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1. Introduction. Let / denote a function, meromorphic in C. The question of when
a deficient value of /, in the sense of Nevanlinna, is an asymptotic value has recently
received some attention (see e.g. Hayman [6]). We assume acquaintance with the standard
notation of the Nevanlinna theory ([5] Chapter I) which we use without further mention.
The following two theorems are known ([1] Theorem 4, and [6] Corollary 2).

THEOREM A. Suppose that f is meromorphic in C and such that

T(r,/) = O(logr)2 (r->«). (1)

If8(a,f)>0 for some aeC (there can be at most one such value a) then, for almost all 0

liminf ——-log
r— T(r,f)

1
fire")-a

In particular, since T(r, f)—»°° as r —»°° we see that fire'6)-^aasr-*", for almost
all 8.

THEOREM B. Suppose that f is meromorphic in C and satisfies

T(2r,f)~T(r,f) (r-*«). (2)

Then a deficient value of f (there is at most one) is an asymptotic value.

Hayman's results are more far-reaching than is indicated by Theorem B. Functions
satisfying the smoothness hypothesis of Theorem B have order zero, but Hayman has a
more general form of smoothness which yields results for functions of positive order ([6]
Theorem 2). It is easy to see that (1) implies (2).

Theorem A is best possible in two senses. Hayman has shown ([6] Theorem 1) that
given any <f>(r) tending to » with r there exists an /, meromorphic in C, such that
S(°°,/)= 1, while oo is not an asymptotic value of /, and such that

T(r,/) = O[<Mr)(logr)2] (r-»oo). (3)

Also Goldberg and Yeremenko [3] have constructed an entire function / (i.e., with
8(°°» f) ~ 1) satisfying (3) such that if T is any path extending to infinity on which f(z) tends
to oo with z (there must exist such paths since / is entire) then £(R, T) f O(R)(R -»°°).
Here €(R,T) is the length of the arc m{|z|s£i?}. Thus the asymptotic path is very far
from being a straight line.
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Hayman has also shown that, even under the smoothness condition (2) the asymptotic
path need not be a straight line ([6] section 4).

2. Results. In this note we shall prove, by a method different from that of Hayman,
another theorem for meromorphic functions whose growth exhibits some smoothness.

THEOREM 1. Suppose that f is meromorphic in C, satisfies (2) and 8(a,f)>0 for some
a. Then there is a path T extending to infinity so that

l i m i n f T(b l o g
f(z)-a

•S(a), (4)

as z = re'6 -»°o a/ong I\ and

In the case when a = °°, (4) is to be understood as

liminf-^— log |/(2)| > 8M. (6)

Theorem 1 is clearly an extension of Theorem B, though we emphasise again that
Theorem B is a corollary of a more general result of Hayman ([6] Theorem 2). It seems
possible that some part of Theorem 1 might be carried over to this more general situation.
Theorem 1 also shows that the counter-examples of Hayman, Gol'dberg and Yeremenko
cannot satisfy the smoothness condition (2).

It will be clear from our method of proof that radial asymptotic values can sometimes
be obtained. We discuss this in §5.

3. Proof of Theorem 1. We assume throughout this section that S(°°)>0, and shall
prove (6). The general result will follow from this by a suitable bilinear transformation.
We require the following results for entire and meromorphic functions.

LEMMA 1. If f is an entire function of order zero for which

N(2r,o,f)~N(r,o,f) ( r-*»)

then
(a) n(r,0) = o(N(r,0)) (r->«),
(b) log M(r, f) ~ N(r, 0) ~ T(r, f) (r -> oo).

Proof. Part (a) follows immediately from the inequalities

r2r n(t) dt
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For part (b) we have

JV(r, 0)<T(r)<logM(r)<r I " *

' n(t) dt

Now for any rt<r2 and any e > 0 we have (see Hayman [6] Formula 4.5)

It is now easy to see that

r\ {2 = O(N(r)) (r-*oo),

and part (b) follows.

LEMMA 2. If f is meromorphic in C and satisfies (2) then, for each a , b e C U H ,
max{N(r, a), N(r, b)} ~ T(r) (r ^ oo).

(For a proof see Valiron [8], Theoreme II.).

