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A GENERALIZATION OF THE BERNSTEIN POLYNOMIALS
BASED ON THE ^-INTEGERS

GEORGE M. PHILLIPS1

(Received 16 March 1998)

Abstract

This paper is concerned with a generalization of the Bernstein polynomials in which the
approximated function is evaluated at points spaced in geometric progression instead of the
equal spacing of the original polynomials.

1. Introduction

We begin by recalling that, for any / € C[0,1], the Bernstein polynomial of order n
is defined by

Bn(f;x) =

These are the polynomials which were introduced (see [2]) by S. N. Bernstein (1880-
1968) to give his celebrated constructive proof of the Weierstrass theorem. See
also Cheney [3], Davis [4] and Rivlin [15]. In (1) the approximated function / is
evaluated at equally spaced intervals. Here we discuss a generalization of the Bernstein
polynomials where the approximated function is evaluated at intervals which are in
geometric progression. This generalization was proposed in Phillips [12] and further
properties of these generalized Bernstein polynomials are discussed in Phillips [11]
and [13], Oruc and Phillips [10] and Goodman et al. [5]. First we require some
preliminary results concerning ^-integers. For any fixed real number q > 0, we
define

».
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for all non-negative integers i. We refer to [i] as a ^-integer and note that [i] is a
continuous function of q. In an obvious way we also define a ^-factorial,

|M-B-i]-ll]. . = 1.2

1 0

and a ̂ -binomial coefficient

Ikra- (4)
J\ [rV.[k-r]\

for integers k > r > 0. These ^-binomial coefficients satisfy the recurrence relations

which both reduce to the Pascal identity for ordinary binomial coefficients when
q = 1. It follows from the above Pascal identities that the ^-binomial coefficient in
(4) is a polynomial in q of degree r(k — r). Since they are associated with Gauss, the
^-binomial coefficients are also known as Gaussian polynomials (see Andrews [1]).
It is easily verified by induction, using either (5) or (6), that

\] (7)
r=O LrJ

which generalizes the binomial expansion, and its inverse

- 1 .

qx)~l (!+ qk-lxTl Y\
r=0

We also need a generalization of the forward difference operator A. Let n be a fixed
positive integer. For any real function / we define ^-differences recursively from

A0/, = / , for i = 0,1 n and (9)

A i + I / , = A % , - q
kAkf, (10)

for k = 0 , 1 , . . . . n — i — 1, where / , denotes /([/]/[«]). If one constructs the
Newton divided difference of a function evaluated at points x, = [i]/[n], one naturally
re-discovers these ^-differences (see Schoenberg [16] and Lee and Phillips [8]). The
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^-differences reduce to ordinary forward differences when q = 1 and it is easily
verified by induction that

(ID
r=0 L'J

Kocak and Phillips [7] showed that the kth q -difference of a product can be written in
the form

A* (figi) = J^ PI Ak'rfi+rA
r
gi. (12)

This generalizes the well-known Leibniz rule for the itth ordinary difference of a
product.

2. Bernstein polynomials

For each positive integer n, we define

Bn(f;x) = £ KL^
r=0

where an empty product denotes 1 and, as above, fr=f (!/]/[«]). When q = 1, we
obtain the classical Bernstein polynomial. We observe immediately from (13) that,
independently of q,

B-(/" ;0)=/(0) , B n ( / ; 1 ) = / ( 1 ) , (14)

for all functions / and thus Bn(f;x) = f (x) for all linear functions / . We now
state a generalization of the well-known forward-difference form (see, for example,
Davis [4]) of the classical Bernstein polynomial.

