢;:=7;-¢-77!:
U, XY=V, xY are well-defined (1=<i=<Fk). Then we have holomorphic
maps g;(¢): U;—~ G with the property ¢,=¢xg;(¢) on U;xY. On the other
hand, there is a compact neighborhood N’ of the identity in G such that

N'c{geAut(Y); g(Y")cY"} for open sets Y’, Y’ with the same properties
as in Lemma 4. 2. We put

N: = {peN*; g,(¢) (x)eN’ for any z€U,(1<i=<k)},
which is obviously a neighborhood of 1; in F(B). We shall prove that N
has the desired properties in Lemma 4. 3 for c:=sup {v(x); v U5, U} (< ¢y

Take an arbitrary {¢,} in N. Since {¢,} € N, a suitable subsequence
{@n,} converges to some ¢ in Aut(X). On the other hand, {g;(¢,)} is
relatively compact in Hol (U;, G) by Lemma 4. 2. Relabeling indices suit-
ably, we may assume that {g;(¢,,)} converges to some g? in Hol (U,, G) for
each i. Since Hol (U;xY,Y) = Hol (U;, Hol(Y)), {7;:¢., -77'} converges to
02 = ¢xg? in Hol(U;xY, V;xY). So, {¢,, |="}(U;)} converges to 77'-9?-7;
in Hol (z~(U;), B). The subsequence {¢,,} of {¢,} converges obviously on

B,c U,z Y(U;) and satisfies all desired conditions.
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Remark. If X is compact, we may take X, = X. In this case, Theo-
rem 4.1 is an immediate consequence of Lemma 4. 3.

LemmMa 4. 4,  Let {¢,} be a sequence in F(B) such that {¢,|B,} converges
to an injective map ¢ in Hol (B, B) jfor some c¢<c, and the corresponding {,}
converges to some @ in Aut(X). Then any x with v(z) = c has a neighborhood U
such that {,1z~Y(U)} converges to an injective map ¢* in Hol (z~*(U), B).

Proof. Take a Stein neighborhood V of z such that 2z~ (V) is biholo-
morphic with VXY by a map 7. By Lemma 7.2 in [2], p. 101, there is
a connected Stein neighborhood U of z(UeV) such that, for a suitable open
DeX,, every holomorphic function on D is uniquely continuable to U and
any l-codimensional analytic subset of U intersects D. Moreover, we choose
Stein open sets U’ and U¥* in X such that xeUecU’eV, o0 )cU%, &,(U")c
U* for almost all » and z7(U%*) is biholomorphic with U*xY by a map 7.
Then we can define the maps ¢’ =7 +¢-r": U/XY > U*XY and ¢p:=7"-
@n 77l U'XY = U%xY for almost all #, where U, =U'n{v>c}. Take an
open set D' with De D’ e U, and Stein neighborhoods W, W’ of y with
WeW’eY for each y€Y. Since DXWeD'xW'cU,xW’ and ¢’ is injective
on U4xY, there is a suitable », such that

P DXW)E @uo(D'X W) Con (U X W) CcU¥XY

for any n=#n, by Lemma 3.2 in [2], p. 89. Now, every holomorphic
function on Dx W is uniquely continuable to UXW (e.g. Corollary 1 in [1],
p. 63) and @7 (U'xW’) is Stein. As in the proof of Lemma 7. 3 in [2], p.
102, we have o, (UXW)ces (U'XW’) for any n=n, by H. Kerner’s theorem
([6]). Since ¢, (U’'xXW’) may be assumed to be relatively compact in some
K-complete subset of U* X Y, {¢,; n=n,} may be considered as a normal
family in Hol (UxW, U*xY) by Theorem 2.1 in [2], p. 86. A suitable
subsequence of {¢.} converges on UxW. Covering ¥ by countably many
open sets W's with the above property, we can choose a subsequence {¢,,}
of {¢7} which converges to a map ¢ in Hol (UxY, U*¥xY). Then {¢,, |z7*(U)}
converges to the map ¢*: =7""1¢r in Hol (z~(U), B). Moreover, any sub-
sequence of {¢,} has a subsequence which converges to the same limit ¢¥,
So, {¢,} itself converges to ¢* in Hol (z=((U), B). It remains to prove the
injectivity of ¢%* on z~!(U),or equivalently, ¢ on UxY. Let E be the set of
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degeneracy of ¢, which is analytic in UxY by R. Remmert’s theorem ([9]).
Then E is of codimension =2. In fact, if codimE =1, En{y = ¥,} can
be identified with an analytic set of codimension =1 at z, in U for any
(2 Y€ E. By the assumption of U, E intersects U,xY. This contradicts
with the injectivity of ¢. Now, we apply Lemma 7. 3 in [2], p. 102, whence
¢ is injective on UxY. This completes the proof.

