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Abstract  An elegant result of Ryan gives a characterization of weakly compact operators from a Banach
space A into co(X), the space of null sequences in a Banach space X. It would be a useful tool if the
analogue of Ryan’s result were valid when co(X) is replaced by ¢(X), the space of convergent sequences
in X. This seems plausible and has been assumed to be true by some authors. Unfortunately, it is false
in general; Ylinen has produced a counterexample. But when A is a C*-algebra, or, more generally, when
the dual of A is weakly sequentially complete, we show that the desired extension of Ryan’s result does
hold. The latter result turns out to be ‘best possible’.
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1. Introduction

The origin of this paper stems from observing that some results on non-commutative,
finitely additive vector measures (i.e. weakly compact operators from a C*-algebra to
a Banach space) do not depend on the domain being a C*-algebra but are essentially
Banach space results.

Let A and X be Banach spaces and let (7},) (n = 1,2,...) be a sequence of weakly
compact operators mapping A into X. For each z € A** let (T*z) (n =1,2,...) be a
Cauchy sequence. Since, for each n, T;, is weakly compact, the range of 7" is in X. By
the uniform boundedness theorem there is a bounded operator T# : A** — X such that
limy, oo T*2 = T#z for each z in A**. It would be natural to expect T# to be weakly
compact but, in general, this is false. This follows from the following example constructed
by Ylinen [6].

In [6, Proposition 2.1], A = I! = X. For each n, T}, : I — [} is defined by

To(z1, 22, ..., Tk, ..) = (x1,T2,...,Ty,,0,0,...).
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Then each T;, is weakly compact (because its range is finite dimensional). Ylinen proves
that (T*z) (n =1,2,...) converges for each z in the dual of [* but the pointwise limit
of the sequence of operators (T},) (n =1,2,...) is not weakly compact.

However, if A is a C*-algebra, then there does exist a weakly compact operator T : A —
X such that lim,,_,. T)i*z = T**z for each z in A**. This is an immediate consequence
of [1, Corollary 3.3]. In this note we show that a positive result is also obtained if A* is
weakly complete. (We recall that the dual of a C*-algebra is always weakly complete.)
We shall also see that, in a sense made precise here, the latter result is ‘best possible’.

Ryan [4] characterized weakly compact operators from a Banach space A into ¢y(X),
the space of null sequences in a Banach space X (see Proposition 3.4 below). When ¢¢(X)
is replaced by ¢(X), the space of convergent sequences in X, the natural extension of
Ryan’s characterization does not hold, in general. But when X* is weakly (sequentially)
complete, then we show, in § 3, that Ryan’s characterization can be generalized success-
fully by applying the results we obtain in § 2. This can then be applied to underpin some
fundamental work on weak compactness and multilinear operators on Banach spaces [3].

2. Convergent sequences of weakly compact operators

Let us recall that a Banach space Z is said to be weakly complete if, whenever (z,)
(n =1,2,...) is a sequence in Z such that (¢z,) (n = 1,2,...) is a Cauchy sequence
for every ¢ in Z*, then there exists z in Z such that ¢z, — ¢z for every ¢ in Z*. Some
authors use the term weakly sequentially complete for the same property.

Theorem 2.1. Let A be a Banach space such that A* is weakly complete. Let X be
a Banach space and let (T,,) (n = 1,2,...) be a sequence of weakly compact operators
from A into X. Let (T*z) (n =1,2,...) be a Cauchy sequence for each z in A**. Then
there exists a weakly compact operator T such that ||(T** —T;*)z|| — 0 for each z in A**.

Proof. Since T, is weakly compact, T;"* maps A** into X. Let T#z = lim T**z for
each z in A**. Then, by the uniform boundedness theorem, 7T# is a bounded linear
operator from A** into X. Let T be the restriction of T# to A.

Fix ¢ € X*. Then, for each z € A**,

lim (T*2,¢) = (T2, 4).

n—0o0

So
lim (2, Ty ¢) = (T#2,¢).

n—oo

So (Tr¢) (n=1,2,...) is a weakly Cauchy sequence in A*. By the hypothesis that A* is
weakly complete, it follows that there exists a unique o € A* such that (z,a) = (T#z, ¢)
for all z in A™*.

