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ABSTRACT. Remote sensing has provided a means of obtaining estimates of 
snow-covered area, yet traditional methods have had difficul ty mapping snow in 
shaded and vegetated areas. Spectral mixture analysis is a linear mixture modeling 
technique that shows promise for mapping land surface covers, particularly when 
imaging spectrometer data are used. Applying this technique to AVIRIS data 
collected over the Sierra Nevada, California, we have estimated the fraction of snow 
cover in each pixel, even in areas that are shaded or forested. This modeling 
technique enables us to map snow cover at the sub-pixellevel and provides a means 
of estimating the errors associated with the calculation. 

INTRODUCTION 

One of the fundamental difficulties in producing estimates 
of snow-covered areas using remote sensing techniques 
has been distinguishing snow from other surface covers in 
a scene. While snow is extremely bright in the visible 
wavelengths, it can also appear much darker when in the 
shadows or when it lies within a forested area, thus 
resulting in misclassification of snow-covered pixels. To 
date, methods for classifying snow-covered pixels from 
satellite data have relied on reflectance measurements in 
only a few bands and the use of thresholding and ratioing 
to distinguish between snow, clouds, and other scene 
componen ts (Dozier and Marks, 1987; Dozier, 1989). 
There are several drawbacks to such approaches: 

1. Removing atmospheric effects in mountainous terrain 
is difficult because of the changes in air mass with 
variation in elevation, leading to errors when calculating 
surface reflectance; 
2. It is not possible to estimate snow-cover concentration 
at the sub-pixellevel; pixels can only be classified as snow 
covered or not snow covered; 
3. Typically, there is no means of performing an error 
assessment without extensive field sampling or analysis of 
aerial photos. 

In this paper, we describe the application of a spectral 
mixture modeling technique for mapping snow-covered 
area and present results from two images of alpine regions 
in the Sierra Nevada, California. 

APPROACH 

With the advent of the age of imaging spectrometers, we 

are able to use both spatial and spectral data to extract 
information on a sub-pixellevel (Goetz and others, 1985). 
The Airborne Visible and Infrared Imaging Spectrometer 
(AVIRIS), flown in NASA's ER-2 high altitude aircraft, 
has 224 spectral bands from 400 to 2460 nm and a pixel 
size of 20 m . Since 1989, there have been three A VIRIS 
overflights over our region of interest, the Sierra Nevada 
of California, providing us with high spectral resolution 
images containing such components as snow, vegetation, 
rock, water, and shade. New techniques are evolving to 
interpret these data better and for this research we use a 
spectral mixture analysis method . Spectral mixture 
analysis has been shown to be well-suited for analysis of 
A VIRIS data (Boardman and Goetz, 1991; Clark and 
others, 1991; Sabol and others, 1992). In this context, 
spectral mixtures are areal composites (mixtures of 
components) within each pixel. While there are many 
components in a pixel, one can choose a parsimonious set 
of spectral endmembers that best describes the spectral 
variation in the pixel. A spectral endmember is the purest 
representation of a component in multispectral space. 
While an image component may itself be a mixture of 
sub-elements, it can be represented as a unique spectral 
signature. In this work, knowledge of the image allowed 
us to choose pixels that best represented the main 
components in the image. Having chosen these spectral 
endmembers, we can calculate the spectra of any linear 
mixture of the endmembers using the following mixing 
rule (Adams and others, 1986; Roberts and others, 1990): 

N 

Le = L FiLi,e + Ee 
i=l 

(1) 

Le is the radiometrically calibrated radiance in A VIRIS 
channel c (Wm-2 p.m-1sr-1 ). Fi is the fraction of 
end member i. Li,e is the radiance of end member i in 
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channel c. N is the number of spectral endmembers. Ec is 
the error for channel c of the fi t of N spectral 
endmembers. The resulting fraction images show the 
relative contributions of spectral endmembers to the pixel 
spectrum. 

Endmember spectra are defined by choosing repres­
entative pixels in the image and we refer to the spectrum 
of a pixel as its pseudo-spectrum since it is represented in 
DN (digital number) values (0- 255) rather than radiance 
or reflectance values. Although the end members are at 
different elevations in the image, the choice of A VIRIS 
bands used in the model substantially reduces the 
influence of atmospheric effects on the model results. 
Only fo'ur of the 16 (or 18) bands used to model each 
image (Table 1) are in the visible wavelengths where the 
magnitude of atmospheric scattering effects depends on 
pixel elevation. One band is located in an atmospheric 
water vapor absorption region while the rest of the bands 
(10 or 11 ) span a spectral region where there is little 
atmospheric scattering and absorption. Thus elevation 
differences have a negligible effect on the model results. 

