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Abstract

The advent of new technologies, particularly artificial intelligence (AI), has expanded the array of
options and enhanced performance in addressing biothreats. This article provides a compre-
hensive overview of the specific applications of AI in addressing biothreats, aiming to inform and
enhance future practices. Research indicates that AI has significantly contributed to infectious
disease surveillance and emergency responses, as well as bioterrorism mitigation; despite its
limitations, it merits ongoing attention for further study and exploration. The effective deploy-
ment of next-generation AI in mitigating biothreats will largely hinge on our ability to engage in
continuous experiential learning, acquire high-quality data, refine algorithms, and iteratively
update practices. Meanwhile, it is essential to assess the operational risks associated with AI in
the context of biothreats and develop robust solutions to mitigate potential risks.

Biological threats have become global, complex, and diversified. The concept of biothreat has
continued to evolve to include natural, accidental, and intentional threats and their social,
economic, political, and security consequences; exploitation of biotechnologies for malicious
and/or military use; and unauthorized access to biological data.1 The acceleration of global
integration has greatly increased the speed and scope of epidemic, and the rapid development of
biotechnology also provides more possibilities for the research and development of biological
weapons. Therefore, preventing and responding to biothreats has become an important task for
governments and the international community. New technologies and breakthroughs repre-
sented by artificial intelligence (AI) have provided more options and played a better role in
addressing the threats.2–4

The field of AI was launched in 1956 by a group of computer scientists at a symposium at
Dartmouth College. Experts will try to figure out how to get machines to use language, form
abstractions and concepts, solve various problems that currently only humans can solve, and
improve themselves. The research assumes that every aspect of learning or any other feature of
intelligence can in principle be described so precisely that amachine can simulate it.5 AI, machine
learning (ML), and deep learning (DL) are interrelated yet distinct domains. AI encompasses a
broad spectrum of technologies aimed at developing intelligent systems capable of executing
tasks that typically necessitate human cognitive abilities, such as learning, problem-solving, and
decision-making. ML represents a specialized area within AI focused on training computational
models to perform tasks autonomously by leveraging patterns and insights derived from data. DL
constitutes a further subset of machine learning that employs multi-layered artificial neural
networks for advanced learning and decision-making processes.3 The significance of AI tech-
nologies is increasingly acknowledged as pivotal in transforming human society; these tools can
now discern complex and previously obscured data structures while offering innovative solutions
to longstanding challenges. Collectively, these advancements hold the potential to significantly
enhance biosecurity initiatives.

How AI can be applied to biothreat response requires a systematic review of experiences to
guide subsequent practices. Previous studies have largely concentrated on exploring how AI can
potentially amplify biothreats,6,7 while relatively limited effort has been devoted to comprehen-
sively synthesizing the positive contributions of AI in addressing such threats. In this review, we
summarize the role of AI in the monitoring of emerging infectious diseases and the response to
emerging infectious diseases and bioterrorism, and, finally, we discuss the key limitations of AI in
biothreat, addressing applications and important considerations for future improvements.