All that is now needed is to show that T** = T#. Since this has been a source of error
in the past we wish to avoid being too glib and so give a detailed elementary argument.

Let (2¢) be a net in A** which converges to 0 in the o(A**, A*)-topology. So (z¢,a) — 0.
Thus (T#z;, ¢) — 0 for each ¢ in X*. So T# is a continuous map of A**, equipped with
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the weak*-topology, to X equipped with the weak topology. Since the norm closed unit
ball of A** is weak* compact, the image of the unit ball of A** under the map T# is
weakly compact. Hence T#, and its restriction to A, T, is weakly compact. Thus, by
Lemma VI.2.3 and Theorem VI1.4.2 of [2], T** is weak™* to weak continuous from A** to
X. By Goldstine’s theorem (see [2, Theorem V.4.5]), the norm closed unit ball of A is
weak*-dense in the norm closed unit ball of A**. Hence T# = T**. |

Remark. Let A be a C*-algebra. Its dual is then the predual of a von Neumann algebra
and so, by [5, Corollary I11.5.2], the dual of A is weakly complete. Hence Theorem 2.1
applies whenever A is a C*-algebra.

It turns out that Theorem 2.1 is ‘best possible’. To make this claim precise it is con-
venient to introduce the following definition.

Definition 2.2. Let X be a Banach space. A Banach space A is said to have the weak
compactness stability property with respect to X if, given any sequence of weakly compact
operators (Ty,) (n =1,2,...), each mapping A into X, and with (T,*z) (n=1,2,...) a
Cauchy sequence for each z in A**, there exists a weakly compact operator T" such that
limp— ooy 2z = T**z for each z in A™*.

Proposition 2.3. Let A be a Banach space with the weak compactness stability
property with respect to some non-zero Banach space X. Then A* is weakly complete.

Proof. Let (¢,) (n =1,2,...) be a weakly Cauchy sequence in A*. Then, for each z in
A limy, 00 (2, ¢ ) exists. By the uniform boundedness theorem, there exists a bounded
linear functional ¥# on A** such that % (2) = lim, (2, ¢,,) for each z in A**.

Since X is a non-zero Banach space it contains a non-zero element xzq. For each n, let
T, : A— X be defined by

T.(a) = (a, dn)xo.
Then T,, has a one-dimensional range and so is (weakly) compact. Furthermore,
T (z) = (2, dn)xo for each z in A**. It now follows from the weak compactness sta-

bility property for X that there exists a weakly compact operator T mapping A into X,
such that

T**(2) = lim T}*(2) = lim (2, ¢,)x0 = ¥ (2)xo for each z in A**.

n— oo n—oo

Since T is weakly compact, then, as remarked in the proof of Theorem 2.1, T** is
weak* to weak continuous as a map from A** to X. Thus ¢# is a weak® continuous linear
functional on A**. So, by [2, Theorem V.3.9], 1/# may be identified with an element of
A*. Hence (¢,) (n=1,2,...) is weakly convergent. Thus A* is weakly complete. (|

Corollary 2.4. Let A be a Banach space. Then the following conditions are equivalent:
(i) A* is weakly complete;

(ii) A has the weak compactness stability property with respect to some Banach space
of non-zero dimension;
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(ili) A has the weak compactness stability property with respect to every Banach
space X.

Proof. By Theorem 2.1, (i) implies (iii). Trivially (iii) implies (ii). By Proposition 2.3,
(ii) implies (i). O

3. Extending Ryan’s lemma

For any Banach space X, let ¢(X) be the Banach space of all (norm) convergent sequences
in X, equipped with the supremum norm. Those elements of ¢(X) which are sequences
in X converging (in norm) to 0 form a closed subspace which is denoted by co(X).

