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A large eddy simulation wall model is developed based on a formal interpretation of
quasi-equilibrium that governs the momentum balance integrated in the wall-normal
direction. The model substitutes the law-of-the-wall velocity profile for a smooth surface
into the wall-normal integrated momentum balance, leading to a Lagrangian relaxation
towards equilibrium (LaRTE) transport equation for the friction–velocity vector uτ (x, z, t).
This partial differential equation includes a relaxation time scale governing the rate at
which the wall stress can respond to imposed fluctuations due to the inertia of the
fluid layer from the wall to the wall-model height. A priori tests based on channel flow
direct numerical simulation (DNS) data show that the identified relaxation time scale
ensures self-consistency with assumed quasi-equilibrium conditions. The new approach
enables us to formally distinguish quasi-equilibrium from additional, non-equilibrium
contributions to the wall stress. A particular model for non-equilibrium contributions
is derived, motivated by laminar Stokes layer dynamics in the viscous sublayer when
applying fast-varying pressure gradients. The new wall modelling approach is first tested in
standard equilibrium channel flow in order to document various properties of the approach.
The model is then applied in large eddy simulation of channel flow with a suddenly
applied spanwise pressure gradient (SSPG). The resulting mean wall-stress evolution is
compared with DNS with good agreement. At the onset of the SSPG, the laminar Stokes
layer develops rapidly while the LaRTE portion of the stress has a delayed response due to
its inherent relaxation dynamics. Results also highlight open challenges such as modelling
the response of near-wall turbulence occurring above the viscous sublayer and at time
scales faster than quasi-equilibrium conditions.
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1. Introduction

Large eddy simulation (LES) has become a popular prediction tool for unsteady turbulent
flows due to its ability to resolve the less universal large-scale motions while modelling the
more universal small scales. However, near the wall, the momentum-carrying structures
scale with the viscous length. Thus, LES that resolve these structures near the wall
(wall-resolved LES) incur computational costs that are not significantly lower than those
of direct numerical simulation (DNS). For recent detailed analyses of computational costs
of DNS and wall-resolved LES, see Choi & Moin (2012) and Yang & Griffin (2021).
Wall-resolved LES becomes computationally intractable for high Reynolds number flows
relevant for many engineering and geophysical applications. Therefore, in order for LES
to be a practical flow prediction tool, the near-wall region must be modelled through wall
models.

Numerous wall models have been proposed over the years (see Piomelli & Balaras
(2002), Piomelli (2008), Larsson et al. (2016) and Bose & Park (2018), for reviews of LES
wall modelling). Larsson et al. (2016) broadly identify different classes for wall models
based on the coupling between the resolved and modelled regions. The wall models used
and discussed in the present work are considered to be ‘wall-stress models’ in which the
LES formally extends all the way to the wall and the wall stress is applied as a boundary
condition to the LES. The equilibrium wall model (EQWM) is the simplest and most
commonly used wall-stress model. The algebraic EQWM assumes that the velocity profile
follows some known functional form. Typically, one assumes the velocity satisfies the
‘law of the wall’ such that 〈u〉+ = f ( y+), where y is the wall-normal coordinate and
‘+’ indicates inner units non-dimensionalization with the friction velocity uτ and the
kinematic viscosity ν. If the wall-model height, ywm = Δ, lies within the log layer then
one assumes the log law. For rough walls, this is the approach most often followed in the
geophysical literature (Moeng 1984; Bou-Zeid, Meneveau & Parlange 2005). Inversion of
a composite profile including the viscous and buffer layers is more general for smooth
wall applications, see e.g. Luchini (2018), Gonzalez, Adler & Gaitonde (2018) and Adler
et al. (2020). Algebraic EQWMs usually assume the velocity profile to be valid locally
and instantaneously such that the LES velocity at the wall-model height may be used
to find the local friction velocity and thus the local wall stress. The log law for smooth
walls is a nonlinear equation for the friction velocity and thus must be solved numerically,
typically using iterations. As a more practical alternative, Meneveau (2020) developed
fitting functions that directly compute the friction velocity given the velocity at the
wall-model height, also including pressure gradient and roughness effects.

Differential forms of the EQWM are often also used through simplified forms of the thin
boundary-layer equations. Over the past decade, the name ‘equilibrium wall model’ often
refers to the numerical solution of the wall-normal diffusion equation ∂y[(ν + νT)∂y〈u〉] =
0, where the functional form for the eddy viscosity, νT , is assumed to be known, typically
a mixing length model. Algebraic EQWMs are explicit solutions or approximations to the
numerically solved differential EQWMs (Meneveau 2020).

Most wall models are based on the thin boundary-layer equations (TBLE) which may
be considered Reynolds-averaged Navier–Stokes (RANS)-like in nature since the local
momentum-carrying scales of motion are similar to or smaller than the computational LES
grid. So-called ‘zonal’ methods, a type of hybrid method discussed in Larsson et al. (2016),
solve these equations on a separate RANS mesh, refined in the wall-normal direction,
below a user-defined RANS/LES interface height. The advantage of zonal methods is
their ability to include all terms in the TBLE (such as unsteady, acceleration and pressure
gradient terms), thereby allowing for a greater range of applicability. However, zonal
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methods have increased cost due to the wall-normal grid refinement which ultimately can
lead to costs approaching wall-resolved LES. Therefore, there is continued interest towards
methods that do not require a separate RANS mesh. The dynamic slip wall model (Bose
& Moin 2014; Bae et al. 2019) is an alternative type of wall model that does not solve
RANS-like equations or make assumptions about the flow (e.g. the law of the wall). The
approach has the benefit of making connections to the dynamic model (Germano et al.
1991) using resolved flow information near the wall. However, at increasing Reynolds
numbers, it is unclear that such modelling can accurately capture subtle Reynolds number
dependencies of the predicted friction drag because information regarding the viscous
sublayer is unavailable in such approaches.

Chung & Pullin (2009) derived a wall model based on vertically integrating the unsteady
term in the TBLE. A ‘law-of-the-wall’ assumption for the velocity profile is invoked such
that 〈u〉 = uτ f ( y+) and thus, upon differentiation with time, the chain rule gives a ∂uτ /∂t
term leading to an ordinary differential equation (ODE) in time for the wall stress. This
allows us to obtain an evolution equation for the wall stress as a function of known LES
quantities at the model height, where advection terms in the TBLEs are approximated
by the resolved LES terms, i.e. assuming plug flow profile below the wall-model height.
Inspired by this work but allowing for deviations from plug flow, the integral wall model
(iWMLES) introduced by Yang et al. (2015) aims to achieve an algebraic closure based on
an approach similar to the von Kármán Pohlhausen method. The assumed velocity profile
is linear in the viscous sublayer up to the buffer layer and then switches to a log profile plus
a linear correction to represent possible pressure gradient effects. A series of coefficients
are determined using matching conditions consisting of the boundary conditions and
the full vertically integrated TBLEs. Since iWMLES is based on the full TBLEs it can
in principle capture deviations from full equilibrium conditions while still maintaining
affordability due to its algebraic nature. However, while simpler than solving additional
ODEs on finer meshes, the iWMLES approach still involves solving several coupled
nonlinear equations, requires specifying an empirically chosen time scale for exponential
time filtering of the velocity input at the wall-model height and involves a discontinuity in
the slope of the assumed velocity profile in the buffer region.

Additionally, in practice the so-called log-layer mismatch is a known problem in wall
modelling. Kawai & Larsson (2012) argue that the near-wall region of wall-modelled
LES (WMLES) is inherently under-resolved numerically, so the wall-model height should
ideally be chosen further away from the wall in order to reduce the log-layer mismatch.
Bou-Zeid et al. (2005) showed through the Schwartz inequality that a local law of the
wall formulation inherently over-predicts the wall stress due to LES velocity fluctuations.
They then proposed reducing this error by filtering the velocity using a 2Δ spatial filter.
Similarly, Yang, Park & Moin (2017) suggest local temporal filtering and/or wall-parallel
spatial filtering to reduce log-layer mismatch. Recently, Hosseinzade & Bergstrom (2021)
tested various exponential filtering time scales of the input velocity and pressure gradient
in the context of solving unsteady RANS equations with a finely resolved wall-normal grid.
Unsteady and horizontal advection terms were also included. Moreover, and consistent
with the recommendations by Kawai & Larsson (2012), Hosseinzade & Bergstrom (2021)
found that placing the wall-model grid point inside the LES region (they used the fifth LES
grid point) improved results. They also find that the use of time filtering is more important
when placing the wall-model height at the first grid point as opposed to inside the LES
region.