Surveillance

The utilization of AI in the surveillance and early warning of emerging infectious diseases has
demonstrated significant efficacy.8–12 During the Covid-19 pandemic, we observed the deploy-
ment of numerous AI solutions aimed at addressing the crisis, which demonstrated remarkable
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efficacy. AI-driven algorithms possess the capability to analyze,
filter, classify, and aggregate signals related to infectious disease
events from textual data with unprecedented speed and accuracy.
HealthMap serves as a notable example of this success;13-16 Health-
Map employs natural language processing technology to identify
signals of infectious disease outbreaks in real-time by analyzing
online text against established pathogens and geographic regions. It
utilizes a Bayesian machine learning classification framework to
distinguish outbreak-related information from other health
reports, such as scientific publications and vaccination initiatives.
Additionally, HealthMap automatically extracts geographic data to
connect multiple reports, thereby preventing the oversight of dis-
ease clusters across different jurisdictions. Researchers have lever-
aged official health reports, internet search trends related to
COVID-19, news media coverage, and various datasets to generate
daily forecasts of COVID-19 activity through a meta-population
model that incorporates ML techniques like clustering and data
augmentation. This approach has achieved predictions with a 2-day
lead time for COVID-19 cases while demonstrating superior per-
formance compared to baseline models, thus significantly aiding
decision-makers in implementing effective infectious disease sur-
veillance and prevention strategies.10 AI has demonstrated signifi-
cant efficacy in monitoring epidemics within hospital settings.
Sundermann and colleagues reported the development and imple-
mentation of a health care-associated transmission enhancement
detection system (EDS-HAT). This system integrates ML with
whole-genome sequencing (WGS) to monitor infections, thereby
identifying potential outbreaks and transmission pathways that
might otherwise go undetected. The findings indicate that real-
timeML, leveraging electronicmedical records alongsideWGS, has
successfully mitigated up to 40% of hospital-acquired infections
across 9 hospitals affiliated with the University of Pittsburgh,
resulting in substantial cost savings for these institutions.17

Various pathogens can elicit comparable symptomatology,
exemplified by respiratory manifestations associated with rhino-
virus, adenovirus, and influenza virus. Dependence on simplistic
syndrome definitions may result in erroneous outbreak identifica-
tion, particularly when pathogens exhibit overlapping symptoms
and transmission pathways. It is imperative to accurately identify
the causative pathogen of an outbreak to enable public health
authorities to implement precise and effective interventions. Cur-
rently, AI offers a promising approach for distinguishing between
diverse pathogens or identifying concerning mutation characteris-
tics to enhance infectious disease surveillance.13,18 Convolutional
neural networks (CNNs) represent a sophisticated AI algorithm
characterized by a highly interconnected architecture inspired by
the human visual cortex, demonstrating exceptional proficiency in
image classification.19 During the supervised training phase of
CNNs diagnostic interpretation, an extensive dataset of human-
classified images is utilized as input. The algorithm systematically
classifies each image and evaluates its accuracy against human
classifications. Through iterative refinement, the CNNs adjusts its
neural network parameters thousands or even millions of times to
enhance its precision. Upon completion of training, the AI analyzes
smear samples and presents diagnostic images for technician
review while executing probabilistic differential staining diagnoses.
For instance, an analysis may yield a 90% probability that an image
depicts Gram-positive cocci and a 10% likelihood that it represents
Gram-positive streptococci. With further training, distinctions in
organism morphology can be elucidated; for example, identifying
Gram-positive diplococci may indicate pneumococcus infection,
whereas short Gram-positive filamentous bacteria could suggest

Listeria presence or microscopic Gram-negative cocci might imply
Brucella or Francisella infections.20

Pandemic Management

AI technologies can play a pivotal role in managing emerging
infectious diseases by facilitating the allocation of emergency
resources,21 mitigating cross-border infection risks,22 and enabling
comprehensive epidemic control strategies.23,24 Researchers
employ ML techniques to predict key populations at risk of infec-
tion by integrating geographic reference data with demographic
and occupational characteristics, self-reported symptoms, and
information regarding whether participants are health care profes-
sionals or have had contact with infected individuals, all gathered
through smartphone applications. By generating epidemic risk
maps for new infectious diseases based on predicted infection risks
among these key populations, policymakers can identify regions
with elevated probabilities of positive test results and formulate
more effective testing and disease control policies, thereby optimiz-
ing the allocation of emergency health resources.21