Proof of Theorem 4.1. Take a neighborhood NV of 1; in F(B) satisfying
the conditions in Lemma 4. 3. We shall prove that N': = {¢p=F(B); ¢ and
¢ leN} is a relatively compact neighborhood of 15 in F(B). An arbitrary
{¢,} in N’ has a subsequence {¢,,} which satisfies the conditions (i), (ii),

(iii) in Lemma 4. 3. As in the proof of Theorem 7.5, p. 103, putting
r:={c; {¢,} converges to an injective map in Hol (B, B)},

we conclude that infI" = 0 according to Lemma 4. 4. This shows that {¢,,}
converges to some ¢ in Hol (B, B), which satisfies obviously ¢z = z¢ for g=
lim ¢, €Aut(X). Then, applying the same argument to the sequence {¢;'},
kv;: see easily p=Aut(B). It remains to show ¢=F(B). The condition (ii)
in Definition 3. 2 is of local nature. For each zeX taking sufficiently small
neighborhood U of # and V of @(x), we may assume that z7'(U) =UXY,
(V) =V XY, oUXxY)cVxY and ¢, (UXY)cV XY for almost all k. More-
over, it may be assumed that ¢, = @, X§, for suitable g, € Hol (U,G) by
Definition 3. 2 and ¢ = gx§ on UXxY for a suitable g Hol (U, Aut (Y)) by
Example 3. 4 (iii). Then we have ¢ =klim dn. €Hol (U, G) because G is closed
in Aut(Y). This concludes ¢=F(B). Tieorem 4.1 is completely proved.
According to Example 3. 4 (iii), Theorem 4. 1 implies

COROLLARY 4. 5. Let B be a locally trivial fiber space over a x-strongly
pseudo-concave complex space with fiber Y. If Aut(Y) is locally compact, the group
of all fiber-preserving holomorphic automorphisms of B is a Lie group.

We have also in view of Example 8. 2 in [2], p. 104,

COROLLARY 4.6. Let X be a compact complex manifold and M be an
analytic set with emdim M<dimX—2. For anp B=BX— M, Y, G, =), if
G s a locally compact subgroup of Aut(Y), F(B) is a Lie group.

In connection with this, for a holomorphic fiber bundle B defined over
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the total X we give more precise informations on automorphisms of B|X—M

in the next section.

§5. Holomorphic fiber bundles over a compact complex space.

Let B=B(X, Y, G, n) be a holomorphic fiber bundle over a compact
complex space X. We want to study F(B|X— M) for a thin analytic set
M in X. By G' we denote the connected component of the identity in a
topological group G.

THEOREM 5. 1. If X is a compact normal complex space, G is a locally com-
pact subgroup of Aut(Y) and M is of codimension =2, then any element in
F(B|X — M)" is the restriction of an automorphism of B over the total X.

Proof. It suffices to show that there is a neighborhood N of 1; in
F(B| X — M) such that any ¢=N is the restriction of some g=F(B), because
any element in F(B|X — M) is represented as the product of finitely many
elements in V. The compact set M has an open covering {V,; 1<i <k}
such that, for a suitable connected open subset D; of V, with D,eX— M,
any holomorphic function on D, is uniquely continuable to V, for each i.
If we choose sufficiently small V,(1<i<k), it may be assumed that there
is another open covering {U;; 1<i <k} of M such that each U, is Stein,
V,eU; and B|U; has a locally trivial bundle structure, and so z~'(U;) is bi-
holomorphic with U;xY by a map 7,. We consider the set

N: = {geAut (X — M); g(D,)cU, and g *(D;)cU, for any i(1=i=<k)}
where Dj} is an open set with D,eD,eU;— M. And, as in the proof of
Lemma 4. 3, we put

N*: = {peF(B|X— M); the corresponding g N}.

