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Temporal and Spatial Variations in the Twinning
Rate in Norway
Johan Fellman
Hanken School of Economics, Helsinki, Finland

Strong geographical variations have been noted in the twinning rate (TWR). In general, the rate is high
among people of African origin, intermediate among Europeans, and low among most Asiatic populations.
In Europe, there tends to be a south–north cline, with a progressive increase in the TWR from south to
north and a minimum around the Basque provinces. The highest TWRs in Europe have been found among
the Nordic populations. Furthermore, within larger populations, small isolated subpopulations have been
identified to have extreme, mainly high, TWRs. In the study of the temporal variation of the TWR in Norway,
we consider the period from 1900 to 2014. The regional variation of the TWR in Norway is analyzed for
the different counties for two periods, 1916–1926 and 1960–1988. Heterogeneity between the regional
TWRs in Norway during 1916–1926 was found, but the goodness of fit for the alternative spatial models
was only slight. The optimal regression model for the TWR in Norway has the longitude and its square as
regressors. According to this model, the spatial variation is distributed in a west–east direction. For 1960–
1988, no significant regional variation was observed. One may expect that the environmental and genetic
differences between the counties in Norway have disappeared and that the regional TWRs have converged
towards a common low level.

� Keywords: assisted reproductive technology, geographical co-ordinates, multicollinearity, regression
analysis, county

Strong geographical variations have been observed in the
twinning rate (TWR). The TWR is high among people of
African origin, intermediate among Europeans, and low
among most Asiatic populations (Eriksson, 1973). In Eu-
rope, there tends to be a progressive increase in the TWR
from south to north, with a minimum around the Basque
provinces on the border between Spain and France. The
highest TWRs in Europe have been noted among the
Nordic populations (Bulmer, 1970; Eriksson, 1964, 1973;
James 1985). Furthermore, within larger populations some
small isolated subpopulations have been identified to have
extreme, mainly high, TWRs.

Fellman and Eriksson (1990) examined the regional vari-
ation in the TWR in Finland for 1974–1983. Eriksson et al.
(1993) presented a detailed study of the secular changes
in the Nordic countries of Denmark, Finland, and Swe-
den. In our studies of the regional variation of the TWR in
Sweden, we have analyzed TWRs for the different counties
(Eriksson & Fellman, 2004; Fellman & Eriksson, 2003, 2004,
2005a, 2009). In Fellman (2016), the temporal variation in
the Norwegian TWR was compared with corresponding
trends in the neighboring Nordic countries of Iceland and
Denmark.

Material and Methods
Materials

To evaluate the temporal variations in the TWR in Norway,
we consider TWRs for 1900–2014 (Table 1). A deep trough
can be found in 1960–1989. After 1990, a marked increase
in the TWR is noted that cannot be explained by the slight
increase in mean maternal age. The main cause of the re-
covery of the TWR is noted to be the influence of assisted
reproductive technologies (ART) and particularly the use of
fertility-enhancing drugs on the commonly noted depen-
dence between maternal age and TWR (Fellman & Eriks-
son, 2005a). Therefore, model building of normal TWRs
should be based on data obtained before 1960.

The study of the spatial variation in the TWR is based
on data grouped according to the Norwegian counties for
1916–1926. The available data are presented in Table 2. We
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TABLE 1
Temporal Variation in the Twinning Rate in Norway (1900–2014)

Period Maternities Twin maternities TWR

1900–1909 641,958 8,659 13.49
1910–1919 619,280 8,688 14.03
1920–1929 574,871 8,377 14.57
1930–1939 447,160 6,211 13.89
1940–1949 599,246 7,583 12.65
1950–1959 629,647 7,766 12.33
1960–1969 651,663 6,894 10.58
1970–1979 578,655 5,469 9.45
1980–1989 525,020 5,372 10.23
1990–1999 593,781 8,601 14.49
2000–2009 572,335 10,330 18.05
2010–2014 295,946 4,826 16.31

Total 6,729,562 88,776 13.19

TABLE 2
Regional Twinning Rates in Norway (1916–1926) Grouped
According to the Norwegian Counties (or Fylkes)