Eva exemplifies the application of AI reinforcement learning
and enhanced real-time data during the COVID-19 pandemic to
safeguard public health. This system aggregates cross-border travel
and demographic information from individuals, integrating prior
travelers’ test results to assess infection risk for incoming travelers,
thereby providing decision support for resource allocation in test-
ing and subsequent infection risk management. The number of
undetected infected individuals identified by Eva is 1.85 times
greater than that detected through random monitoring tests.22 In
China, particularly during the COVID-19 pandemic, AI and ML
technologies have been extensively employed for disease manage-
ment.23 The Internet of Things (IoT) facilitates communication
with personal smartphones through Bluetooth or Wi-Fi connect-
ivity. The associated database encompasses various types of infor-
mation, including household registration details, pharmaceutical
purchase records, medical histories, and travel itineraries. Passive
data collected from the smartphone is integrated with actively
reported information provided by users and subsequently displayed
in a dedicated application or transmitted to cloud storage.
Advanced AI algorithms and big data analytics are employed on
the cloud-based data to generate predictive models, visualizations,
or decision support tools. This processed output can then be relayed
back to users via mobile applications or websites accessible to them
while also being made available to authorized personnel as needed.
Internet hospitals offer consultation and medication delivery ser-
vices predicated on remote health care practices, with fees eligible
for reimbursement throughmedical insurance schemes. Collabora-
tive efforts between governments and health care institutions
alongside social media platforms aim to mitigate misinformation
while ensuring the dissemination of reliable health-related content.
By integrating self-reported health statuses with passive back-
ground data, an infection risk scoring system—a health QR code
—is established within widely utilized mobile applications such as
Alipay andWeChat. Citizens are required to present a “green” code
when accessing public facilities, workplaces, educational institu-
tions, or during travel.23

Chatbot Generative Pre-trained Transformer (ChatGPT) is an
important AI with the ability to simulate professional medical
literature.25 Prior research has demonstrated that ChatGPT pos-
sesses a robust comprehension of public health, infectious diseases,
the COVID-19 pandemic, and vaccines, thereby assisting medical
educators, scholars, and health care professionals in enhancing
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their understanding of related knowledge26. ChatGPT, functioning
as an AI language model, is capable of disseminating precise and
current information regarding infectious diseases to the public,
health care professionals, and policymakers. It can be trained to
monitor news outlets and social media platforms for early detection
of outbreaks or disease clusters, thereby alerting health authorities
to potential threats.27 While ChatGPT may not consistently align
with expert decisions in clinical case management, it demonstrates
strong performance in addressing theoretical inquiries and holds
promise as a valuable tool for infectious disease education and
preliminary analysis.28 Nevertheless, the precision of ChatGPT’s
responses in specific medical specialties remains suboptimal, and it
cannot fully supplant the expertise and professional acumen of
health care practitioners. Consequently, its application should be
approached with caution.29–31 Furthermore, its inherent lack of
human interaction implies that while it can deliver prompt answers
to inquiries, it fails to replicate the essential value of interpersonal
engagement in addressing infectious diseases.

Furthermore, AI has assumed a pivotal role in the management
of plant diseases. By integrating AI with real-time imaging from
drones, it can facilitate the precise and targeted application of
pesticides, thereby minimizing the risk of contamination to crops,
livestock, humans, and aquatic ecosystems. Advanced computer
vision and AI technologies can assess various attributes of plants—
including maturity, disease presence, defects, size, shape, and color
—thereby enabling efficient sorting and grading of agricultural
products while discarding those that do not meet established cri-
teria. This approach surpasses human observational precision.32,33

Addressing the Threats Posed by Bioterrorism

Biological warfare (BW) is defined as the intentional deployment of
biological agents—including bacteria, viruses, fungi, and toxins—
as weapons in military conflicts, while bioterrorism pertains to the
use of these agents against civilian populations.34 This form of
dissemination is motivated by ideological objectives—whether pol-
itical or religious—with the aim of inducing panic, causing mass
casualties, or inflicting economic damage. These biological agents
may occur naturally or be genetically engineered to enhance their
potential for widespread transmission.35 AI is increasingly recog-
nized as a valuable asset in the monitoring, management, and
response to biothreat events, demonstrating significant potential
for enhancing biothreat oversight.36 Techniques such as deep
learning analysis and natural language processing can produce both
extracted and abstracted summaries from documents containing
conflicting information. These analytical methods are capable of
autonomously accessing and organizing data, translating informa-
tion across various languages, and alleviating human cognitive load
while minimizing errors. Furthermore, AI algorithms can be
employed for biothreat risk assessment; these algorithms possess
the ability to learn, adapt, and evolve in response to emerging
threats, thereby facilitating near real-time policy evaluation and
adjustment.4,37