For each positive integer n, let T,, be a bounded linear operator from a Banach space
A into a Banach space X. Let lim T, a exist for each a in A. Then (T,a) (n =1,2,...)
is a vector in ¢(X). Let To, be the linear map from A into X defined by Twa = limT,a
for each a in A. We use T to denote the operator from A to ¢(X) associated with the
sequence (T,,) (n =1,2,...) and defined by T'(a) = (T,,a) (n = 1,2,...). By applying the
uniform boundedness theorem we see that T, and T are both bounded linear operators.
Conversely, every bounded operator from A into ¢(X) arises in this way from a sequence
of operators from A into X.

Let us recall [4] that, for 1 < p < co and X an arbitrary Banach space, [P(X) is the
Banach space whose points are the sequences ¢ = (z,,) (n = 1,2,...) in X for which
S22 ||#n||P < 0o. The norm of @ is defined to be (327 ||z, [|P)'/?. Also, I°°(X) is defined
to be the Banach space whose points are all bounded sequences in X and where the norm
of x = (x,) (n=1,2,...) is defined to be sup{||z,| : 1 < n}.

Given ¢ = (¢g, ¢1,...) in 1(X*) and = = (z,,) (n=1,2,...) in ¢(X), let

LQ—'?( ) ¢0 hmxn Z xna¢n

Straightforward calculations then show that Lg is a bounded linear functional on ¢(X)
and its norm is Y ||¢n||. Furthermore, the map ¢~ Lg can be shown to be a sur-
jective isometry of I*(X*) onto c¢(X)*.

Then the canonical bilinear form (-, -) arising from the dual pair (¢(X),¢(X)*), where
I'(X*) and ¢(X)* are isometrically isomorphic by the map ¢ + Lg described above, is
given by

<£l:7 L¢> = < nlgr;o Tn, ¢0> + ;<£L‘n, ¢n>
for each © = (z1,22,...) € ¢(X) and ¢ = (¢o, ¢1,...) € H(X*).

It follows from the remarks in [4] that the dual of I'(X*) can be identified in a natural

way with {%°(X**). Thus ¢(X)** can be identified with [°°(X**). Let f be the canonical

embedding of X into X**. Then a sequence (z,) (n = 1,2,...) in ¢(X) is mapped to
(lim gz, by, fza, ... ) in 1°°(X**).

Lemma 3.1. Let T be a bounded operator from a Banach space A into ¢(X) and let
T, (n=1,2,...) and Ty be the operators from A into X associated with T as above.
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Fix L in ¢(X)*. Then let ¢ = (¢q, ¢1,...) be the corresponding element of I (X*). Then,
for each z € A**,

(T**z,L) = (T% z, ¢o) + Z Tz, dn).
Proof. For each a € A,

(Ta,L) = (Tsoa, do) + > _(Tna, én).

n=1

Now let z be in the unit ball of A**. Then, by Goldstine’s theorem (see above) there
is a net (a¢) in the unit ball of A which converges weak* to z. Then Ta; — T**z in the
weak* topology of ¢(X)**. So (T'a;, L) — (T"™**z, L). Similarly, for each N,

N N
(Tt b + Y Thtes ) = (T3, 00) + 3 (T3 60)

n=1
Choose € > 0. Choose N large enough to ensure that
T > llgall <e
n=N+1
Then for any w in the unit ball of A**,
Do (Trw,bn) | <ITI Y lignll<e
n=N+1 n=N+1

From this it follows by routine arguments that
(T2, L) = (T2, ¢0) + > (1572, ¢n).-

O

We have seen that ¢(X)** can be identified with {°°(X**). When this identification is
made appropriately, we have the following corollary.

Corollary 3.2. For each z in A** we have
T (2) = (T 2,172, Ty 2z, ..., Tz, L),

The following lemma was, in essence, proved by Ylinen [6]. For the convenience of the
reader, we give a brief proof here as an application of Corollary 3.2.