We also require the following theorem which may be regarded as an analogue of
Theorem 1 of [4], but we first introduce some notation.

DEFINITION. A countable set of circles in the plane is said to form a slim set if the sum
of the radii of those circles intersecting the annulus 2fc^|z|<2fc+1 is o(2k) as k—*<*>.

This definition is to be compared with the definition of an 'S-set in [4]. A countable
set of circles not containing the origin is called an ^g-set if they subtend angles at the origin
whose sum converges. We note that if {Q}"=1 is a slim set of circles and if 8k is the sum of
the angles subtended by those Cn whose centres lie in the annulus 2kss|z|<2k + 1, then
^ -»• 0 as k -*• a>. However X St may diverge, and it is precisely for this reason that we
cannot assert in Theorem 1 that the paths are radial—an assertion which would, in any
case, be false ([6] section 4).

THEOREM 2. Let f be an entire function for which

log M(2r)~ log M(r), (r^°=). (7)

Then log |/(z)| ~ log M(r) as z = re'e —»oo outside a slim set.
We also note the following fact about a slim set.

LEMMA 3. If S is a slim set then there is a receding path T from 0 to oo lying eventually
outside S such that €(R, T) = R(1 + o(l)) (R -> oo).
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Proof. Since S is slim we can, for all sufficiently large n, find circles | z ± l | = .!?„,
neither of which meet S, where 22n =£!?„ <22 n + 1 . Also the segment

can meet S only for a set of 8 whose measure is o(l) as n —* °°. Thus we can construct a
path of the required type as a union of segments sn(6n) where 0n+1 -0n = o(l) as n -* oo,
and arcs of \z ± 1| = R,, whose length is oCRJ as n -*•». We choose \z -1| = Rn and take
|0n + 1 |<|0j if («/2)*|flJ«ir and choose |z + l| = H,, and |0n + 1 |>K| if |0n|<(ir/2). The
path so constructed will have the desired properties.

Thus, if / is an entire function satisfying (7) or (2) then it follows from Theorem 2
that there is a receding path T such that as z -»• °° along T

log |/(z)|~ log M(r).

This contrasts with a theorem of Essen ([2] Theorem 3) which shows that there is an
entire function / satisfying

logM(r,/) = 0(logr)2+6, (r^°o)

where 8 > 0, and such that for each path T going out to »

og M(r)/

as z -» oo, z e T.
We assume Theorem 2 and prove Theorem 1. Since

N(r, oo, / ) < ( ! _ fi(oo) + o(l)) T(r,/) (r>r0)

by assumption, it follows from Lemma 2 that

N(r,0,f)~T(r), (r-*»).

We write /(z) = (fi(z)lf2(z)) where /j and /2 are entire functions of zero order, having no
zeros in common. It now follows from Lemma 1 that

log M(2r, /,) ~ T(2r, h) ~ T(r, h) ~ log M(r, fj (r -> »).

Hence, by Theorem 2 we obtain

as z -> oo outside a slim set. Also, for \z\ = r we have

(t + rf
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after two integrations by parts. Hence

i°° T(t f)

Thus as z -* oo outside a slim set

log |/(z)| = log \ft(z)\ -log |/2(z)| > (1 + o(l))T(r) - (1 - SH + o(l))T(r)

which completes the proof of Theorem 1.

4. Proof of Theorem 2. Since / satisfies (7) it has order zero and so

2
log |/(z)| = p log |z | + a + j log

where itec is the Riesz mass associated with the zeros of / at points other than the origin.
Hence

logM(r, f)^p log r + a + log( 1 +r~[ I dpe,

and so

0 ̂  log |/(2)| - log M(r, f) s* I log: " ~ "

For fixed z let k be such that 2k*s|2|<2k+1 and write

-I1 + I2 + I3, say,

where Ir is taken over the range |£ |<2k~\ I2 over the range 2fc-1s£|£|<2k+2 and I3 over
the range |^|3=2k+2. An estimate entirely analogous to that of §3 of [4] enables us to
conclude that

I^oOogMO-,/)), J3 = o(logM(r,/)), (r-*oo),

and it remains to deal with the dominant term I2. We require the following form of the
Boutroux-Cartan Lemma ([4] Lemma 2).
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LEMMA 4. Suppose that fi is a positive measure in the plane, vanishing outside a
compact set, with /i(C) = M<°°. Then

\ log \z - £| dnec 2= M log p

outside a set of circles, the sum of whose radii is at most 32p.