In the present work we aim to extend the iWMLES and Chung & Pullin (2009)
approaches to arrive at a unified formulation that is both based on formal derivations
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starting from the underlying governing equations and is robust for applications. It will
be shown that the model takes the form of a Lagrangian relaxation, hence it is termed
the Lagrangian relaxation towards equilibrium (LaRTE) model. As will be seen, a number
of arbitrary choices that had to be made in the context of iWMLES, such as specifying
an empirically chosen exponential filtering time scale (also needed in the approach by
Hosseinzade & Bergstrom 2021), will no longer be required. The derivation of the
LaRTE wall model is presented in § 2 and is based on a self-consistent interpretation of
‘quasi-equilibrium’ in the assumed velocity profile below the wall-model height. This new
interpretation then enables us to formally distinguish quasi-equilibrium from additional,
non-equilibrium contributions to the wall stress and the latter can then be modelled
separately.

A second part of this work then concerns a model for the non-equilibrium flow and
stress response in the viscous sublayer to temporally changing pressure gradients. For
applications involving time-varying applied pressure gradients, it is important to supply
the new quasi-equilibrium LaRTE model with additional components that reflect the
deviations from the assumed simple velocity profile in the near-wall region. Numerous
prior efforts have been made to understand unsteady effects on wall-bounded turbulent
flows (e.g. the works by Jung, Mangiavacchi & Akhavan (1992), Coleman, Kim & Le
(1996), Scotti & Piomelli (2001), He & Seddighi (2015), Weng, Boij & Hanifi (2016),
Jung & Kim (2017), Sundstrom & Cervantes (2018c) and Lozano-Durán et al. (2020) and
more detailed background is provided in § 3). These studies, in which a laminar Stokes
layer is observed near the wall, motivate the non-equilibrium model introduced in § 3.
These studies also discuss how turbulence structure itself is affected by the unsteadiness
above the viscous sublayer, however, we leave modelling of such effects for future work.

After introducing the two basic ingredients for the new wall model, in § 4 we address
practical implementation issues. Applications to equilibrium and non-equilibrium channel
flows are described in § 5. Various features of the model are presented via time series
at individual points as well as contour plots of modelled wall-stress components. The
tests in non-equilibrium flow are performed for channel flow upon which a very strong
sudden spanwise pressure gradient (SSPG) is applied. Comparisons with DNS results by
Lozano-Durán et al. (2020) are also included. Summary and conclusions are presented in
§ 6.

2. LaRTE wall model

Following the ideas underlying the iWMLES (Yang et al. 2015) we assume that between
the wall and the wall-model height an LES grid point at a distance Δ away from the
wall there exists a quasi-equilibrium mean velocity profile (see figure 1a). An overline
denotes the corresponding averaging operation, which may be interpreted as a horizontally
grid-filtered quantity at the LES scale in the wall-parallel plane, and additional (implicit)
temporal averaging whose properties will become apparent from the derivation itself. The
key assumption underlying the proposed wall model is that in the horizontal (wall parallel,
x–z) plane, the mean velocity ūs = ūı̂ + w̄k̂ (ı̂ and k̂ are the two unit vectors on the wall)
can be written according to

ūs(x, y, z, t) = uτ (x, z, t)f ( y+), (2.1)

where uτ (x, z, t) is the friction–velocity vector and is a slowly varying function of the
horizontal positions x, z and time t. The characteristic time scale characterizing what is
termed ‘slow’ evolution is not prescribed a priori but will be shown to arise directly from
the assumption of quasi-equilibrium. The inner similarity function f ( y+)with y+ = yuτ /ν
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(a) (b)y

y

s
x

z

ULES (y = Δ)

τ̄Δ(x, y = �, z, t)

τ̄w = uτuτ = uτ
2s

ūs(y+) = uτ f (y+)
Δ

Δ

τ̄w

τ̄Δ · s

Figure 1. (a) Sketch of assumed inner velocity profile (in blue) representing a quasi-equilibrium RANS
solution in the inner layer, responding to an outer ‘applied’ total shear stress τ̄Δ at the wall-model height
at y = Δ. (b) Sketch of stresses acting on the fluid layer between y = 0 and y = Δ, leading to inertia term with
response time scale Ts proportional to Δ.

is the assumed velocity profile in inner units, and uτ = |uτ |. Typically, f ( y+) includes a
linear region near the wall merging with a logarithmic portion above the buffer layer but
the precise shape of f ( y+) is not important at initial stages of development. We remark
that in the present work we deal exclusively with smooth planar walls.

The full quasi-steady velocity is then given by

ū = ūs + v̄ĵ , (2.2)

where v̄ is the wall-normal velocity and ĵ the unit vector in the y-direction. The
friction–velocity vector uτ = uτx ı̂ + uτ zk̂ is defined such that the (kinematic) wall stress
vector τ̄w (its two components in the wall plane) is given by

τ̄w = uτuτ , (2.3)

i.e. ūs and uτ are in the same direction as τ̄w. This direction will be represented by unit
vector s (that also can depend on x, z, t), i.e. uτ = uτ s and ūs = uτ f ( y+)s (figure 1a).

Next, we aim to derive an evolution equation for the friction velocity vector uτ (x, z, t)
that is consistent with the RANS evolution for ū

∂ū
∂t

+ ∇ · (ūū) = − 1
ρ

∇p̄ + ∇ ·
[
(ν + νT)(∇ū + ∇ū�)

]
, (2.4)

where νT(x, y, z, t) is the position-dependent eddy viscosity associated with the RANS
model being considered and p̄(x, z, t) is the quasi-equilibrium pressure with no
wall-normal dependence, consistent with boundary-layer approximations. The momentum
equation for the wall-parallel velocity ūs (2 components) reads

∂ūs

∂t
+ ∇h · (ūsūs)+ ∂y(v̄ūs) = − 1

ρ
∇hp̄ + ∂

∂y

[
(ν + νT)

∂ūs

∂y

]

+ ∇h ·
[
(ν + νT)

(
∇hūs + ∇hū�

s

)]
, (2.5)

where ∇h = ∂x ı̂ + ∂zk̂ represents the horizontal gradients on the x − z wall plane, and
diffusion cross-terms involving the (small) vertical velocity v̄ have been neglected. Into
this equation we replace the main ansatz (2.1). And, following the logic by Chung & Pullin
(2009) and the iWMLES by Yang et al. (2015), we integrate from y = 0 to the wall-model
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height at y = Δ. The procedure will be illustrated via the first term, the Eulerian time
derivative ∂tūs, but similar steps can be applied to the advective derivative terms also
invoking the continuity equation as shown in Appendix A. The key steps for the time
derivative read as follows:

∂

∂t

∫ Δ

0
ūs dy = ∂

∂t

[
s
∫ Δ

0
uτ f

(yuτ
ν

)
dy
]

= s
∫ Δ

0

∂uτ
∂t

(
f ( y+)+ uτ f ′( y+)

y
ν

)
dy + ∂s

∂t

∫ Δ

0
uτ f ( y+) dy. (2.6)

As recognized by Chung & Pullin (2009) in their derivation of an integral boundary-layer
equation-based wall model, the first integral on the right-hand side can be rewritten with
d/dy+[y+f ( y+)] as integrand, resulting in

∂

∂t

∫ Δ

0
ūs dy = s

∂uτ
∂t

∫ Δ+

0

d
dy+

[
y+f ( y+)

]
dy+ ν

uτ
+ uτ

∂s
∂t

∫ Δ

0
f ( y+) dy

= s
∂uτ
∂t

Δf (Δ+)+ uτ
∂s
∂t

∫ Δ

0
f ( y+) dy

= ∂(uτ s)
∂t

Δf (Δ+)+ uτ
∂s
∂t

(∫ Δ

0
[ f ( y+)− f (Δ+)] dy

)
. (2.7)

The last term motivates definition of a ‘cell displacement thickness’

δ∗Δ =
∫ Δ

0

(
1 − ūs( y)

ūs(Δ)

)
dy → δ∗Δ

Δ
= 1
Δ+

∫ Δ+

0

(
1 − f ( y+)

f (Δ+)

)
dy+, (2.8)

analogous to the boundary-layer displacement thickness but integrated only up to y = Δ.
Finally, the Eulerian time derivative term can be written according to

∂

∂t

∫ Δ

0
ūs dy = Δf (Δ+)

∂uτ
∂t

− uτ f (Δ+)δ∗Δ
∂s
∂t
. (2.9)

Integration of the advective term, i.e.
∫ Δ

0 ∇h · (ūsūs)+ ∂y(v̄ūs) dy requires the mean
vertical velocity at y = Δ, since

∫ Δ
0 ∂y(v̄ūs) dy = v̄(Δ)ūs(Δ)s (and s does not depend on

y). Using the continuity equation ∂sūs + ∂yv̄ = 0 we obtain

v̄(Δ) = −
∫ Δ

0
∂sūs( y) dy = − ∂

∂s

[
uτ

∫ Δ

0
f ( y+) dy

]

= −∂uτ
∂s

∫ Δ

0

[
f ( y+)+ y+f ′( y+)

]
dy = −∂uτ

∂s
Δf (Δ+).