Total Maternities TWR Latitude Longitude TW R

Östfold 40,599 14.1875 59.2833 11.2000 15.13
Akershus 92,584 14.0953 59.9333 10.7500 15.06
Hedmark 43,196 15.7304 60.7833 11.0500 15.11
Oppland 38,423 15.6937 61.1167 10.4167 15.00
Buskerud 31,625 14.5771 59.7333 10.1500 14.95
Vestfold 30,550 15.9411 59.2833 10.4167 15.00
Telemark 31,524 15.0044 59.2000 9.5500 14.84
Aust-Agder 17,058 14.7442 58.4667 8.7667 14.67
Vest-Agder 26,706 15.1092 58.1667 8.0000 14.49
Rogaland 38,287 12.3802 58.9500 5.7167 13.85
Hordaland 62,970 12.7125 60.3667 5.4000 13.75
Sogn og Fjordane 21,640 15.7344 61.2167 6.7833 14.19
Möre 41,548 15.7771 62.7500 7.2333 14.29
Sör-Tröndelag 43,436 14.1935 63.4167 10.3833 15.00
Nord-Tröndelag 23,075 15.0813 64.0500 11.7167 15.21
Nordland 49,318 14.3658 67.3000 14.5333 15.48
Troms 25,637 16.1487 69.6667 18.9333 15.44
Finnmark 15,091 12.9216 70.0667 29.7333 12.96

Total 673,266 14.544 61.8750 11.1519

Note: The latitudes and longitudes are the coordinates of the residences of
the counties. The TWR is the observed TWR of the county, and TWR is
the estimated TWR of the county according to model (5). For details,
see the text.

have considered a period for which the normal TWR rates
are maximal. One may expect that the environmental and
genetic differences have later disappeared and that the re-
gional TWRs have converged towards a common low level.
This may have influenced the TWR for 1960–1988.

Methods

We applied different spatial regression models to the re-
gional TWRs. The map of Norway and its counties is pre-
sented in Figure 1. Following Fellman and Eriksson (2009),
the location of the counties is defined as the geographic co-
ordinates of the corresponding residences. The coordinates
for Norway are eastern longitude and northern latitude. The
coordinates of the counties (residences) in Norway are also
given in Table 2.

Multicollinearity

We analyzed the spatial variation in the TWR with alterna-
tive regression models. The regressand is the TWR in the

different counties and the presumptive regressors are the
longitude (meridian) M, and the latitude L, and the regres-
sors of second order, M2, L2, and LM. The regressors M
and L are defined as deviations from their national cluster
means, and consequently, the intercepts obtained are the es-
timated TWRs in the center of the cluster.

The elongated or drawn-out format of Norway and the
inclusion of the whole set of regressors, M, M2, L, L2,
and LM, indicate that attention must be paid to the mul-
ticollinearity between the regressors. Concerning regional
studies of Swedish twins, this was also observed by Fell-
man and Eriksson (2009). The multicollinearity pattern
can show marked variations. Therefore, different measures
based on the eigenvalues of the correlation matrix have
been proposed in the literature. In the review of the litera-
ture, Fellman (1981) and Fellman and Eriksson (2009) have
given detailed presentations and analyses of different mea-
sures of multicollinearity. In the following, a short presen-
tation is given.

Consider a set of variables (regressors) u1, u2, ..., un and
their correlation matrix

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 c12 ... c1 j ... c1n
c21 1 ... c2 j ... c2n
. . . . . .

ci1 ci2 ... ci j ... cin
. . . . . .

cn1 cn2 ... cn j ... 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (1)

where ci j = cor(ui, u j ). If the variables are mutually uncor-
related the correlation matrix equals the identity matrix

I =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 ... 0 ... 0
0 1 ... 0 ... 0
. . . . . .

0 0 ... 1 ... 0
. . . . . .