Since ¢(D;)cU, and so ¢(z~'(D}))cz '(U;), each ¢ N* defines a holomorphic

map g;(¢): D; — G such that ¢,: =7,0r7' = $xg;(¢) on D;xY. Now, taking
a neighborhood N’ with the property in Proposition 2.7, we put

N’ = {peN¥; g,(¢) (x)eN’ for any x€D;, 1=<i=<k}.

We shall prove that N: = {peF(B|X— M); ¢=N’ and ¢'eN’} is a desired
neighborhood of 1 in F(B).

Take an arbitrary ¢ € N. The corresponding ¢ € Aut(X— M) with
n¢ = ¢n defines the map ¢|D;: D,— U, for each i. Since U, is Stein, ¢|D;
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is uniquely continuable to a map ¢,: V; = U; by H. Kerner’s theorem ([6]).
Obviously, ¢, = @; on V,nV; if V,nV,;# ¢. Therefore ¢ has a continuation
to X, which we denote by the same notation ¢. Since N is symmetric,
@' has also a continuation to X. Thus we conclude geAut(X).

Now, since @(V,)cU; by the above argument, ¢(z~Y(V; — M))cz"(U,) and
so the map ¢,:7,077': (V, — M)XY —U,;xY is well-defined for each i. Then
we get a holomorphic map g¢;: V,— M— G with ¢, = $x§, which satisfies
g:(D;)cN'. By the assumption of N’, each g, is continuable to a holomor-
phic map g{: V;—G in view of Proposition 2. 7. We consider the map
g0 =¢xX§: VixY—=U,xY. The map ¢ € Hol(B) with ¢ =77'-¢;-7; on
=~ Y(V,) is obviously well-defined and a continuation of ¢ to the total B.
The above proof shows also ¢=F(B). This completes the proof.

As a special case of Theorem 5.1, we have

COROLLARY 5. 2. Let M be an analytic subset of codimension =2 in a nor-
mal compact complex space X. Then any element in Aut (X — M)" is the restriction
of an automorphism of X.

In Corollary 5.2, an automorphism of X— M not belonging to
Aut(X — M)" is not necessarily the restriction of an automorphism of X. In
fact, for any integer k, we can construct a normal compact complex space
X and an analytic set M in X with codim M=k such that there is an auto-
morphism of X — M which cannot be continuable to the total X. To con-
struct such a space X and an analytic set M, take a continuous proper
modification z: ¥, =Y, with normal compact complex spaces Y; and Y, such
that, for a suitable M,: = {2,} CY,, M,: =z"(M,) is biholomorphic with the
Riemann sphere P' and #|Y,— M,: Y,— M, —>Y,— M, is a biholomorphic
map (Grauert-Remmert [3], §4, p. 292), where it can be assumed that
dimY, =dimY,=F% for any given £ and Y, is not biholomorphic with Y,.
We consider the complex space X: =Y, xY, and the analytic set M: = (Y, X M,)
UM, xY,) in X, which is of codimension =#%. Let g:=z|Y,— M, and
h:=g"': Yy— M,—Y,— M. The map g(x, y): = (h(y), g(x)) (x €Y, — M,
yeY,— M,) is an automorphism of (V;— M)X(Y,— M, = X— M. And it
cannot be the restriction of any automorphism of X. For, if there is some
g’eAut(X) with g=¢’ on X~ M, g is necessarily continuable to a biholo-
morphic map of Y, onto Y,. This is a contradiction.

https://doi.org/10.1017/S0027763000013325 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000013325

104 HIROTAKA FUJIMOTO

CoROLLARY 5.3. Let B= B(X, Y, G, n) be a holomorphic fiber bundle over
a compact complex space and M be an analytic set with codim M=2. If G is a
locally compact subgroup of Aut(Y), F(B|X— M) has a structure of a Lie trans-
Jformation group of B — z~'(M).

Proof. Without loss of generality, we may assume that X is normal
by Proposition 3. 5. As a special case of Theorem 4. 1, F(B) has a structure
of a Lie transformation group of B (c.f. Remark to the proof of Lemma 4, 3).
Then the closed subgroup G: = {p=F(B); o(x"'(M)) = z~'(M)} of F(B) is also
a Lie group and can be identified with a topological subgroup of F(B|X—M)
by the restriction map. On the other hand, in view of the proof of Theo-
rem 5, 1, there is a neighborhood N of the identity in F(B|X— M) such
that any ¢ N is the restriction of some ¢=G. This shows that F(B|X—M)
and G have a common neighborhood of the identity. Thus F(B|X— M) is
also a Lie transformation group of B —z~'(M).