(2.10)

As further shown in detail in Appendix A the entire integral of the advective term can then
be written as ∫ Δ

0

[∇h · (ūsūs)+ ∂y(v̄ūs)
]

dy = Δf (Δ+)V τ · ∇huτ , (2.11)

where

V τ =
(

1 − δ∗Δ
Δ

− θΔ

Δ

)
f (Δ+)uτ (2.12)
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is the advective velocity and a ‘cell momentum thickness’

θΔ =
∫ Δ

0

ūs( y)
ūs(Δ)

(
1 − ūs( y)

ūs(Δ)

)
dy → θΔ

Δ
= 1
Δ+

∫ Δ+

0

f ( y+)
f (Δ+)

(
1 − f ( y+)

f (Δ+)

)
dy+,

(2.13)
has been introduced arising from the integrals of quadratic advection terms.

Integrating each term in (2.5) between y = 0 and y = Δ, it is convenient to define the
total (molecular viscous + turbulent viscous) shear stress at y = Δ according to τ̄Δ =
(ν + νT)∂ūs/∂y. Collecting terms, replacing uτ = uτ s and dividing the entire equation
by Δf (Δ+), the evolution equation for the friction–velocity vector can now be written
according to

∂uτ
∂t

+ V τ · ∇huτ = 1
Ts

[
1
uτ

(
−Δ
ρ

∇hp̄ + τ̄Δ

)
− uτ

]
+ uτ

δ∗Δ
Δ

∂s
∂t

+ 1
Δf (Δ+)

∇h · Dτ ,

(2.14)
where Ts is given by

Ts = f (Δ+)
Δ

uτ
. (2.15)

It represents a time scale that arises from the derivation of (2.14) and does not require
additional ad hoc assumptions.

The horizontal diffusion flux tensor integrated in the vertical direction, Dτ , is defined
according to

Dτ =
∫ Δ

0
(ν + νT)

(
∇hūs + ∇hū�

s

)
dy, (2.16)

and is further detailed in Appendix B. When coupled with appropriate models for τ̄Δ,
f (Δ+), δ∗Δ, θΔ and Dτ , we refer to (2.14) as the evolution equation underlying the LaRTE
wall model.

2.1. Discussion
For the sake of initial discussion, it is instructive to consider a simplified form for the (e.g.)
streamwise x-component of (2.14), for now neglecting the pressure gradient and diffusive
terms, as well as the direction change term ∂s/∂t. Under these simplifying conditions,
(2.14) can be written as

dsuτx

dt
= 1

Ts
(τ̄Δx/uτ − uτx) , (2.17)

with ds/dt = ∂t + V τ · ∇h representing a Lagrangian time derivative on the surface. In
this form, it becomes apparent that the model represents a Lagrangian relaxation dynamics,
with Ts serving as the relaxation time scale for how the friction–velocity component uτx
approaches the stress at the wall-model grid point in LES (τ̄Δx) (the latter divided by
the friction–velocity magnitude uτ ). For the present discussion, neglecting τ̄wz, i.e. with
τ̄wx = uτuτx = u2

τx, we see by multiplying (2.17) by uτx that in terms of the wall stress the
Lagrangian relaxation equation can equivalently be written as

dsτ̄wx

dt
= 2

Ts
(τ̄Δx − τ̄wx) , (2.18)

showing that for the stress the relaxation time scale is Ts/2. This time scale was originally
derived by Chung & Pullin (2009) where they also showed the wall stress tends (in an
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Eulerian sense) towards its steady-state value at a rate corresponding to this time scale (in
their work 1/(Λη̃0) is equivalent to Ts/2 shown here).

It can be seen from (2.9) that the relaxation time scale Ts arises from integrating the
assumed velocity profile between y = 0 and y = Δ (this integral is similar to the term
∂L/∂t that arises in the iWMLES approach by Yang et al. 2015). As a result of the analysis,
Ts is proportional to the volume per unit area (Δ) in the fluid layer under consideration,
between the wall and the wall-model height y = Δ. It represents the inertia of the fluid
in that layer and can be seen to cause a time delay between the stress at y = Δ and at the
wall, under unsteady conditions. The thicker the layer (large Δ), the more the time delay
due to added fluid inertia. Conversely, the stronger the turbulence (large uτ ), the faster
the relaxation leading to a smaller time delay. We note that, in Yang et al. (2015) for the
iWMLES approach, an explicit time filtering at a time scale ∼ Δ/κuτ was introduced,
operationally similar to but shorter than Ts by a factor κf (Δ+) = κ ū(Δ)/uτ . Here, such
temporal relaxation behaviour has been derived formally from the momentum equation
(unsteady RANS) and the assumed validity of a quasi-equilibrium velocity profile (2.1).

Also, for the full vector problem with two stress components, we remark that, when
attempting to write the relaxation equation in terms of wall-parallel components τ̄wx
and τ̄wz instead of friction–velocity vector components uτx and uτ z (or uτ ), the resulting
equation is far less intuitive compared with the relatively simple form of (2.14). The latter
resembles a standard transported vector field equation with a relaxation source term and a
diffusion term (only the ∂s/∂t term is non-standard) and is therefore much preferable.

Finally, we note that when including the pressure gradient term ∇hp̄, (2.14) shows that
the implied relaxation dynamics is how uτ approaches the total cell forcing (vector) term
(−ρ−1∇sp̄Δ+ τ̄Δ)/uτ .

2.2. Closure for the total stress at the wall-model height
The relaxation wall model requires specification of the total (molecular viscous +
turbulent) stress τ̄Δ at y = Δ as function of known LES quantities there, such as the
LES velocity ULES at the wall-model point. That is, we denote ũ( y = Δ) = ULES, where
ũ(x, t) is the velocity field being solved in LES. We argue that introducing a closure model
for the total stress there (τ̄Δ) is more appropriate than closing the stress at the wall, since
the wall is at a different position than the position at which the LES velocity is known.
For now the simplest approach, which we shall adopt in this paper, is to use a standard
‘equilibrium’ RANS closure to relate the known velocity ULES( y = Δ) to the total
(viscous plus turbulent) shear stress τ̄Δ at the same position. In this way, we can connect
the new LaRTE wall model to the traditional equilibrium wall model: the latter is obtained
simply by letting Ts → 0, in which case the wall stress is set equal to the total stress at
y = Δ. This equality of stresses would be justified under full equilibrium conditions, i.e.
if the turbulence small-scale unresolved motions operated on much shorter time scales
than the macroscopic variables (time-scale separation) and Ts → 0 would be appropriate.
However, for turbulence that lacks scale separation under quasi-equilibrium conditions
with temporal and spatial variations and pressure gradient effects, the assumption that
Ts → 0 and equality of stresses are not formally justified. Then the relaxation equation
can be solved instead.

Next, we describe the proposed closure for the stress τ̄Δ. We use the approach
developed in Meneveau (2020) in which an equilibrium layer partial differential equation
is numerically integrated and various fitting functions are developed for this solution.
The model of Meneveau (2020) is expressed in the form of a friction Reynolds number
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Lagrangian relaxation towards equilibrium wall model

that depends on a ULES-based Reynolds number and a dimensionless pressure gradient
parameter via a dimensionless fitting function

〈uτ 〉Δ
ν

= Repres
τΔ (ReΔ,ψp), where ReΔ = ULESΔ

ν
and ψp = 1

ρ
(∇hP · êu)

Δ3

ν2

(2.19)
where the superscript ‘pres’ indicates that the fit includes pressure gradient dependence
(unlike Refit

τΔ(ReΔ) also provided in Meneveau 2020). This fit is repeated in Appendix C
for completeness. Also, êu = ULES/|ULES| is the unit vector in the ULES direction. The
pressure gradient ∇hP represents a steady or very low-frequency background pressure
gradient, included in the full equilibrium part of the dynamics. Details of how ∇hP
is determined in simulations are provided later, in § 4.1. The fit for Repres

τΔ (ReΔ,ψp)
provided in Meneveau (2020) was obtained by numerically integrating the simple steady
one-dimensional RANS equations that, unlike (2.4), did not include time dependence and
can thus be characterized as a ‘fully equilibrium model’ (as opposed to quasi-equilibrium)
assumption. The friction velocity 〈uτ 〉 is the corresponding ‘full equilibrium’ friction
velocity. Under these conditions, the full equilibrium vertically integrated momentum
equation implies that 0 = −Δ∇hP/ρ + τ̄Δ − 〈uτ 〉2, i.e. 〈uτ 〉2 obtained from applying
(2.19) represents a model for the combined τ̄Δ −Δ∇hP/ρ.