Lemma 3.3. Let A and X be Banach spaces and let T be a weakly compact operator
from A into ¢(X). Let (T,,) (n =1,2,...) be the sequence of operators from A into X
such that T'(a) = (T,a) (n=1,2,...) for each a in A. Then each T,, is weakly compact.
Also, Tw, the pointwise limit of (T,,) (n = 1,2,...), is weakly compact. Furthermore,
Um T7*(z) = T = for each z in A**.
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Proof. We recall that the product of a bounded operator and a weakly compact
operator is weakly compact. Let m, be the canonical projection of ¢(X) onto the nth
coordinate. Then T,, = 7w, T. Hence T, is weakly compact. Let 7, be the operator which
maps (a1, asg,...) in ¢(X) to lima,. Then T, = 75T and so is also weakly compact.

Since T is a weakly compact operator from A into ¢(X), T™* maps A** into the
canonical image of ¢(X) in the second dual ¢(X)**. Hence, for every z € A**, there exists
x = (x1,22,...) in ¢(X) such that

((1,22,...), Le) = ((¢0, 1,02, ... ), Toxz, T2, 15" z,...))

for all ¢ = (¢0a ¢17 ¢27 ce )
Now take any ¢ € X* and consider

¢") = (01,,0)2%, € 1M(X*) for k=0,1,2,....
Then we have
<xk7 ¢> = <¢7TI:*Z>
for all kK > 1 and
( Jim @, 0) = (6, T 2),
k—o0
that is, fx, = T,*z for all n and lim,_, o fz, = 75F 2. Hence it follows that
|Trw*z =Tz =0, n— oo
O

Proposition 3.4 (Ryan [4]). Let A and X be Banach spaces. Let (T,,) (n =1,2,...)
be a sequence of bounded operators from A into X. Let ||T,,z|| — 0 for each z in A. Then T
is a weakly compact operator from A into c¢o(X) if, and only if, each T,, is weakly compact
and ||T}*z|| — 0 for each z in A**. When T is weakly compact, T**(z) = (T*(z))
(n=1,2,...) for each z in A**.

Proposition 3.4 is a special case of the following result, which is essentially due to
Ylinen [6].

Proposition 3.5. Let A and X be Banach spaces and let T' be a bounded operator
from A into ¢(X). Let (T,,) (n = 1,2,...) be the sequence of operators from A into X
such that T'(a) = (Tha) (n=1,2,...) for each a in A and let T,, be the operator from
A into X which is defined by T,a = lim T, a for each a € A. Then T is weakly compact
if and only if the following conditions are satisfied.

(i) For each n, T,, is weakly compact.
(ii) For each z in A**, im T *(z) = T=*(2).

(iii) The operator To, is weakly compact.

https://doi.org/10.1017/50013091504001403 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091504001403

Eztending a result of Ryan on weakly compact operators 433

Proof. By Lemma 3.3, when T is weakly compact the three conditions are satisfied.
Now suppose that the conditions are satisfied. So, for each z in A**, condition (iii)
implies that Tz is in X and condition (i) implies that 7,*z is in X for each n. Hence,
by condition (ii), (T2, 17"z, T5*z,..., T *z,...) is in the canonical image of ¢(X) in
¢(X)**. Hence, by Corollary 3.2, T** maps A** into ¢(X). So T is weakly compact. O

Theorem 3.6. Let X be any Banach space. Let A be a Banach space whose dual
space, A*, is weakly complete. Let (T,,) (n =1,2,...) be a sequence of weakly compact
operators from A into X such that (T*(z)) (n =1,2,...) is a Cauchy sequence for each
z in A**. Then T is a weakly compact operator from A into ¢(X).

Proof. Because the dual of A is weakly complete, Theorem 2.1 implies the existence
of a weakly compact operator T, : A — X such that T**(z) — T2*(z) for each z in A**.
So conditions (i)—(iii) of Proposition 3.5 are satisfied. O

Remark. If A* is not weakly complete, then it follows from Proposition 2.3 that we
can find a sequence of weakly compact operators, (T,,) (n = 1,2,...), each mapping A
into ¢, such that (7*(z)) (n = 1,2,...) is a convergent sequence for each z in A** but
T, is not weakly compact (where Too(a) = lim T, (a) for each a in A). It then follows
from Proposition 3.5 that T is not weakly compact. So the hypothesis that A* is weakly
complete is essential for the validity of Theorem 3.6.
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