0 0 ... 0 ... 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2)

The eigenvalues are obtained in the following way: Solve
the equation

det(C − λI) = det

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − λ c12 ... c1 j ... c1n
c21 1 − λ ... c2 j ... c2n
. . . . . .

ci1 ci2 ... ci j ... cin
. . . . . .

cn1 cn2 ... cn j ... 1 − λ

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0. (3)

This equation is an algebraic equation of degree n. Con-
sequently, it has n roots λ1, λ2, ..., λn, which are the eigen-
values of the matrix C. For every correlation matrix, the
roots are real and non-negative and

∑n
i=1 λi = n. We num-

ber the roots such that 0 ≤ λ1 ≤ λ2 ≤ ... ≤ λn. If the
variables are uncorrelated, the correlation matrix is a unit
matrix and all the eigenvalues equal one. If there are marked
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FIGURE 1
(Colour online) Map of Norway including the counties.

correlations between the variables, one speaks about mul-
ticollinearity and there are small eigenvalues. The multi-
collinearity causes reduced accuracy in the estimates. If
λ1 = 0, then at least one exact linear relation between the
regressors can be found and the correlation matrix is singu-
lar and not all parameters are estimable.

Fellman (1981) discussed the pros and cons of the differ-
ent multicollinearity measures. He stated that a good mea-
sure should satisfy the following conditions: (a) the measure
defines a critical level above (or below) which the corre-
sponding correlation matrix should be considered strongly
multicollinear; (b) the measure can be used for comparisons
between different correlation matrices.

These properties imply that the measure must be (at least
in a loose sense) ‘monotonic’ and the effect of the dimension
of the matrix on the measure should not be too great. The
measures of multicollinearity were also discussed in Fell-
man and Eriksson (2009).

In Table 3, we present some commonly used measures of
collinearity and their basic properties. The simplest mea-
sure is the inverse of the minimum eigenvalue m1 = λ−1

1 .
In the uncorrelated case, m1 = 1, but with increasing mul-
ticollinearity λ1 → 0 and m1 increases towards infinity.

The next measure, proposed by Wichern and Churchill
(1978) and Casella (1980), is m2 = λn

λ1
. This is defined as the

condition number of the matrix. In the uncorrelated case,
m2 = 1 and with increasing multicollinearity m2 increases
towards infinity.

The determinant of the correlation matrix, m3 =
det(C) = λ1λ2 · · · λn, has also been used as a measure of
multicollinearity. In the uncorrelated case, m3 = 1, but with
increasing multicollinearity m3 decreases towards zero.

Mahajan et al. (1977) and Lawless (1978) considered
the sum m4 = ∑ 1

λi
. For uncorrelated variables, its value

is n. With increasing multicollinearity, it increases towards
infinity.
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TABLE 3
Definitions of Some Measures of Multicollinearity

Formula Uncorrelated Exact multicollinearity References

m1 λ−1
1 1 ∞

m2
λn
λ1

1 ∞ Casella (1980); Wichern & Churchill (1978)

m3 λ1λ2 · · · λn 1 0

m4
∑ 1

λi
n ∞ Mahajan (1977); Lawless (1978)

m5
∑

( λ1
λi

)
2

n 1 Thisted (1980)

m6
∑

( λ1
λi

) n 1 Thisted (1980)

m7
∑

( n
λim4

− 1)2 0 n(n − 1) Vinod (1976); Wichern & Churchill (1978)

m8
∑

( 1−λi
λ2

i
) 0 ∞ Fellman (1981)

Note: The measures m3 , m4 and m8 were chosen for this study. For details, see the text.

Thisted (1980) suggested two measures, m5 = ∑
( λ1

λi
)2

and m6 = ∑
( λ1

λi
). These measures satisfy the inequalities

1 < m5 ≤ m6 ≤ n. The equality signs hold only in the or-
thogonal case. For uncorrelated variables, these measures
obtain the value n, and when the multicollinearity increases
they converge towards one.

The measure m7 = ∑
( n

λim4
− 1)2 was introduced by

Vinod (1976). It is zero for complete orthogonal systems,
but according to Vinod the components in the sum will be
large for non-orthogonal data. However, the value of m7 de-
pends greatly on the relative proportions between the eigen-
values and does not satisfy the assumption of a monotone
function.