Following usual practice of EQWMs, we assume that the total stress modelled by the
fitted equilibrium expression is aligned with the LES velocity at the first grid point and
write

τ̄Δ − 1
ρ
Δ∇hP = 1

2
cwm

f U2
LESêu =

(
Repres
τΔ

ν

Δ

)2
êu, (2.20)

where Repres
τΔ = Repres

τΔ (ReΔ,ψp) is the fit. Note that the latter is related to the ‘equilibrium
wall-model friction factor’ cwm

f according to cwm
f = 2(Repres

τΔ /ReΔ)2. Finally then, the
two-dimensional partial differential equation (PDE) governing the evolution of the
friction–velocity vector in the LaRTE model reads as follows:

∂uτ
∂t

+ V τ · ∇huτ = 1
Ts

[
1
uτ

(
−Δ
ρ

∇hp̄′ + (Repres
τΔ ν/Δ)

2êu

)
− uτ

]
+ uτ

δ∗Δ
Δ

∂s
∂t
, (2.21)

where p̄′ is the pressure fluctuation that excludes the very slow background pressure
gradient based on P and is further described in § 4.1. Also note that we have neglected
the horizontal diffusion term in writing this equation (further discussion of horizontal
diffusion is provided in § 4.2). The solution to (2.21) is then used to determine the
quasi-equilibrium part of the wall stress τ̄w = uτuτ .

In practice, for flows such as channel flow or zero pressure gradient boundary layers
that do not display major non-equilibrium effects, one would not expect to see noticeably
different results in overall flow statistics, whether one applies the EQWM instantaneously
at the wall as is usually done, or if one applies the proposed Lagrangian time relaxation,
i.e. with some time delay and smoothing. However, the new formulation enables us to
operationally separate the model self-consistently into a part that genuinely represents
quasi-equilibrium dynamics, and a remainder for which additional modelling is needed.
As introduced in § 3, the total modelled wall stress may also include a non-equilibrium
component τ ′′

w, representing additional contributions to the wall stress that do not arise
from the quasi-equilibrium dynamics encapsulated in (2.14) and (2.21). For example, in
§ 3 we introduce an additional term τ ′′

w intended to capture the non-equilibrium laminar
response to a rapidly changing pressure gradient in the viscous sublayer. But first, in the
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next section we present an a priori data analysis to study properties of several averaging
time scales.

2.3. A priori analysis of quasi-equilibrium dynamics in channel flow
Here, we examine channel flow DNS data at Reτ = 1000 to show that the time
scale Ts identified in (2.15) provides a self-consistent decomposition of the flow into
quasi-equilibrium and non-equilibrium (the remainder) components. DNS data were
obtained from the Johns Hopkins Turbulence Database (JHTDB 2021) for the channel
flow Reτ = 1000 dataset (Graham et al. 2016). The velocity data were Gaussian filtered
horizontally at scale Δ+

x = Δ+
z = 196, commensurate with the LES grid resolution for

simulations considered later in this paper. The velocity was collected for all times
available, 0 ≤ tuτ /h ≤ 0.3245, at a single point, (x0, z0), over a wall-normal height
0 ≤ y+ ≤ Δ+ ≈ 34, close to the height of the first LES grid point that will serve as the
wall-model height.

The DNS velocity is then temporally filtered below y = Δ using a one-sided exponential
time filter, computed as ũn = εun + (1 − ε)ũn−1, where ε = δt/T , δt is the time-step size,
n is the time step index and T is the averaging time scale. Three different averaging time
scales are considered to see which time scale is most consistent with quasi-equilibrium
assumptions. Quasi-equilibrium is satisfied when the filtered velocity profile collapses to
ũ = uτ,lf ( yuτ,l/ν) for all time, where uτ,l(x, z, t) is the local friction velocity. The local
friction velocity is computed using uτ,l = ν/ΔRefit

τ (ULESΔ/ν) where Refit
τ is the inverted

law of the wall fit from Meneveau (2020) and ULES = ũ(x, y = Δ, z, t) is the filtered
velocity at the wall-model height. In the limit T → ∞, the velocity profile is static and
thus full equilibrium is achieved. In this limit the local friction velocity tends towards
the global friction velocity, computed as uτ,g = √

(h/ρ)(−d〈p〉/dx) where d〈p〉/dx is the
bulk pressure gradient forcing for channel flow. Inner units normalization of the velocity
profile using uτ,g is shown in the top row of figure 2 whereas normalization with uτ,l is
shown in the bottom row of figure 2. In order, from left to right in figure 2, the averaging
time scales considered are: panels (a,d) no temporal filtering, i.e. entirely local; panels
(b,e) intermediate time scale T1 = Δ/uτ,g; and panels (c, f ) LaRTE predicted time scale
Ts = Δf (Δuτ,g/ν)/uτ,g. Note that T1 is similar to what is used in Yang et al. (2015),
however, it is off by a factor θ/κ with θ = 1 used for their work. They also mentioned
that a longer time scale may be needed, even suggesting a minimum of θ = 5 which yields
a coincidentally rather similar time scale as Ts for Δ+ = 34. We stress that, here, Ts is
derived based on a momentum balance and does not require tuneable parameters as was
the case in Yang et al. (2015).

From figure 2( f ) it is clear that filtering with the relaxation time scale Ts most closely
satisfies quasi-equilibrium assumptions, as it almost completely collapses to the law of the
wall when normalized with the local friction velocity. This a priori test therefore provides
justification that the relaxation towards EQWM, which responds within the relaxation time
scale Ts as discussed in § 2.1, is consistent with quasi-equilibrium assumptions.

3. Non-equilibrium laminar fast response model

So far we have developed a model for τ̄w, the quasi-equilibrium part of the wall stress,
which responds to external conditions (changes in velocity and pressure gradients at the
wall-model height) at a time scale Ts consistent with the assumption of quasi-equilibrium.
In order to supplement the quasi-equilibrium Lagrangian relaxation model with additional
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Figure 2. Velocity profiles at a single point (x0, z0) at various times, from a priori tests from DNS data,
Gaussian filtered in the horizontal directions at Δ+

x = Δ+
z = 196. Different lines represent different times,

lighter line colour corresponds to earlier time, separated by tuτ,g/h = 0.13. Profiles are normalized using the
global friction velocity uτ,g in (a–c) while (d–f ) use the local friction velocity uτ,l as averaged over the same
time filtering scale as used for the profile. (a,d) No time filter; (b,e) exponentially time filtered with T1 =
Δ/uτ,g time filter; (c, f ) exponentially time filtered using Ts = Δf (Δuτ,g/ν)/uτ,g consistent with the LaRTE
approach. The y+ dependence in the vertical axis matches that of the horizontal axis (i.e. y+ = yuτ,g/ν for
(a–c) and y+ = yuτ,l/ν for (d–f )).

physics, we now focus on the rapid response of the inner-most part of the boundary
layer, the viscous sublayer. The response of near-wall structures of turbulence to rapidly
changing pressure gradients has been studied extensively in the past. Jung et al. (1992),
Karniadakis & Choi (2003), Quadrio & Ricco (2003), Ricco et al. (2012) and Yao, Chen &
Hussain (2019) studied spanwise wall oscillations due to their drag-reducing capabilities.
Vardy & Brown (2003) and Vardy et al. (2015) attempt to understand the wall shear stress
for water hammer pipe flows. Experimental and numerical studies of pulsatile flows have
been performed by Scotti & Piomelli (2001), Tardu & da Costa (2005), Tardu & Maestri
(2010), Weng et al. (2016), Sundstrom & Cervantes (2018a) and Cheng et al. (2020).
Streamwise accelerating flows were considered by He & Jackson (2000), Greenblatt &
Moss (2004), He, Ariyaratne & Vardy (2008), He, Ariyaratne & Vardy (2011), He &
Ariyaratne (2011), He & Seddighi (2013), He & Seddighi (2015), Jung & Chung (2012),
Jung & Kim (2017), Sundstrom & Cervantes (2017) and Sundstrom & Cervantes (2018c).
Then there are studies with step changes in either the wall boundary condition or in the
pressure forcing such as the sudden spanwise wall movement of Coleman et al. (1996),
Tang & Akhavan (2016) and Abe (2020), the sudden spanwise pressure gradient of Moin
et al. (1990) and Lozano-Durán et al. (2020) or a change in the direction of the pressure
gradient forcing (for a variety of directions) as done in de Wiart, Larsson & Murman
(2018). One of the common observations amongst all of these flows is the existence
of a laminar Stokes layer near the wall. For pulsatile flows, the wall-stress deviation
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from its steady-state value follows the solution to Stokes’ second problem exactly for
high-frequency oscillations (Weng et al. 2016). For streamwise accelerating flows, the wall
stress deviation from its initial value follows the solution to Stokes’ first problem during
the first stage of the acceleration (He & Seddighi 2015; Jung & Kim 2017; Sundstrom &
Cervantes 2018c). Sundstrom & Cervantes (2018b) even showed that the wall stress for
low-frequency pulsations follows the Stokes solution during the acceleration phase of the
pulse. They further showed the similarity of the wall stress during the acceleration phase
of pulsatile flows with the initial phase of streamwise accelerating flows. For the sudden
spanwise wall movement and SSPG, the spanwise velocity and wall stress follows Stokes’
first problem during the early response (Coleman et al. 1996; Abe 2020; Lozano-Durán
et al. 2020).