THEOREM 5. 4.  Assume that B, X and M satisfy the conditions in Theorem
5.1 and, furthermore, G is a complex Lie transformation group of Y. Then
F(B|X — M) has a structure of a complex Lie transformation group of B — z~'(M).

Proof. According to Example 3. 4 (ii), B is an associated fiber bundle
of the canonically defined holomorphic principal fiber bundle P over X and
F(B|X — M) is isomorphic with the automorphism group of P|X— M. As
is easily seen, if the automorphism group of P is shown to be a complex
Lie transformation group, F(B|X— M) is also a complex Lie transformation
group of B—z"'(M). From the beginning, we may assume that B itself
is a holomorphic principal fiber bundle, i.e. G acts on the fiber Y = G as
the left translations. In this case, F(B) is a complex Lie transformation
group of B. For, we know that an arbitrary infinitesimal transformation
group on a complex space is locally integrable (W. Kaup [5], Satz 3, p.
82) and so it can be proved that the Lie algebra of F(B) is canonically
isomorphic with the Lie algebra of infinitesimal transformations D on B
with R,-D =D for any g G by the same argument as in the proof of
Proposition 1 in [8], p. 163, where R, denotes the right translation by g
acting on B. On the other hand, the closed subgroup G:= {¢psF(B);
oz (M)) = z~'(M)} of F(B) and F(B|X — M) have a common neighborhood
of the identity. Theorem 5. 4 is a direct result of W. Kaup [5], Korollar
to Satz 2, p. 80.
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CoROLLARY 5.5. Let X be a compact complex space and M be an analytic
subset of X. If codim M=2, Aut(X— M) has a structure of a complex Lie
transformation group of X — M.

Proof. Let p: X*— X be the normalization of X and put M#* = p~}(M).
The space X% — M* is the normalization of X~ M. Then Aut (X% — M%)
is a complex Lie transformation group of X*— M#* as a special case of
Theorem 5. 4. The rest of the proof of Corollary 5. 5 is due to the follow-
ing Lemma.

LemmaA 5. 6.  Let X be a complex space and p: X* — X be the normalization
of X. If Aut (X*) is a complex Lie transformation group of X*, Aut(X) is also
a complex Lie transformation group of X as a closed subgroup of Aut (X¥*).

Proof. To each ge Aut(X) corresponds exactly one g¢* € Aut (X¥) with
g+-x = p-g¥ By this correspondence, Aut(X) is considered as a closed sub-
group of Aut (X*) (e.g. [2], Proposition 4. 2) and so a real Lie group. For
our purpose, it suffices to show that any real one-parameter subgroup {g:}
of Aut(X) can be extended to a complex one-parameter group of transfor-
mations of X. The given {g,} in Aut(X) gives a real one-parameter group
{9%} in Aut(X*). By the assumption, {g}} is extended to a complex one-
parameter group of transformations of X%, which we denote by the same
notation {g}}. For each g%, we can define a map g/: X=X with p-g% =
gt -p. In fact, if p(x¥) = p(x}) for any fixed «%, x%, the holomorphic maps
peg¥(x?) and p-g¥af) of the complex number space C into X coincide with
each other for any real ¢. By the theorem of identity, it remains valid for
any teC. This shows that the single-valued map g¢}: = pgtp™': X > X is
well-defined. Since y is proper nowhere degenerate surjective, g;(x) (¢€C,
z€X) is obviously continuous on € X X and g} ¢! = g}.+; for any ¢ seC.
And gj(x) is holomorphic in « for any fixed real ¢. For any z,eX, take
a neighborhood W of (0,,) in CxX such that g{(x) €V with a Stein open
set V in X for any (t,2)eW. Then f(gi(z)) is holomorphic on W for any
holomorphic function f on V (H. Kerner [7], Hilfssatz 4, p. 285) because
flg, - pn(x) (t€C, x=X*) is holomorphic on € x X*. From these fact, we
conclude that gj(x) (t€C, x=X) is holomorphic and hence {g;} defines a
complex one-parameter transformation group of X with the property g/|=g,
for any real ¢. This completes the proof.
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