Using Equation (2 ) we calculate the average root 
mean squared (RMS) error by squaring and summing 
the error term, Ec over the M A VIRIS channels to show 
the fit of the model to the image data. 

(2) 

The RMS error is a combination of errors resulting 
from both the choice of endmembers and the error 
introduced by sensor noise . RMS values 
(Wm-2""m-1sr-1

) are transformed to DN values (0-
255) and displayed as an image so that spatial patterns of 
error can be investigated. 

Two multi-band subset images, Tioga Pass-1989 and 
Mammoth Mountain-199l, were used in this analysis, 

Table 1. AVRIS bands and corresponding band center 
wavelengths used for the spectral mixture model 

Band 

7· 
16 
27 
38 
51 
60· 
67 
68 
69 

Wavelength 

0.46 
0.55 
0.66 
0.72 
0.85 
0.94 
1.00 
1.01 
1.02 

Band 

70 
71 
72 
73 
74 
75 
76 
77 
78 

Wavelength 

J1.m 

1.03 
1.04 
1.05 
1.06 
1.07 
1.08 
1.09 
1.10 
l.ll 

• Noisy bands in the 1989 data; not used for modeling the 
Tioga Pass image. 
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contammg 16 and 18 spectral bands in the visible and 
near-infrared wavelengths, respectively. These bands, 
shown in Table 1, were selected on the basis of spectral 
information content and signal-to-noise ratio in order to 
reduce redundancy and image noise and to facilitate 
image processing. Collected on 26 May 1989, the Tioga 
Pass scene covers an area of approximately 4 x 4.4 km 
and contains patchy snow, thin snow, and deep snow 
areas. Vegetation in the scene is neither dense nor 
continuous with thin, rocky soil and senesced grasses 
and smal~ shrubs visible in the areas where snow is absent. 
Tioga Lake was partially covered by a slushy ice layer but 
remained unfrozen around the edges. Concurrent with 
the AVIRIS overflight, snow reflectance and snow depth 
measurements were made and snow samples collected to 
characterize the effects of snow and grain size on spectral 
reflectance. The Mammoth Mountain image was 
acq uired on 23 March 1991, the day after a major 
snowstorm deposited over lDcm of fine-grained new snow 
over 2-3 m of existing snowpack. It covers an area of 
approximately 8 X 6.9 km. Unlike the Tioga Pass-1989 
scene, this scene has snow-covered frozen lakes, deep snow 
in nearly all snow-covered areas, more densely forested 
areas, and more rugged topography producing substan­
tial shading. 

Unique endmembers were identified using 3-band 
color composites for each scene. Endmembers for the 
Tioga Pass 1989 image were Rock/Soil, Water, Vegeta­
tion, and Snow. For the Mammoth Mountain-199l 
image, the endmembers chosen were Vegetation, Shade, 
and Snow. Because of the spectral similarity between lake 
water and shade (in the Tioga Pass 1989 image) and 
between dark rock and shade (in the Mammoth 
Mountain-1991 image) only one of the two for each was 
used as an endmember. The mixing model was run for 
each image to calculate the fraction of each endmember's 
spectral contribution to each pixel's pseudo-spectrum. 
Deviations between the model and the data were 
calculated as residuals and an RMS error image as well 
as an overall RMS error were computed. 

RESULTS 

Overall RMS error for the Tioga Pass 1989 scene was 
3.4 Wm-2j.Lm-1sr-1 and for the Mammoth Mountain 
1991 scene it was 3.DWm-2j.Lm-1sr-1, both of which are 
quite low. Displaying the RMS images allows the user to 
examine the spatial pattern of RMS error and to assess if 
additional endmembers are needed to model the data 
better. In the case of the Mammoth Mountain 1991 
scene, highest RMS errors (~7Wm-2j.Lm-lsr-l ) were 
associated with directly illuminated areas of snow in the 
upper basin areas on the south side of Mammoth 
Mountain. These basins have concave profiles and the 
light bouncing off adjacent slopes creates an additional 
source of variability that is not modeled. The spectral 
composition of this secondary illumination is different 
from that of the sun and, because of the complex 
topography, not all pixels are equally effected. The 
RMS image for Tioga Lake 1989 showed that highest 
errors (6.25 Wm-2 j.Lm-1sr-1) are associated with the 
partially frozen slushy ice surface of Tioga Lake. 
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Fig . 1. This Tioga Pass image shows the fraction of snow cover in each pixel as calculated by the spectral mixture model. 
Tioga Lake is in the upper right region of the image and the road through Tioga Pass runs along the left side of the lake, 