We here use concepts inspired by these prior works to complement the quasi-equilibrium
model presented in § 2. We decompose the velocity ũ (this velocity is spatially filtered in
the two-dimensional horizontal plane but not time filtered, and so it may still contain
strong time and y-dependent deviations from the quasi-equilibrium profile ū) according to
ũ = ū + ũ′′, where ũ′′ is the non-equilibrium velocity to be modelled here. The deviations
from the quasi-equilibrium velocity distribution ū, such as the deviations visible in
figures 2(a) and 2(d), can arise from a variety of sources such as time-dependent turbulent
fluctuations and pressure gradients. The fastest changing pressure gradient fluctuations can
induce oscillatory flow conditions even in the viscous sublayer, not unlike those involved
in the Stokes first and second problems. Since for the quasi-laminar part of the flow in
the viscous sublayer an analytical solution can be developed, we aim now to model that
part of the non-equilibrium wall stress arising directly from the response of the laminar
sublayer to rapid pressure gradient fluctuations. We denote the corresponding laminar
velocity response as ũ′′

l where subscript ‘l’ stands for laminar component.
In the viscous sublayer the linear terms of the Navier–Stokes equation dominate and

hence we argue that ũ′′
l obeys

∂ũ′′
l

∂t
= − 1

ρ
∇hp̃′′ + ν

∂2ũ′′
l

∂y2 , (3.1)

where, as before, subscript h represents the horizontal directions x and z. The boundary
conditions are ũ′′

l ( y = 0, t) = 0 and ∂ũ′′
l /∂y( y → ∞, t) = 0 with the initial condition

ũ′′
l ( y, t0) = 0. To simplify the problem, it is useful to define a ‘non-equilibrium free

stream velocity’, ũ′′∞, defined as the velocity that would exist as an inviscid response to
the non-equilibrium pressure gradient

∂ũ′′∞
∂t

= − 1
ρ

∇hp̃′′, → ũ′′
∞(t) =

∫ t

t0
− 1
ρ

∇hp̃′′ dt′. (3.2)

We can then use this velocity to eliminate the pressure gradient using the variable
transformation û( y, t) = ũ′′∞(t)− ũ′′

l ( y, t). The problem then reduces to the generalized
Stokes problem where the wall velocity is ũ′′∞(t). From Schlichting & Gersten (2017) this
has the solution

û( y, t) =
∫ t

t0

∂ũ′′∞
∂t

erfc
(

y
2
√
ν(t − t′)

)
dt′. (3.3)

Rewriting in terms of ũ′′
l and ∇hp̃′′ gives

ũ′′
l ( y, t) =

∫ t

t0

(
− 1
ρ

∇hp̃′′
)

erf
(

y
2
√
ν(t − t′)

)
dt′, (3.4)
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from which the stress contribution can be obtained by differentiation, evaluation at y = 0
and multiplication by ν, and reads as follows:

τ ′′
w(t) =

√
ν/π

∫ t

t0
− 1
ρ

∇hp̃′′(t′)(t − t′)−1/2 dt′. (3.5)

Interestingly, we can use ũ′′∞ to relate the non-equilibrium wall stress with the Caputo
fractional derivative

τ ′′
w = −

√
ν/πΓ (1/2)D1/2

t (ũ′′
∞), (3.6)

where the Caputo fractional derivative of order α of a signal v(t) is defined as (Samko
1993)

Dαt v(t) = 1
Γ (1 − α)

∫ t

t0

v(1)(t′)
(t − t′)α

dt′. (3.7)

In the equation above 0 < α < 1 is the order of the fractional derivative. The rapid
wall-stress model uses α = 1/2. Relating the wall stress with the Caputo fractional
derivative is useful because an efficient numerical evaluation of this type of non-local
integral operator is possible, as described in § 4.3.

4. Pressure decomposition and numerical implementations

4.1. Pressure gradient decomposition
In this section we discuss the various pressure gradient inputs to the model: ∇hP, ∇hp̄′ and
∇hp̃′′. The first (∇hP) is used in evaluating the fully equilibrium fitted part to evaluate the
turbulent stress as input to the LaRTE equation; ∇hp̄′ is the fluctuating pressure gradient
input that directly affects the LaRTE dynamics. The last term ∇hp̃′′ is the forcing term for
the non-equilibrium laminar response model described in § 3. We begin from the pressure
gradient available from LES, which corresponds to the pressure gradient horizontally
filtered to the size of the LES grid, denoted by ∇hp̃, where p̃ = pLES at y = Δ. We
decompose it according to these three contributions

∇hp̃ = ∇hP + ∇hp̄′ + ∇hp̃′′ = ∇hp̄ + ∇hp̃′′, (4.1)

where ∇hp̄ = ∇hP + ∇hp̄′.
The ‘fully equilibrium pressure gradient’, ∇hP is to be used in the fitting function to

model the turbulent stress at y = Δ. It is obtained by temporal filtering ∇hp̃ at a long time
scale n Ts where n is some constant sufficiently greater than one and Ts is the relaxation
time scale of the LaRTE model. We thus write

∇hP = ∇h〈p̃〉nTs, (4.2)

where the brackets indicate one-sided exponential time filtering and the subscript denotes
the corresponding filtering time scale. The rationale for this choice is that the equilibrium
time scale should be greater than the quasi-equilibrium time scale, Ts, such that only very
slow pressure changes are included in the fitted full equilibrium model. We chose n = 3
as a practical compromise that works well in applications to be shown later, and results
appear to be quite insensitive to this choice.

The laminar Stokes layer that develops near the wall is caused by the high-frequency
component (fastest changing) pressure gradient fluctuations. Therefore we define the
non-equilibrium pressure gradient input to be a high-pass temporally filtered version
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Figure 3. Schematic of the various time scales and wall-normal distances considered for modelling. Different
coloured regions identify the corresponding wall modelling components.

of the pressure gradient. This is achieved in practice by subtracting from the LES
pressure gradient another low-pass-filtered signal, but low-pass filtered at a high frequency.
Specifically, we write

∇hp̃′′ = ∇hp̃ − ∇h〈p̃〉tν , (4.3)

where 〈·〉tν represents a temporal low-pass filter at time scale tν . For tν , the appropriate
filtering time scale should be the diffusion time from the wall to the edge of the Stokes
layer (y = ls). We define this time scale to be tν ≡ l2s/ν. Then rewriting the Stokes layer
thickness in inner units, the time scale becomes

tν = (l+s )2ν
u2
τ

. (4.4)

The Stokes layer is assumed to be confined to the viscous sublayer, therefore as an
approximation we let l+s ≈ 12 and uτ is obtained from the LaRTE model.

With ∇hP and ∇hp̃′′ so determined, the input to the LaRTE transport equation is the
‘band-pass filtered’ version of the pressure gradient equal to

∇hp̄′ = ∇h〈p̃〉tν − ∇h〈p̃〉3Ts, (4.5)

recalling that p̃ = pLES is the pressure available from LES at the first wall-model point
away from the wall.