The measure m8 = ∑
( 1−λi

λ2
i

) was introduced by Fellman
(1981), who presented arguments for its suitability as a mul-
ticollinearity measure and proved that m8 ≥ 0, with equal-
ity in the orthogonal case, and that limλ1→0 m8 = ∞.

The measures m1 and m2 are simple to handle, but their
weakness is that they are mainly based on the smallest
eigenvalue. Hence, any other small eigenvalues are almost
ignored. The measure m3 depends strongly on the dimen-
sion of the matrix and is suitable only for matrices with low
dimension. The advantage of m4 over m1 and m2 is that it
takes into account the effect of several small eigenvalues.
In addition, one can show that mathematically it has an
evident connection with the estimation problem. Thisted
(1980) recommended m5 in estimation and m6 in predic-
tion situations. The main criticism against these measures
is that they can be used if there is one extremely small eigen-
value, but if there are several small eigenvalues the mea-
sure is rather worthless. The measure m7 is useful only if
we are dealing with a correlation matrix with only one small
eigenvalue.

When we consider the variables M, M2, L, L2, and LM,
the dimension is low and several small eigenvalues may ex-
ist. Consequently, m3, m4, and m8 could be recommended
and used in this study.

Results
Temporal Trends

The temporal variation in the TWR in Norway (1900–2014)
is presented in Figure 2. The TWR shows strong fluctua-
tions. One observes that the TWR is rather constant until
the 1950s, but there is a maximum in the 1910s and 1920s.
There is a marked trough in the 1970s. After that, there is
an increase up to the maximum 18.05 per 1,000 in 2000–
2009. The main cause of this recovery of the TWR seems
to be the influence of ART (Fellman & Eriksson, 2005a). A
slight decrease in the TWR can be observed after 2009. Such
recaptures can also be observed in other studies and are ex-
plained by improved treatment techniques in order to avoid
multiple maternities. For sake of comparison, the TWR for
Denmark is included in Figure 2. The temporal trends for
the TWRs in both countries are similar. The temporal trend
of the seasonality in the TWR in Norway is discussed in
Fellman and Eriksson (1999). More detailed studies of the
TWR and general demographic studies of Denmark can be
found in Eriksson and Fellman (1999); Fellman and Eriks-
son (2005a); and Fellman (2015).

Regional Variation

The data during the periods 1916–1926 and 1960–1988
were used in the study of the regional heterogeneity, and
these data are indicated in Figure 2. In Table 2, we have pre-
sented the TWR distributed over the Norwegian counties
for 1916–1926. When we applied a χ2 test of the regional
variation for the period 1916–1926, we obtained χ2 = 56.8
with 17 degrees of freedom and p < .001, indicating statis-
tically significant variations. Below, we follow Fellman and
Eriksson (2009) and build spatial models of the regional
variations.

We controlled as a check the regional TWRs for 1960–
1988 (Table 4) and for this period found no significant re-
gional variations (χ2 = 21.59 with 18 degrees of freedom,
p > .05). Our results indicate that for these two periods
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FIGURE 2
Temporal variation in the twinning rate in Norway (1900–2014). Note: The � symbol indicates data analyzed in the regional study. The
♦ symbol indicates late regional data. For comparison sake, the TWR for Denmark is included in the figure. The temporal trends for the
TWRs in both countries are similar.

TABLE 4
Regional Data in Norway for the Period 1960–1988.

County Maternities Latitude Longitude TWR

Östfold 85,929 59.2833 11.2000 9.356562
Akershus 80,239 59.9333 10.7500 9.745884
Oslo 212,837 59.9333 10.7500 10.20969
Hedmark 86,420 60.7833 11.0500 9.939829
Oppland 64,963 61.1167 10.4167 10.02109
Buskerud 75,724 59.7333 10.1500 9.996831
Vestfold 70,435 59.2833 10.4167 9.576205
Telemark 61,609 59.2000 9.5500 9.803762
Aust-Agder 36,920 58.4667 8.7667 9.507042
Vest-Agder 56,394 58.1667 8.0000 10.76356
Rogaland 135,336 58.9500 5.7167 9.871727
Hordaland 171,890 60.3667 5.4000 9.482809
Sogn og Fjordane 54,726 61.2167 6.7833 9.757702
Möre og Romsdal 97,585 62.7500 7.2333 9.90931
Sör-Tröndelag 102,912 63.4167 10.3833 9.4838
Nord-Tröndelag 56,646 64.0500 11.7167 9.515235
Nordland 104,007 67.3000 14.5333 10.15316
Troms 70,643 69.6667 18.9333 9.979757
Finnmark 41,273 70.0667 29.7333 8.795096