THEOREM 1. The generalized Bernstein polynomial, defined by (13), may be ex-
pressed in the q-difference form

J2\n]rfoxr. (15)
r=0

This is proved in Phillips [12], where it is also shown that, for n > 0, 1 and 2
respectively,

x(l — x)
l;x) = l, Bn(x;x)=x and Bn(x

2;x) = x2 + \ '. (16)
[n]
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For the classical Bernstein operator, the uniform convergence of the sequence of
polynomials Bn(f;x) to / e C[0, 1] follows as a special case of the Bohman-
Korovkin theorem (see Cheney [3] and Lorentz [9]). Convergence is assured by the
following two properties:

1. Bn is a monotone operator; and
2. Bn(f;x) converges uniformly to / € C[0,1] for / (x) = 1, x and x2.

Recall that if a linear operator L maps an element/ e C[0, 1] to Lf e C[0,1], then
L is said to be monotone iff (x) > 0 on [0, 1] implies that Lf (x) > 0 on [0, 1]. The
generalized Bernstein operator denned by (13) is monotone for 0 < q < 1. Yet if
0 < q < 1 it is clear from (16) and (2) that Bn(x

2;x) does not converge to x2. In
order to obtain convergence for the generalized Bernstein polynomials, it is therefore
necessary to let q = qn in (13), so that q depends on n, and let qn -»• 1 from below as
n —• oo. The following theorem, which is concerned with convergent sequences of
Bernstein polynomials other than the classical case with q = 1, is also a special case
of the Bohman-Korovkin theorem.

THEOREM 2. Let q = qn satisfy 0 < qn < 1 and let qn —> I from below as n —> oo.
Then, for any f € C[0, I], the sequence of generalized Bernstein polynomials defined
by

Bn(f;x) = Yifr\
n]xr ffd-^je), (17)

where fr = f ([/•]/[«]), converges uniformly to f (x) on [0, 1].

The above result is discussed in Phillips [12], where there is also a proof of the
following generalization of Voronovskaya's theorem. (The latter proof in Phillips [ 12]
closely follows that presented in Davis [4] for the classical Bernstein polynomials.)

THEOREM 3. Let f be bounded on [0, 1] and let x0 be a point of [0, 1] at which
f"(x0) exists. Further, let q = qn satisfy 0 < qn < 1 and let qn —• 1 from below
as n —• oo. Then the rate of convergence of the sequence of generalized Bernstein
polynomials is governed by

Um[nKBn(f;x0) - /(*„)) = (l/2)xod -*o)/"(*o). (18)
n—»oo

The Voronovskaya theorem provides an asymptotic estimate of how close Bnf is
to / . We now consider an alternative measure of how well Bnf approximates / .
Given a function/ defined on [0, 1], let

(o(S)= sup | / ( * , ) - / ( * 2 ) | t (19)
\x,-x2\<S
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the usual modulus of continuity, where the supremum is taken over all JCI , JC2 e [0,1]
such that |jti — x2\ < 8. The following result is presented in Phillips [12].

THEOREM 4. Iff is bounded on [0, 1] and Bn denotes the generalized Bernstein
operator defined by (13), then

|| / - BJ ||«, < (3/2)co(l/[n]1/2). (20)

Rivlin [15] states this theorem for the case where q = 1, and his proof is easily
extended to the generalized Bernstein operator.

3. Further properties

Algorithm: for r = 0 to n
f!01:=f([r]/[n])
next r
for m = 1 to n

for r = 0 to n — m

next r
next m

For q = I, this is the de Casteljau algorithm for evaluating the classical Bernstein
polynomial. See Hoschek and Lasser [6] and Phillips and Taylor [14]. The above
algorithm was proposed in Phillips [13], where it is shown that, for 0 < m < n and
0 < r < n — m, each of the quantities//"11 satisfies both

(qr - qsx) (21)
,=0 L * J s=0

and the ^-difference form

(22)

With r = 0 and m = n in (21) or (22), we have/0
[nl = Bn(f;x), which justifies the

validity of the above algorithm.
From (5) or (6) it follows by induction, as we remarked above, that the #-binomial

coefficient defined by (4) is a polynomial in q of degree r(k — r). We now further
observe that this polynomial has non-negative integral coefficients. Thus the q-
binomial coefficients are monotonic increasing functions of q and in particular, for
k > r > 0,

CR) (23)
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for 0 < q < 1. This property of the g-binomial coefficients is used in Phillips [11],
where the following result is proved concerning convergence of the derivatives of the
generalized polynomials Bn(f;x) uniformly to / ' ( * ) on [0, 1].

