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If A is a bounded linear operator on an infinite-dimensional 

complex Hilbert space tf, let lat A denote the collection of all sub-

spaces of H that are invariant under A; i.e., all closed linear sub-

spaces M such that x e M implies (Ax) E M. There is very little 

known about the question: which families F of subspaces are invariant 

subspace lattices in the sense that they satisfy F = lat A for some A? 

(See [5] for a summary of most of what is known in answer to this question.) 

Clearly, if F is an invariant subspace lattice, then {0} e F, H e F 

and F is closed under arbitrary intersections and spans. Thus, every 

invariant subspace lattice is a complete lattice. 

Suppose that F = lat A and that hi and M are in F with hi 

contained in M. Suppose also that the dimension of M 0 hi is finite. 

Then the quotient transformation induced by A on M 0 hi is an operator 

on a finite-dimensional space. Therefore {L e F:W c L c M} must have 

at least [1 + dim(M 9 W)] elements. Also the sublattice {L e F: 

hi c L c M} of F must be self-dual, since the lattice of invariant sub-

spaces of an operator on a finite-dimensional space is self-dual [2]. 

I am very grateful to Professor Israel Halperin for several helpful 
suggestions. In particular the very easy proof of Theorem 2 given 
here, which replaces the much more involved proof that I originally 
had, was suggested by Professor Halperin. 
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These restrictions are the only general restrictions on invariant sub-

space lattices that we know. The well-known invariant subspace problem 

is the question: is I {0},H an invariant subspace lattice? 

In this note we make several remarks that add a little more in­

formation related to the general question mentioned above. An atom in 

a lattice with 0 is an element a of the lattice such that the only 

member of the lattice strictly less than a is 0. An operator A is 

polynomially compact if there exists a non-zero polynomial p such that 

P(A) = 0. 

THEOREM 1. J/f A is a polynomially compact operator such that 

lat A has a spanning set of atoms, then the dual of lat A has at least 

one atom. 

Proof. The invariant subspace theorem for polynomially compact 

operators [1] implies that all the atoms in lat A are one-dimensional 

as subspaces of H, for if M has dimension greater than 1 then A|M 

must have a non-trivial invariant subspace. Thus the eigenvectors of 

A span H. 

Let p be a non-zero polynomial such that p(A) is compact. Since 

every eigenvector of A is an eigenvector of p(A), the eigenvectors 

of p(A) span H. We shall show that A* has an eigenvalue. 

Let K denote the nullspace of p(A). If K - H then A is 

algebraic. This implies that A* is algebraic too, and thus that A* 

has an eigenvalue. If K ï H then p(A) has a non-zero eigenvalue A. 

Since p(A) is compact X is an eigenvalue of [p(A)1 . The spectral 
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mapping theorem implies that A* has an eigenvalue. 

Thus A* has an eigenvector, and hence lat A* has an atom. 

i. 
But lat A* is the dual of lat A, since lat A* = {M:M e lat A} . 

COROLLARY 1. JJ_ A is polynomially compact, and if the dual of 

lat A has a spanning set of atoms, then A has an eigenvector. 

Proof. Corollary 1 follows immediately from Theorem 1 by inter­

changing A and A*; (the adjoint of a polynomially compact operator is 

obviously polynomially compact). 

We recall that the unilateral shift is the operator U defined, 

on a Hilbert space with o.n. basis {e } , by Ue = e ... The in-F n ' J n n+1 
n=0 

variant subspace lattice of U has been intensively studied [4]. 

COROLLARY 2. There is no polynomially compact operator A such 

that lat A is order-isomorphic to lat U. 

Proof. It is easily seen that lat U has no atoms and that 

lat U* (i.e., the dual of lat U) has a spanning set of atoms. Thus 

Corollary 1 applies. 

Theorem 1 considers lattice-theoretic properties of lat A and 

thus is a partial answer to the question: which abstract lattices are 

order-isomorphic to an invariant subspace lattice of a polynomially com­

pact operator? In the following we do not consider properties of abstract 

lattices, but merely consider a class of subspace lattices i.e., lattices 

given as collections of subspaces of H. 

THEOREM 2. Let M be a proper subspace of H of dimension at 

641 

https://doi.org/10.4153/CMB-1969-082-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1969-082-1


least 2, and let F = {W:W c M or_ M D M}. I£ F c lat A then 

lat A contains a two-dimensional subspace K such that K f F. 

Proof. Choose any x £ M. If M is the smallest subspace of H 

which contains x and M, then W is in F and hence also in lat A. 

Therefore there is a complex number a such that Ax = ax + y for some 

y £ M. Since y f M, y is an eigenvector of A, and thus the two-

dimensional subspace spanned by {x,y} is a suitable K. 

Thus the F^s that are considered in Theorem 2 are not invariant 

subspace lattices. This is true for dimM = 1 too. If M is any proper 

subspace of H other then {0} and if F = {W:W c M or W D M} then 

F is not an invariant subspace lattice. One way of showing this is by 

using the observations made preceeding Theorem 1. If II c M and 

dim(M 0 M J = 1, and if M 3 M and dim(M? 0 M J is finite, then 

{W £ F:M c M c M?} is not self-dual. 

An interesting example of a subspace lattice that satisfies all 

the general restrictions mentioned above Theorem 1 but nonetheless is not 

an invariant subspace lattice has been found by J. E. McLaughlin [3]. 
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