The future of biotechnology is significantly influenced by the
potential for both accidental and intentional misuse. A reliable
identification of the distinct characteristics associated with various
gene designers, referred to as “genetic engineering attribution,” can
serve as a safeguard against such abuses, with ML offering valuable
contributions in this domain.38,39 Researchers employed a biologic-
ally inspired methodology that integrates the learning of DNA
building blocks, basic phenotypic data, and recurrent neural

networks (RNNs), achieving over 70% accuracy in lab-of-origin
attribution within a model scenario utilizing data from Addgene,
the world’s largest plasmid repository. In this model context,
research laboratories deposit DNA sequences and associated
phenotypic metadata on Addgene to engineer organisms and dis-
seminate their genetic designs with the broader scientific commu-
nity. Conversely, in deployment scenarios, unidentified genetically
engineered organisms may be sourced from environmental sam-
ples, laboratory accidents, misuse incidents, or contentious author-
ship cases. By characterizing these samples through sequencing
and phenotypic experimentation in controlled environments,
researchers can ascertain both the engineered sequence and its
corresponding phenotypic attributes. Subsequently, this informa-
tion is fed into an attribution model designed to predict the likeli-
hood that an organism originated from a specific individual linked
to known laboratories, thereby, facilitating further conventional
investigations. The study illustrates that straightforward models
can effectively predict national-state affiliations as well as ancestral
lab origins, laying groundwork for an integrated attribution toolkit
aimed at fostering responsible innovation and enhancing inter-
national security. However, it emphasizes that while achieving
70% accuracy in lab-of-origin attribution is significant, actual
investigative outcomes will largely hinge on human expertise neces-
sitating multidisciplinary collaboration.39

The Biosecurity Artificial Intelligence Network (BAIN) is cap-
able of screening all commercial nucleic acid sequences, including
gene fragments and oligonucleotides, as well as peptide sequences,
utilizing genomics and proteomics data from databases encom-
passing known pathogens, toxic peptides, and proteins. BAIN will
leverage ML algorithms to incorporate computer bioactivity pre-
dictions into screening procedures. These predictions facilitate the
identification and annotation of potentially toxic or hazardous gene
products for further investigation. A key innovation introduced by
BAIN in the realm of biosecurity is its capacity to aggregate cus-
tomer profiles, orders, and screening outcomes while establishing a
user network that can utilize data and web scraping tools provided
by users to categorize each user’s research domain. Personal affili-
ations and research groups can be compiled to construct a map of
researcher networks, thereby assisting BAIN in identifying anom-
alous situations. Furthermore, BAIN will correlate primers along
with other nucleic acid and peptide synthesis requests from insti-
tutional or research network nodes to detect intentionally obfus-
cated potential malicious nucleic acid or peptide synthesis orders.
All risk signals identified by BAIN will undergo evaluation by
subject matter experts before being recommended for appropriate
subsequent actions. However, it is important to note that BAIN
cannot screen synthesis products generated independently without
commercial synthesis providers (such as portable synthesizers) or
through extraction and purification from natural or biotechno-
logical sources; nor can it identify sequences not submitted
within its supplier network. Nonetheless, BAIN offers a conceptual
framework aimed at enhancing biosecurity for commercial synthe-
sis providers and users alike, which may serve as an effective
deterrent.40

Limitations

The decision-making processes of AI systems primarily rely on
algorithms and data; however, if the data are incomplete or the
algorithm is inappropriate, this can result in biases and discrimin-
ation within the decision-making framework of AI systems,2
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potentially leading to false alarms or failures in identifying critical
epidemiological signals.41 AI models—especially in emergency
scenarios such as pandemics or bioterrorism—often operate with
sparse, noisy, unstandardized, or biased data. The lack of represen-
tative data, especially from marginalized populations, may com-
promise the accuracy and generalizability of these models. An
analysis of COVID-19 mortality data from the US revealed that
due to insufficiently coded racial information in the surveillance
database, there were discrepancies in mortality rates among Black
and Hispanic patients, resulting in an underreporting of mortality
rates by as much as 60%.42