from upper right to lower left. The image has been scaled so that black pixels represent a snow cover of 0%, dark-gray 
pixels represent 1- 25% snow cover, medium-gray pixels represent 26-50% snow cover, light-gray pixels represent 51-
75% snow cover, and white pixels represent 76-100% snow cover. White pixels also appear to correspond to areas cif deep 
snow while medium- and light-gray pixels may correspond to thin snow areas. This image, derived from an AVIRIS 
image sub-scene, represents an area of 4 x · 4.4 km. 

Fig. 2. This Mammoth Mountain snow cover fraction image shows the mixing model estimates of snow-covered area in 
each pixel. North is to the upper right of the image and the ski runs at the Mammoth Mountain ski resort are clearly seen 
in the upper portion of the image. This image, derived from an AVIRIS image sub-scene, represents an area of 
8 x 6.9 km. The mountain ridge runs from upper left to the center cif the image and several frozen, snow-covered lakes are 
visible in the lower right portion of the image. The gray scale is the same as in Figure 1. 

Another means of examining the goodness of fit of the 
endmembers is to produce a fraction image of each 
endmember. Fractions are displayed in an 8-bit image 
with values of 0-100 for fractions less than zero, values 
from 100-200 for fractions ranging from 0-1, and values 

from 200-255 for fractions greater than I. Fraction 
overflow (fractions greater than I) indicate that there 
were pixels in the image that were purer representations 
of that endmember. Fraction underflow (fractions less 
than 0) are those pixels that were not well represented by 
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any of the endmembers. In all fraction images for both 
scenes, there was very little fraction overflow but some 
fraction underflow in the vegetation fraction images. This 
points to the difficulty in choosing vegetation end­
members in scenes where vegetation is discontinuous 
and not dense. However, since the goal was to map snow 
cover in both images, no further endmember manipula­
tion was done since the snow fraction images showed only 
minor amounts of fraction over- and underflow. 

Figures 1 and 2 show the snow fraction images for 
Tioga Pass 1989 and Mammoth Mountain 1991, 
respectively. In these fraction images, the snow fraction 
for each pixel is mapped on a gray scale with black = 0-
5%, dark gray = 6-25%, medium gray = 26-50%, 
light gray = 51-75%, and white = 76- 100%. 

DISCUSSION AND CONCLUSIONS 

An important point to consider in the interpretation of 
the fraction images is that what we have actually 
calculated is the per cent contribution of the endmember 
pseudo-spectrum to the pixel pseudo-spectrum. What 
remains to be done is to relate this to the areal coverage of 
each endmember in each pixel. This relationship may 
depend on both snow thickness and the spatial arrange­
ment of endmembers. The snow cover fraction image 
should still stand as a reasonable proxy image for fraction 
of snow-covered area. 

The accuracy of the results is also influenced by the 
fact that the model is a linear mixing model and is being 
applied to a somewhat non linear problem. Nonlinearities 
are generated by the adjacency effect of bright pixels next 
to dark pixels adding some unaccounted-for path 
radiance'and by the anisotropic distribution of reflected 
radiation from snow (particularly in the near-infrared 
wavelengths), as well as by the presence of absorbing 
impurities in the snow (Tioga Pass 1989) that is best 
modeled as an intimate mixture Oohnson and others, 
1983). 

The interpretations of the snow cover fraction images 
for Tioga Pass 1989 and Mammoth Mountain 1991 
scenes are somewhat different. Recall that the Tioga Pass 
1989 scene contains areas of thin snow as well as patchy 
snow surrounded by vegetation and rock/soil. Concurrent 
reflectance measurements of thin snow over a dark 
substrate have shown that the spectral reflectance is a 
combination of both the snow reflectance, decreases with 
wavelength, and the substrate reflectance, which in­
creases with wavelength (Nolin and Dozier, 1991 ). It is 
possible that, in areas of thin snow, the mixture model is 
calculating the fractions of endmembers which are 
superimposed (snow over rock/soil) rather than adjac­
ently located. 

In conclusion, using imaging spectrometer data and a 
spectral mixture modeling technique, we have successfully 
mapped deep snow, thin snow, shaded snow and snow 
mixed with vegetation. With careful interpretation, 
similar results could be used as input to hydrologic and 
climatologic models requiring estimates of snow-covered 
area. 
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