We apply this Lemma to I2. The total measure in the whole plane is at most n(2k+2).
By Lemma 1 we have

n(2k+2) = o(logM(2k)) (fc-K»).

More precisely, if we define <£(k)2 by

(8)

then <£(k) -* 0 as k -» «. Thus, by Lemma 4,

02*I22=[ log\z-C\diusc-\

s* n(2k+2){log p -log(2k+3)} = n(2k+2)

outside a set of circles in 2k~1«|z |<2k + 2 , the sum of whose radii is at most 32p. Choosing
p so that log(p/2k+3) = (-l/4>(k)) we have

p = 2k+3exp(-l/<Mfc)) = o(2k) (k-»>»), (9)

= o(logM(r)) (r->«).

Since (9) ensures that the exceptional set of circles forms a slim set, this proves
Theorem 2.

5. Radial Asymptotic Values. The principal difference between Theorem 2 and
Theorem 1 of [4] lies in the fact that a slim set may extend angles at the origin whose sum
may diverge. If this sum happens to converge then the exceptional set is an 'g-set in the
sense of Hayman and we conclude that almost all rays arg z = 8 will eventually lie outside
the set. It is clear that in our situation this will happen if <£(fc), defined by (8), is suitably
small.

If / is meromorphic in C and satisfies (2) and, if, for some a, S(a, f)>0, then, by
Lemma 2

N(r,b)~T(r) (r^oo)
and so

N(2r,b)~N(r,b)
for all b^a.
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THEOREM 3. Suppose that f is meromorphic in C and that S(a,f)>0 for some a e C. If

T(2r,/)-T(r)/) = o(T(r,/)(loglogr)-1 (r-*»), (10)

then
1 1

T(r,f) /CO-a

as z —*• °° outside an %-set. In particular f(rel6) —*• a as r —> °° for almost all 6.

Proof. We assume, without loss of generality that a =« . It follows from (10) that
8(b,f) = 0 for fc^ oo. By a theorem of Ahlfors [7, p. 276] we have for all finite b, excepting
a set of capacity zero,

We choose such a number b and write

f(z)~b=W)'
where /i(z) and f2(z) are canonical products of genus zero formed with the zeros and
poles of f(z)-b. We have

n(r,b) = O{N(2r, b)-N(r,b)}= O{T(2r)- T(r)}+O(T(r))3H

Uoglogr J Lloglogr

It follows from (10) that, with the notation of §4,

I^oQogMhfJ), I3 = o(logM(r,/1))

W e define <*>(fc) by

so that <f>(k) -*• 0 as k -> <», from (10).
Thus log |/i(z)| ~ log M(r,fx)~T{r,f) as z-*°° outside a set of circles the sum of

whose radii taken over circles lying in 2k~1 *£\z\ <2k+2 is at most O(2k exp(-(log k)l<f>(k)))
(fc —* oo). These circles subtend angles at the origin whose sum is

O(exp(-(log fc)/<Kfc))) = O{k~2) (k -> oo).

Thus the exceptional set for f^z) is an "S-set. Since, as before,

log|/2(z)|<(l-8(oo) +
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we obtain that

lim inf ——- log |/(z)| > 8(«)
•» v> T)

as z —* oo outside an 'S-set, and this proves Theorem 3.
I thank Professor W. K. Hayman for his kind help in the preparation of this note.

Note added in proof. Professor A. A. Goldberg of Lvov State University has kindly
pointed out to me that Lemma 1 and part of Theroem 2 are contained in the proof of
Theorem 3 in the article by A. A. Goldberg and I. V. Ostrovskii entitled "On entire
functions and their derivatives of completely regular growth" (in Russian) in the journal
"Theory of functions, functional analysis and their applications" Vol. 18 (1973), published
by Kharkov State University. I regret that I was unaware of this article while preparing
the present paper.
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