THEOREM 5. Let f e C"[0, 1] and let the sequence (qn) be chosen so that the
sequence (en) converges to zero from above faster than (1/3"), where

Then the sequence of derivatives of the generalized Bernstein polynomials Bn(f;x)
converges uniformly on [0, 1] to f'{x).

The convergence of the &th derivative of the generalized Bernstein polynomial
Bn(f ;x) to the fcth derivative of / (x), for k > 1, can be explored in a similar way.

4. Convexity

We now recall that if a function / is convex on [0, 1] then, for any t0, tx such that
0 < to < h < 1 and any A., 0 < A. < 1,

/ (kto + (1 - X)tx) < A/ (to) + (1 - X)f(tt). (25)

This is equivalent to saying that no chord of / lies below the graph of / . With
A. = q/(l + q), to = [m]/[n] and 1x = [m + 2]/[n] in (25), where 0 < q < 1, we see
that, if/ is convex,

from which we deduce that

fm+2 - (1 + q)fm+l +qfm = A2/m > 0. (27)

Thus the second ^-differences of a convex function are non-negative. (This could
also be verified by expressing the second ^-difference as a multiple of a second-order
divided difference.) It is easily deduced from (25) that, if A.o, A.[ A,n are positive
real numbers such that A.o 4- A.! H \-Xn = I and 0 < t0 < tx < • • • < tn < 1, then,
if/ is convex on [0, 1],

/ n \ n

~ (28)

The following nice relation between a convex function and its Bernstein polynomials
follows readily from (28).
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THEOREM 6. Iff is convex on [0, 1] and 0 < q < 1 then, for any n > 1,

Bn(f;x)>f(x), 0 < * < l . (29)

PROOF. In view of the interpolatory property (14) we need concern ourselves only
with 0 < x < 1. Let us substitute

r -] n-j-\

kj = kjOc) =\.\xJ n ( 1 - ^ * ) > 0 < x < 1, (30)

and tj = [/]/[«] in (28). For 0 < q < 1 it is clear that the tj satisfy 0 = to < t\ <
• • • < tn = 1 and that the A, given by (30) are positive. Next we observe that the
condition ko-\ 1- Xn = 1 is equivalent to the statement (see (16)) that Bn (1; x) = 1.
The proof is completed by noting that

^j(x)tj=x, (31)
;=o

which follows (see (16)) from the identity Bn(x;x) = x.

It is well known (see Davis [4]) that the classical Bernstein polynomials converge
monotonically if the function is convex. The following result of Oruc. and Phillips [10]
shows that this beautiful monotonicity property extends to the generalized Bernstein
polynomials.

THEOREM 7. Let f be convex on [0, 1]. Then for any q, 0 < q < 1,

Bn.i(f;x)>Bn(f;x) (32)

for 0 < x < 1 and all n>2. Iff e C[0, 1] the inequality holds strictly for 0 < x < 1
unless f is linear in each of the intervals between consecutive knots [r]/[n — 1],
0 < r < n — I, in which case we have the equality Bn-\(J ;x) = Bn(f;x).

To emphasize its dependence on the parameter q, and to allow us to distinguish
generalized Bernstein polynomials with different values of this parameter, let us
write the generalized Bernstein polynomial as B%(f;x). Using the concept of total
positivity, Goodman, Oru? and Phillips [5] have shown for all n > 1 and 0 < q < 1
that if / is increasing then Bq

nf is increasing, and that if / is convex then BqJ is
convex. They have also proved the following theorem concerning how the generalized
Bernstein polynomials for a convex function vary with the parameter q.

THEOREM 8. / / / is convex on [0, 1] then, for 0 < q < r < 1,

Br
n(f;x)<Bq(f;x), 0 < * < l . (33)

Thus the generalized Bernstein polynomials for a convex function are not only
monotonic in n, the degree, but are also monotonic in the parameter q, for 0 < q < 1.
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