Data privacy represents a critical concern that necessitates
careful consideration in the deployment of AI technologies. Tools
such as health QR codes, smartphone geolocation, and social media
monitoring, although useful for outbreak containment, raise con-
cerns about excessive data collection and the non-consensual use of
personal information, potentially violating privacy and informa-
tional self-determination principles. In the realm of infectious
disease monitoring, wearable health technologies, connected health
devices, and smartphones linked to open social media platforms
furnish AI companies with vast amounts of data.43 However, these
companies frequently exhibit a lack of transparency regarding their
data utilization practices and tend to excessively collect users’
private information, thereby heightening the risk of data breaches.
It is imperative for governments and regulatory bodies across
various nations to enhance the framework of laws and regulations
aimed at safeguarding data privacy by clearly delineating standards
for data collection, processing, and storage applicable to enter-
prises. Concurrently, AI firms should implement advanced encryp-
tion techniques, anonymization processes, and other technological
measures to ensure the protection of user data, privacy, and secur-
ity. Additionally, it is essential to bolster system security capabilities
to mitigate risks associated with hacking attempts and potential
data leaks.

The development of AI has reshaped the threat landscape of
biological hazards, presenting challenges. While AI has the poten-
tial to provide innovative solutions, concerns arise about its misuse
in the creation of biological weapons. The convergence of AI with
gene editing has sparked biosafety concerns, as it may expedite the
research and development of dangerous pathogens and amplify the
risks associated with their malicious manipulation. To address
these challenges, the advancement of biotechnology necessitates
preventive and regulatory measures. Expert recommendations
emphasize the need for solid regulations and responsibility of
creators, demanding a proactive, ethical approach and governance
to ensure global safety.6

AI cannot entirely supplant the expertise and multidimensional
collaboration inherent to professional personnel. For instance,
the accuracy of ChatGPT’s responses in health care remains
suboptimal, failing to fully substitute for the knowledge and spe-
cialized skills possessed by medical professionals. Effective cross-
jurisdictional and cross-functional coordination is essential for
harnessing collective wisdom in addressing new and emerging
diseases.13 The intersection between AI and biothreats delineates
a complex domain, demanding not only technological advance-
ment but also ethical deliberation and adaptive governance. Regu-
latory mechanisms must be dynamic and risk-based, with
multisectoral participation (scientists, governments, civil society)
and continuous assessment to proactively mitigate potential threats
amidst accelerating technological evolution. Biosecurity pertains to
the welfare of all humanity; thus, a concerted effort among nations
is imperative to establish international coalitions to develop, share,

and monitor AI technologies aimed at global health and biothreat
prevention. Future studies could focus on the creation of AI gov-
ernance models in public health emergencies, including criteria for
scientific validation, ethical use, and accountability protocols.
Research aimed at making AI models more transparent, auditable,
and understandable to non-technical professionals is critical for
large-scale adoption.

Conclusions

The future response to biothreats will be defined by the advent of
emerging technologies, such as AI, biotechnology, and quantum
computing, which will offer novel approaches for addressing these
challenges and enhancing operational efficiency. Research indicates
that AI has significantly contributed to infectious disease surveil-
lance and emergency response efforts, including those related to
bioterrorism; however, its efficacy is not without limitations and
necessitates ongoing scrutiny and further investigation. The suc-
cessful integration of next-generation AI in responding to bio-
threats will largely hinge on the ability of relevant personnel to
continuously learn from experience, acquire effective data sets,
optimize algorithms, and iteratively refine practices. Furthermore,
it is essential to identify operational risks associated with AI in the
context of biothreats. We must develop, share, and monitor AI
technologies aimed at global health and biothreat prevention,
guiding research toward the development of robust solutions that
protect global security against societally catastrophic risks.
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