Total 1,666,488 61.7728 11.1307 9.822151

spatial models can only be applied in the data set for 1916–
1926. These findings can be compared with the results ob-
tained by Fellman and Eriksson (2005b) that the regional
TWRs for Sweden converged from 1750 to 1960 towards a
common low level.

The elongated/drawn-out format of Norway suggests
that we consider the multicollinearity in the regional mod-
els for Norway. We calculated the correlation coefficients
between the TWR and the regressors M, M2, L, L2, and LM.
The correlation matrix is given in Table 5. For the correla-
tion matrix of the regressors, we obtain λ1 = 0.00175, λ2 =
0.11089, λ3 = 0.15308, λ4 = 0.44883, and λ5 = 4.28945.

One eigenvalue is extremely small and at least two can be
considered rather small.

The multicollinearity measures for our Norwegian data
are presented in Table 6 and a strong multicollinearity is
obvious. Below, we define the optimal model consisted of
the regressors M and M2 that we accept as optimal. For the
regressors in this model, the multicollinearity is markedly
reduced. Now, the two eigenvalues are λ1 = 0.168015 and
λ2 = 1.831985. The corresponding multicollinearity mea-
sures for this reduced model are also included in Table 6.
A comparison of the values of m3, m4, and m8 shows how
much stronger the multicollinearity is for the larger model.
Moving from the large model to the small, m3 increases
from 0.0000566 to 0.307801, and m4 and m8 decrease from
590.4 to 6.50 and from 327166 to 29.2, respectively. Table 6
includes the Swedish data given by Fellman and Eriksson
(2009). One observes that the multicollinearity in the Nor-
wegian data is markedly stronger than in the Swedish data.

Regression Models

First we build the linear regression model for the total set of
regressors. The obtained model is:

TWR = 15.007 + 0.15197 M + 0.00975 L + 0.00090 M2

+ 0.03401 L2 − 0.04957 LM. (4)

The goodness of fit of the model, measured with the ad-
justed coefficient of determination, is R̄2 = 0.080, indicat-
ing a bad fit. This is supported by the low model test value
F = 1.298. None of the parameter estimates is statistically
significant.

When we tried to improve the regional variation with
different combinations of north and south trends, no model
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TABLE 5
Correlation Coefficients Between TWR and Regressors for the Norwegian Data

Correlation matrix TWR L M LL MM LM

TWR 1.00000 0.00264 -0.09512 -0.12832 -0.39806 -0.32385
L 0.00264 1.00000 0.80700 0.80700 0.62600 0.71500
M -0.09512 0.80700 1.00000 0.87900 0.83200 0.89600
LL -0.12832 0.80700 0.87900 1.00000 0.77100 0.90200
MM -0.39806 0.62600 0.83200 0.77100 1.00000 0.96800
LM -0.32385 0.71500 0.89600 0.90200 0.96800 1.00000

Note: A strong multicollinearity can be identified among the regressors.

TABLE 6
Multicollinearity Measures m3, m4 and m8 for Our Norwegian Data

Norway Norway optimal Sweden Sweden, optimal
M, M2, L, L2, LM M, M2 M, M2, L, L2, LM M, M2, L, L2

m3 0.0000566 0.307801 0.015 0.159
m4 590.4 6.50 25.336 8.904
m8 327166.0 29.2 288.347 19.600

Note: One can observe that the multicollinearity for the optimal model is markedly re-
duced and can be ignored. As a comparison, we include Swedish data presented
in Fellman and Eriksson (2009). The Norwegian data show markedly stronger mul-
ticollinearity.