Figure 3 shows the different time scales and wall distances considered for the wall
modelling region beneath y = Δ. The laminar Stokes layer is confined to the fastest
time scale, tν , and smallest wall distance, ls, considered. The quasi-equilibrium and full
equilibrium regions, on the other hand, correspond to the largest time scales considered
(Ts and nTs, respectively). Note that the LaRTE model has some high-frequency content
coming from ∇hp̄′ and τ̄Δ, thus the blue region extends somewhat further left than Ts. The
remaining region left in white corresponds to the turbulent portion in the wall-modelled
region, below y = Δ, at scales faster than Ts but slower than the viscous time scale tν .
The response of turbulence in this region (e.g. reduction of turbulent stresses due to
scrambling) requires separate modelling not yet included in the present work. Note that
interesting phenomena such as drag reduction due to spanwise wall oscillations or applied
pressure gradients (Jung et al. 1992) would depend to a large extent on such modelling.
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Lagrangian relaxation towards equilibrium wall model

4.2. Discretization of the LaRTE evolution equation
The full model embodied by (2.14) is a nonlinear PDE for uτ (x, y, t), with an elliptic
diffusion term and advective term. Following the logic of the Lagrangian dynamic model
implementation (Meneveau, Lund & Cabot 1996) and acknowledging the approximate
nature of various modelling assumptions to be made, we opt for efficiency over high-order
numerical accuracy in the proposed numerical implementation, while aiming to maintain
the main features of the model. We discretize the LaRTE evolution equation using a
forward Euler method such that the friction velocity vector may be solved for explicitly.
This requires evaluating all terms, including the Lagrangian time derivative, at the
previous time step tn−1 = tn − δt (with n the time-step index) where all terms are
known. We then propose to discretize the Lagrangian derivative at time tn−1 using a
semi-Lagrangian scheme (Staniforth & Côté 1991)[

∂uτ
∂t

+ V τ · ∇huτ

]
(x′

i, z′
k, tn−1) =

[
dsuτ

dt

]
(x′

i, z′
k, tn−1)

≈ 1
δt

[
uτ (xi, zk, tn)− uτ (x′

i, z′
k, tn−1)

]
, (4.6)

where x′
i = xi − Vτxδt and z′

k = zk − Vτ zδt (with i and k position indices), and V τ is
evaluated from (2.12) using uτ (xi, zk, tn−1). Replacing into the equation [uτ (xi, zk, tn)−
uτ (x′

i, z′
k, tn−1)]/δt = RHS(x′

i, z′
k, tn−1),where RHS is the entire right-hand side of (2.21)

yields

uτ (xi, zk, tn) = uτ (x′
i, z′

k, tn−1)+ δtRHS(x′
i, z′

k, tn−1). (4.7)

The entire right-hand side of (4.7) at the upstream position (xi − Vτxδt, zk − Vτ zδt) at
the time tn−1 is obtained using first-order bilinear spatial interpolation of the grid values
on the plane, as was done in three dimensions in Meneveau et al. (1996). The additional
numerical diffusion associated with the low-order interpolation reduces the need to include
the horizontal diffusion term ∇h · Dτ which would require additional modelling and
numerical cost associated with solving an elliptic problem. Thus, we neglect the term
∇h · Dτ altogether in practical implementations in our LES (however, see Appendix B for
explicit form of one part of this term). Finally, evaluation of RHS requires the ∂ts term.
It is discretized using backward differencing, as ∂ts|n−1 = (s|n−1 − s|n−2)/δt all evaluated
at the interpolated position (xi − Vτxδt, zk − Vτ zδt).

4.3. Evaluating the temporal convolution integral
Jiang et al. (2017) developed a method for ‘fast evaluation of the Caputo fractional
derivative’ which significantly reduces storage and computational cost requirements thus
making the computation of the convolution integral practical. To summarize, their method
decomposes the integral into a local and history parts where the history contribution is
evaluated efficiently by making a sum-of-exponentials approximation to the kernel. An
exponential kernel has the advantage that the current value of the convolution depends
only on the previous time-step value of the convolution and a local term, as exploited in
many applications where time filtering is needed (as e.g. in Meneveau et al. (1996) and in
other instances of exponential time filtering applied in this paper).

Since the sum-of-exponentials approximation algorithm is critical for the model, we
will describe here the basic details of it pertaining to our application with α = 1/2. Our
task is to find an efficient way of computing the convolution integral in (3.5). To simplify
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notation we let G(t) ≡ −ρ−1∇hp̃′′(t). Then the non-equilibrium wall stress is given by

τ ′′
w(tn) =

√
ν/π

∫ tn

t0
G(t′)(tn − t′)−1/2 dt′, (4.8)

where tn is the current time and n is, as before, the time step index. The
sum-of-exponentials (SOE) approximation for the kernel reads

(tn − t′)−1/2 ≈
Nexp∑
m=1

ωm exp(−sm(tn − t′)), (4.9)

where the constants ωm and sm are determined a priori as a function of the time-step size
for the SOE approximation, δt, the time duration considered, T , and the desired maximum
error for the SOE approximation of the kernel, ε. According to Jiang et al. (2017), the
number of exponential terms, Nexp, is also a function of these parameters and can be
estimated by the expression

Nexp = O
(

log
1
ε

(
log log

1
ε

+ log
T
δt

)
+ log

1
δt

(
log log

1
ε

+ log
1
δt

))
. (4.10)

Here, ε is the error associated with the approximation in (4.9) (not to be confused with
the error from discretizing (4.8)). The simulations in this paper will mostly use δt ∼ 4 ×
10−4 and so the constants were computed using δt = 4 × 10−4. Also, it was found that, in
order to guarantee good accuracy in all cases considered, we required ε = 10−9. We used
T = 1 although this parameter was seen to affect the coefficients very little as long as
T � δt. The optimization approach by Jiang et al. (2017) yields Nexp = 48 although fewer
terms (obtained by using larger ε) could be used while still yielding reasonable accuracy.
Appendix D provides information about the computed constants as well as a more detailed
verification of the numerical method.

The integral is divided into local and history parts (in time)

τ ′′
w = τ ′′

w,l + τ ′′
w,h, (4.11)

where

τ ′′
w,l(tn) ≡

√
ν/π

∫ tn

tn−1

G(t′)(tn − t′)−1/2 dt′

τ ′′
w,h(tn) ≡

√
ν/π

∫ tn−1

t0
G(t′)(tn − t′)−1/2 dt′.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.12)

The local part is evaluated using the ‘L1 method’ (Li & Zeng 2015)

τ ′′
w,l ≈ 2G(tn−1/2)

√
νΔtn

π
, (4.13)

where Δtn = tn − tn−1 and G(tn−1/2) = 0.5(G(tn)+ G(tn−1)). The history part is
evaluated by replacing the kernel with a SOE approximation from (4.9). This SOE
approximation is useful because it allows the integral to be computed recursively.
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The history term can then be computed using

τ ′′
w,h ≈

√
ν/π

Nexp∑
m=1

ωmIm(tn), (4.14)

where

Im(tn) =
∫ tn−1

t0
G(t′) exp(−sm(tn − t′)) dt′

= exp(−sm(tn − tn−1))Im(tn−1)+
∫ tn−1

tn−2

G(t′) exp(−sm(tn − t′)) dt′

≈ exp(−smΔtn)
[

Im(tn−1)+ G(tn−3/2)

sm
(1 − exp(−smΔtn−1))

]
. (4.15)

The total non-equilibrium wall stress can then be computed using (4.11) together with
(4.13), (4.14) and (4.15). The advantage of this method is that it requires O(Nexp) storage
and O(NTNexp) computational work whereas a direct method requires storing the entire
time evolution, i.e. O(NT) storage and O(N2

T) work which becomes unwieldy for long
simulations.

5. Tests in equilibrium and non-equilibrium channel flow

To test the new wall model (with both quasi-equilibrium LaRTE and non-equilibrium
components), LESs are conducted for statistically stationary channel flow as well as for
channel flow with a large step change in the spanwise pressure gradient (referred to as
SSPG).

5.1. Statistically stationary channel flow
First, the LaRTE wall model together with the non-equilibrium part is implemented in
a simulation of statistically steady-state channel flow at various Reynolds numbers. This
is a flow in which the traditional EQWM typically provides good results. The objective
is thus mainly to ensure that similarly good results are obtained using the new model
as well as to document its various features, such as typical orders of magnitudes of the
terms appearing in the Lagrangian relaxation transport equation for the friction–velocity
vector. Simulations use LESGO, an open-source, parallel, mixed pseudo-spectral and
centred finite difference LES code available on Github (LESGO 2021). The Lagrangian
scale-dependent dynamic subgrid stress model (Bou-Zeid et al. 2005) is used in the
bulk of the flow. The near-wall region is modelled using the new wall models proposed
here: the LaRTE model governed by (2.14) (with closure and simplifications according to
(2.21)) and the laminar non-equilibrium model governed by (3.5). A wall-stress boundary
condition is applied consisting of the superposition between the two models (i.e. τ̃w =
τ̄w + τ ′′

w). Further notes regarding implementation are discussed in § 4 and fits needed for
the LaRTE model are provided in Appendix C.

First, simulations are performed with friction Reynolds numbers based on the
half-channel height of Reτ = 1000 and 5200. The domain size, number of grid
points, and grid size are (Lx, Ly, Lz)/h = (8π, 2, 3π), (Nx,Ny,Nz) = (128, 30, 48),
and (Δx,Δy,Δz)/h = (0.196, 0.067, 0.196), respectively. In inner units the grid sizes
for Reτ = 1000 and 5200 are (Δ+

x ,Δ
+
y ,Δ

+
z ) = (196, 67, 196) and (Δ+

x ,Δ
+
y ,Δ

+
z ) =
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Reτ Δ+

1.0 × 103 33
5.2 × 103 173
2.0 × 104 667
1.0 × 105 3333
5.0 × 105 16 667
3.17 × 103 106

Table 1. Wall-model height in inner units Δ+ for all friction Reynolds numbers simulated; Reτ = 3170
corresponds to the steady-state friction Reynolds number long after the application of the spanwise pressure
gradient presented in § 5.2.

