REMARKS ON INVARIANT SUBSPACE LATTICES
Peter Rosenthal1

(received January 14, 1969)

If A is a bounded linear operator on an infinite-dimensional
complex Hilbert space H, 1let 1lat A denote the collection of all sub-
spaces of H that are invariant under A; i.e., all closed linear sub-
spaces M such that x e M implies (Ax) e M. There is very little
known about the question: which families F of subspaces are invariant
subspace lattices in the sense that they satisfy F = lat A for some A?
(See [5] for a summary of most of what is known in answer to this question.)
Clearly, if F is an invariant subspace lattice, then {0} ¢ F, H ¢ F
and F 1is closed under arbitrary intersections and spans. Thus, every
invariant subspace lattice is a complete lattice.

Suppose that F = lat A and that N and M are in F with N
contained in M. Suppose also that the dimension of M 0 N is finite.
Then the quotient transformation induced by A on M o0 N 1is an operator
on a finite-dimensional space. Therefore {L ¢ F:N c L ¢ M} must have
at least [1 + dim(M © N)] elements. Also the sublattice {L ¢ F:
NclLcM} of F must be self-dual, since the lattice of invariant sub-

spaces of an operator on a finite-dimensional space is self-dual [2].

1 I am very grateful to Professor Israel Halperin for several helpful
suggestions. In particular the very easy proof of Theorem 2 given
here, which replaces the much more involved proof that I originally
had, was suggested by Professor Halperin.
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These restrictions are the only general restrictions on invariant sub-
space lattices that we know. The well-known invariant subspace problem
is the question: is {{0},H} an invariant subspace lattice?

In this note we make several remarks that add a little more in-
formation related to the general question mentioned above. An atom in
a lattice with 0 1is an element a of the lattice such that the only
member of the lattice strictly less than a is 0. An operator A is

polynomially compact if there exists a non-zero polynomial p such that

p(A) = 0.

THEOREM 1. If A is a polynomially compact operator such that

lat A has a spanning set of atoms, then the dual of 1lat A has at least

one atom.

Proof. The invariant subspace theorem for polynomially compact
operators [1] implies that all the atoms in lat A are one-dimensional
as subspaces of H, for if M has dimension greater than 1 then A|M
must have a non-trivial invariant subspace. Thus the eigenvectors of
A span H.

Let p be a non-zero polynomial such that p(A) is compact. Since
every eigenvector of A is an eigenvector of p(A), the eigenvectors
of p(A) span H. We shall show that A* has an eigenvalue.

Let K denote the nullspace of p(A). If K=H then A is
algebraic. This implies that A* is algebraic too, and thus that A*
has an eigenvalue. If K # H then p(A) has a non-zero eigenvalue X.

*
Since p(A) 1is compact X is an eigenvalue of [p(A)] . The spectral
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mapping theorem implies that A* has an eigenvalue.
Thus A* has an eigenvector, and hence 1lat A* has an atom.

i
But lat A* is the dual of 1lat A, since lat A* = {M:M ¢ lat A} .

COROLLARY 1. If A is polynomially compact, and if the dual of

lat A has a spanning set of atoms, then A has an eigenvector.

Proof. Corollary 1 follows immediately from Theorem 1 by inter-
changing A and A¥*; (the adjoint of a polynomially compact operator is
obviously polynomially compact).

We recall that the unilateral shift is the operator U defined,

on a Hilbert space with o.n. basis {en}oo , by Uen = The in-
n=0

variant subspace lattice of U has been intensively studied [4].

e .
n+l

COROLLARY 2. There is no polynomially compact operator A such

that lat A 1is order-isomorphic to lat U.

Proof. It is easily seen that 1lat U has no atoms and that
lat U* (i.e., the dual of 1lat U) has a spanning set of atoms. Thus
Corollary 1 applies.

Theorem 1 considers lattice-theoretic properties of lat A and
thus is a partial answer to the question: which abstract lattices are
order-isomorphic to an invariant subspace lattice of a polynomially com-
pact operator? In the following we do not consider properties of abstract
lattices, but merely consider a class of subspace lattices i.e., lattices

given as collections of subspaces of H.

THEOREM 2. Let M be a proper subspace of H of dimension at
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least 2, and let F = {N:NcM or No>M}. If Fc lat A then

lat A contains a two-dimensional subspace K such that K ¢ F.

Proof. Choose any x ¢ M. If N is the smallest subspace of H
which contains x and M, then N is in F and hence also in lat A.
Therefore there is a complex number o such that Ax = ax +y for some
y € M. Since y € M, y 1is an eigenvector of A, and thus the two-
dimensional subspace spanned by {x,y} 1is a suitable K.

Thus the F's that are considered in Theorem 2 are not invariant
subspace lattices. This is true for dimM = 1 too. If M 1is any proper
subspace of H other then {0} and if F = {N:Nc Mor N > M} then
F is not an invariant subspace lattice. One way of showing this is by
using the observations made preceeding Theorem 1. If M1 c M and
dim(M o Ml) =1, and if M2 > M and dim(M2 €] Ml) is finite, then
N e F:M1 cNc Mz} is not self-dual.

An interesting example of a subspace lattice that satisfies all
the general restrictions mentioned above Theorem 1 but nonetheless is not

an invariant subspace lattice has been found by J. E. McLaughlin [3].
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