gave a good fit, but all abridged models reduced the mul-
ticollinearity. The best model obtained was a linear and
a quadratic west-east model that contains the regressors
Mand M2. The estimated model is:

TWR = 15.12362 + 0.15482 M − 0.01461 M2. (5)

The M2 parameter is significant and the M parame-
ter is almost significant. The standard errors are SEα̂ =
0.280353, SEβ̂M

= 0.076354, and SEβ̂M2
= 0.005334. The

adjusted coefficient of determination is R̄2 = 0.251 and the
test statistics F = 3.855. Hence, the model is markedly bet-
ter than Equation (4), but the goodness of fit for Equa-
tion (5) is only slight. However, this model having a west-
east trend has to be accepted as the optimal model. This
model indicates the tendency of a central maximum for
M = 5.298, and the value decreases in both western and
eastern directions (cf. Figure 3). In fact, attempts to improve
the model by including M-terms of higher degree were quite
fruitless.

We have explained the TWR with the geographical co-
ordinates, and consequently, the pattern of the level curves
is simple. If we assume that model (5) holds, we can then
obtain parabolic level curves for the TWR. Let TWR0 = R
be a constant value, then the equation of the correspond-
ing level curve is βMM + βM2 M2 + α − R = 0, indicating a
parabola with a vertical axis and the opening to the south.
Furthermore, the axis obtained for the longitude is inde-
pendent of the chosen TWR level. According to the pa-
rameter estimates, the axis corresponds to the longitude =
16.45◦ E. Summing up, we consider Equation (5) as the best
model, and the TWR estimates obtained are included in
Table 2 and presented in Figure 4. For R = 0 the level curve
generates model (5).

 

11

12

13

14

15

16

17

18

0 5 10 15 20 25 30 35
Eastern longitude in degrees

Observed regional TWRs and op�mal model
Op�mal model
Regional TWRs

FIGURE 3
Associations between regional TWRs (1916–1926) and the opti-
mal model. Note: A slight east-western effect of second degree
can be found. This model indicates the tendency of a central max-
imum and decreases in both western and eastern directions. The
TWRs for the central counties show values divergent from the
model. This finding explains the slight goodness of fit. Attempts
to improve the model by including M-terms of higher degree were
quite fruitless. Two level curves are included in the figure.

Discussion
The analyses of the spatial models for Norway indi-
cate that horizontal trends have to be considered. Coun-
ties with low TWR values can be found in the west-
ern counties of Hordaland and Rogaland and in the
north-eastern county of Troms. The central counties
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FIGURE 4
Observed and estimated regional TWRs. Note: The counties are ordered according to increasing observed TWRs. The estimated TWRs
are based on model (5). The low goodness of fit discussed in the text can be observed in this figure.

show higher TWR levels, but also strong discrepan-
cies from the model (cf. Figure 3). Therefore, our find-
ings corroborate the weak results observed in the spatial
modeling.

The low regional variation of the TWRs for 1960–
1988 supports the finding that the regional TWRs for
Sweden converged during the period from 1750 to
1960 towards a common low level (Fellman & Eriksson,
2005b).

Comparisons of the multicollinearity in this Norwegian
study and in the study of Sweden presented in Fellman and
Eriksson (2009) show that the multicollinearity is markedly
stronger in Norway than in Sweden. This is obviously a re-
sult of the fact that the two countries are almost of the same
length, but Norway is much slimmer than Sweden. Further-
more, the spatial study of the TWR in Sweden yielded more
successful spatial models than this study of the regional
TWRs in Norway.

James (1985) observed a positive correlation coefficient
(Spearman’s) between the age-standardized TWR and lati-
tude. He wondered whether this association of photoperi-
odicity with latitude is relevant. As alternative factors, he
suggested diet (milk consumption) and birth weight. Bul-
mer (1970) has speculated that geographical variation in
dizygotic TWRs in Europe may have some genetic basis.
However, James (1985) stated that there is no reason to sup-
pose that genetic clines in the Old World have been dupli-
cated in the New World and the fact that the latitudinal vari-
ation in DZ twinning and birth weight are similar in Europe
and the United States suggests an environmental rather than
a genetic cause.
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