(1021, 347, 1021), respectively. Several additional simulations are performed at even
higher Reynolds numbers (Reτ = {0.2, 1, 5} × 105) using the same number of grid points
in order to ensure applicability at arbitrarily high Reynolds numbers. As can be seen
these are very coarse WMLES, very different from the much finer resolutions required
for WRLES.

In LESGO the wall model takes information from the first grid point away from the wall
(i.e.Δ = Δy/2). The wall-model heights for all friction Reynolds numbers considered are
summarized in table 1. These wall-model heights lie within the log layer. The proposed
new wall model is applied using the LES data at y = Δ. A ‘2Δ spatial filter’, like that used
in Bou-Zeid et al. (2005), is applied to the LES velocity at y = Δ which is provided as the
velocity input to (2.19) to model the turbulent stress at that position. This is primarily done
to reduce log-layer mismatch (Yang et al. 2017) without causing an excessively sluggish
response in the wall stress which would occur if the velocity was time filtered instead.
The pressure gradient, on the other hand, is not spatially filtered but instead is temporally
filtered with the single-sided exponential filter with the decomposition and filtering time
scales described in § 4.1.

Additional simulations are carried out using the traditional equilibrium wall model
(without pressure gradient effects) in order to separate wall modelling dependencies
from other dependencies such as grid resolution, subgrid-scale (SGS) modelling or the
numerical discretizations used in the code. The EQWM used here computes the wall stress
using the fitting function Refit

τΔ(ReΔ) from Meneveau (2020) which is also summarized
in algorithm 1 presented in Appendix C. Then, the wall-stress vector is computed using
τw = (νΔ−1Refit

τΔ)
2êu with êu = ULES/|ULES|.

First, we show mean velocity profiles for the five Reynolds numbers tested (figure 4) and
mean Reynolds stresses for Reτ = 1000 and Reτ = 5200 (figure 5). For the two lowest
Reynolds numbers, the WMLES using the new wall model, with combined LaRTE and
laminar non-equilibrium parts, is compared with the DNS of Lee & Moser (2015) and
the WMLES using the EQWM. The EQWM results are nearly indistinguishable from
the new wall-model results. All velocity profiles follow the expected law of the wall
but with a slight log-layer undershoot for Reτ = 1000 and an overshoot of the profile
in the wake region at the centre of the channel. The LES Reynolds stresses generally
follow the same trends as the DNS but with an overpredicted spanwise variance and
underpredicted streamwise variance in the near wall region. Similar trends have been
obtained in WMLES using different codes and SGS models (Yang et al. 2015), and
are likely attributable to simulation details (i.e. grid resolution or SGS modelling) other
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40

30

20
〈u〉+

y+

10

100 101 102 103 104 105 106
0

Figure 4. Open circles: mean velocity profiles from WMLES using the LaRTE and non-equilibrium wall
model for Reτ = 1000 (red), 5200 (blue), 20 000 (magenta), 105 (green) and 5 × 105 (black). Plus signs: mean
velocity profiles for WMLES using the EQWM at Reτ = 1000 (red) and 5200 (blue). Lines: DNS from Lee &
Moser (2015) at Reτ = 1000 (red line), 5200 (blue line) and log law 〈u〉+ = ln( y+)/0.4 + 5.0 (dashed line).

10

(a) (b)

8

〈u′ iu
′ j〉+
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y/h
0.75 1.00
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–2
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y/h
0.75 1.00

Figure 5. Mean Reynolds stresses for (a) Reτ = 1000 and (b) Reτ = 5200. Colours correspond to 〈u′u′〉 (blue),
〈v′v′〉 (red), 〈w′w′〉 (green) and 〈u′v′〉 (black). Open circles: WMLES using the new wall model with LaRTE
and laminar non-equilibrium parts. Plus signs: WMLES using the EQWM. Lines: DNS from Lee & Moser
(2015).

than the wall model. The agreement between the two WMLES with completely different
wall models further supports this claim. Wang, Hu & Zheng (2020) showed the effect
of different choices in SGS modelling, wall modelling and grid resolution on various
turbulence statistics. Their primary finding is that various one-point statistics in the outer
region are not significantly affected by the wall model, but are sensitive to the SGS model.
As shown in the recent wall-model-independent analysis by Lozano-Durán & Bae (2019),
LES accuracy in the outer region of wall-bounded flows is highly sensitive to details of
the ratio of grid resolution compared with the outer length scale (rather than Reynolds
number). We therefore conclude that the wall model is unlikely to be the cause for the
observed level of differences between the LES and DNS statistics and find that the new
wall model, when applied to a standard equilibrium channel flow, performs similarly well
as the classic equilibrium wall model.
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1.5(a) (b) 0.5

0

–0.5

1.0uτx uτz

0.5
0 0.2

t〈uτ〉/h

Ts〈uτ〉/h Ts〈uτ〉/h

0.4 0.6 0.8 1.0 0 0.2

t〈uτ〉/h
0.4 0.6 0.8 1.0

Figure 6. Time signals of relevant terms in the LaRTE model at some arbitrary representative point at the wall
from LES or channel flow at Reτ = 1000 andΔ/h = 1/30. Time signals shown are for the terms τ̄Δ/uτ (cyan),
(−Δ∇hp̄/ρ + τ̄Δ)/uτ (grey) and uτ (blue). (a) Shows the x-component and (b) the z-component terms. The
vertical dashed line shows the relaxation time scale Ts〈uτ 〉/h ≈ 0.45.

Next, we illustrate by means of time signals at a representative point on the wall the
various terms in (2.14) that are being solved at each point following the implementation
described in § 4.2. In figure 6 we show, in cyan, signals of the input stress vector τ̄Δ at
y = Δ, evaluated using the fitted equilibrium model in (2.19). The stress is divided by uτ ,
the magnitude of the obtained friction velocity. The grey line shows the same, but with the
horizontal pressure gradient added, the quantity towards which the friction–velocity vector
uτ relaxes, with relaxation time scale Ts. The cyan and grey lines are generally close,
showing that the effect of the pressure gradient is smaller than but not negligible compared
with the imposed turbulent stress. The blue line in figure 6 shows the friction velocity
resulting from the LaRTE solution. In this flow, the characteristic mean value of Ts can be
estimated as Ts〈uτ 〉/h = (Δ/h)f (Δ+) = (1/30)f (1000/30) ≈ 0.45. As is evident, major
fluctuations of uτ occurring at time scales smaller than Ts have been filtered out almost
entirely. Only low-frequency variability is left, internally consistent with the notion of
quasi-equilibrium that underlies the assumption of the profile scaling in inner units. Note
that if an equilibrium model were used the wall stress would fluctuate at levels comparable
to the cyan signal.

Next, signals of the individual terms in (2.14) are presented in figure 7. The Eulerian
time derivative shown in black displays some anticorrelated trend with the advective term
shown in red. This is expected for transported quantities, and leads to smaller magnitudes
of the Lagrangian time derivative as compared with the Eulerian time derivative. The blue
line shows the entire relaxation towards equilibrium term which essentially drives the rate
of change of the friction–velocity vector. The non-standard term with the Eulerian time
derivative of the orientation vector s is negligible in the x-direction while it shows some
contribution in the spanwise direction.

Wall-stress contours for Reτ = 1000 are presented in figure 8 for a single snapshot of
one of the LES realizations. As can be seen from (a,b), the LaRTE quasi-equilibrium stress
shows elongated structures that extend over relatively long distances downstream. The
fluctuations occur, as expected around a value of τ̄wx ≈ 1. The spanwise stress component
τ̄wz has zero mean and fluctuations that appear to occur at smaller scales, generally
consistent with elongated structures that display larger variability in the transverse
direction than in the streamwise direction. Panels (c,d) show the contribution from the
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Figure 7. Time signals of terms in the evolution equation for uτ , (2.14) at some arbitrary representative point
at the wall from LES or channel flow at Reτ = 1000 and Δ/h = 1/30. Time signals shown are for the terms
∂uτ /∂t (black), V τ · ∇huτ (red), −T−1

s [u−1
τ (−Δ∇hp̄/ρ + τ̄Δ)− uτ ] (blue) and −uτ (δ∗Δ/Δ)∂ s̄/∂t (green).
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Figure 8. Snapshots of the wall stress for Reτ = 1000. (a,b) Show the quasi-equilibrium stress from the LaRTE
model for both streamwise and spanwise components, (c,d) show the laminar layer non-equilibrium portion and
(e, f ) show the total stress (τw = τ̄w + τ ′′

w).

laminar non-equilibrium portion of the model. In spite of the backward time integration
that should smooth signals to some degree, these fields display much smaller-scale
fluctuations. These reflect fluctuations in pressure gradients in both streamwise and
spanwise directions that tend to occur at scales similar to the LES grid scale. Panels
(e,f ) show contours of the sum of both contributions, combining the streamwise elongated
structure and the smaller-scale fluctuations from the laminar non-equilibrium part of the
model.
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Figure 9. Streamwise wall stress, τ̄wx, contours for several time instances for Reτ = 1000. Comparing
Lagrangian relaxation towards equilibrium (RTE) (a,c,e) with Eulerian RTE (b,d, f ) where the advection term is
excluded. Both models are initialized with the same data as shown in the top row. Time is non-dimensionalized
with 〈Vτx〉 ≈ 7.93〈uτ 〉 and Lx = 8πh.

It is of interest to explore further the qualitative differences between an Eulerian and
a Lagrangian time derivative in applying the LaRTE model. To this effect, we select
some time during the LES using the LaRTE approach and denote that time as t = 0.
Then, we continue the LES using the Lagrangian version of LaRTE and perform another
simulation that continues using the Eulerian version, i.e. simply omitting the advective
derivative V τ · ∇huτ from the evolution equation. Figure 9 shows the results in the
form of contour plots of the x-component of the modelled wall stress, τ̄wx = uτuτx. By
construction, they both agree at t = 0 but begin to differ at later times, significantly.
As confirmed by examining animations, the Eulerian version ‘pins’ fluctuations at the
wall while perturbations from imposed stress at y = Δ travel downstream. The time
filtering implicit in the relaxation equation then ‘smears’ and elongates the structures
excessively in the streamwise direction. In the Lagrangian version shown to the left,
perturbations are allowed to travel downstream, including the time-filtered versions that
therefore maintain their more compact integrity as time progresses. We conclude that the
Lagrangian version appears more physically reasonable. We remark, however, that we have
no ‘true’ distribution (e.g. from DNS) to compare with, since we would need to evaluate
either Eulerian or Lagrangian time averaging from the DNS, and similar differences would
be obtained, without necessarily indicating which one is ‘better’ or ‘true’. Having seen
significant differences in predicted stress distribution between Eulerian and Lagrangian
versions of the model, and the latter being directly motivated by the underlying integral
momentum equation, we continue using the Lagrangian version for the rest of this paper.

More quantitative characterization of the stress fluctuations is provided by the
probability density function (PDF) of each component of the wall stress. The PDFs
obtained from Reτ = 1000 and 5200 could be compared with filtered DNS data at the same
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Figure 10. PDFs for τwx and τwz; (a,b) Reτ = 1000; (c,d) Reτ = 5200. The PDF curves correspond to the
filtered DNS (dashed black), the LaRTE model (blue), the non-equilibrium model (red) and the composite
model (LaRTE + non-equilibrium) (dashed black). DNS data obtained from the Johns Hopkins Turbulence
Database JHTDB (2021) and Graham et al. (2016). The DNS PDFs are obtained from the Gaussian-filtered
wall stress where the filtering size is the same as the LES mesh size in the horizontal directions.

Reynolds numbers. LES data were collected over five separate uncorrelated simulations to
obtain better convergence of statistics. DNS data were obtained from a public database
(JHTDB 2021) and the instantaneous local wall stress was spatially filtered horizontally
using a Gaussian filter at the same scale as the LES grid. The PDFs are shown in figure 10.
The PDF from the filtered DNS (dashed line) peaks around τ̄wx = 1 and τ̄wz = 0. The
quasi-equilibrium (LaRTE) part of the model (blue lines) peaks at the same expected
values, but display significantly narrower distributions owing to the time filtering that
reduces the fluctuations consistent with the notion of quasi-equilibrium. The laminar
Stokes layer model that only models the fast laminar response in the viscous sublayer
provides additional fluctuations. However, for the streamwise directions, these fluctuations
are of smaller magnitude than those for the filtered DNS. This shows that the model is
still missing significant parts of the streamwise stress fluctuations. Additional modelling
is likely needed to account for these additional fluctuations that belong neither to the
quasi-equilibrium nor the rapid laminar sublayer response parts of the dynamics. We note
that in the spanwise direction, the PDFs agree better, in fact slightly overestimating the
fluctuations for the Reτ = 1000 case but predicting the spanwise fluctuations PDF for the
Reτ = 5200 case very well. From figure 10 we can also see that as the Reynolds number
increases, the PDFs of the non-equilibrium components (red curves) narrow. As can be
expected from (3.5), that shows the laminar non-equilibrium portion of the stress to be
proportional to ν1/2, the stress contribution from the laminar Stokes layer near the wall in
fact vanishes in the limit of infinite Reynolds number, unlike fluctuations expected to occur
due to turbulence in the wall layer. These contributions are not included in the current
model and must await further developments outside of the scope of the present paper.

We also note that when using the single-sided exponential filter with a fluctuating and
short filtering time scale such as tν , some undesirable trends can be obtained such as that
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the mean (in space or time) of a variable may not be exactly equal to the mean of the
filtered variable. Because of this last detail, the PDF of the non-equilibrium model has
a non-zero mean as seen in figure 10. This should be kept in mind whenever using the
temporal exponential filter with a time-dependent averaging time scale.

5.2. Channel flow with SSPG
Next we discuss a highly non-equilibrium test case following the work of Lozano-Durán
et al. (2020). A large spanwise pressure gradient, ∂p∞/∂z, is applied to a statistically
steady turbulent channel base flow after t = 0. Particularly, we follow the case presented
in their wall modelling results section in which the initial flow (t = 0) is standard channel
flow with Reτ =1,000 after which (t > 0) a spanwise pressure gradient is suddenly applied
with strength ∂p∞/∂z = 10∂p∞/∂x = 10ρu2

τ0/h (where uτ0 is the mean friction velocity
of the initial condition and h the channel half-height). The flow is initialized with the
results from § 5.1. The results presented in this section use the same code with the same
mesh, subgrid scale and wall model, etc. We should note that dynamic time stepping is
used in order to maintain a constant Courant–Friedrichs–Lewy (CFL). The time step size
stays within the range 1 × 10−4 ≤ δtuτ0/h ≤ 4 × 10−4 from steady state to long after the
application of the SSPG.

First, in figure 11(a,b) we show pressure gradient signals at an arbitrary point
corresponding to the LES pressure gradient input ∂ p̃/∂z (black line), and its three
constituent parts consistent with the discussion of § 4.1: the long-time average
pressure gradient ∂P/∂z (green line) entering into the full equilibrium fitted model,
the band-pass-filtered fluctuating pressure gradient ∂ p̄′/∂z (blue line) that enters the
quasi-equilibrium LaRTE equation and the rapid non-equilibrium ∂ p̃′′/∂z (red line) that
affects mostly the viscous sublayer if sufficiently fast. As is evident in figure 11(a),
∂ p̃′′/∂z captures the majority of the LES pressure gradient fluctuations, ∂P/∂z captures
only the ‘equilibrium’ or very slowly varying pressure gradient, and ∂ p̄′/∂z captures any
remaining fluctuations. Figure 11(b) shows more clearly that at the onset of the SSPG
(t = 0) the equilibrium pressure gradient slowly relaxes to its new steady-state value and
that the strength of the quasi-equilibrium pressure gradient fluctuations grows. Both of
these pressure gradient signals are inputs to the LaRTE model whose wall stress and
relevant relaxation terms are shown in figure 11(c). Here, we can see the importance of
the quasi-equilibrium pressure gradient in the LaRTE model grows upon application of
the SSPG.

Next we present the plane-averaged wall-stress response to the SSPG. Figure 12 shows
the spanwise wall stress after the SSPG has been applied compared with the DNS of
Lozano-Durán et al. (2020). Panel (a) shows the wall-stress decomposition after the initial
transient and (b) shows the wall-stress behaviour long after the SSPG was applied. The
trends are in agreement with expectations. For a brief time (0 ≤ tuτ0/h ≤ 0.05) the wall
stress follows the laminar solution closely, during which the non-equilibrium component
is dominant compared with the quasi-equilibrium component. Afterwards the balance
is reversed. Note that the LaRTE model responds faster than the relaxation time scale
which is Tsuτ0/h ≈ 0.45. This is due to the inclusion of the band-pass-filtered pressure
gradient, ∇hp̄′, in the LaRTE model. Without this pressure gradient, τ̄wz is delayed by a
time of order Ts. On the contrary, if no high-pass filtering is done, ∇hp′′ = 0, τ̄wz is nearly
linear initially and unable to capture the

√
t trend corresponding to the laminar Stokes

layer. Therefore, low-pass filtering is needed to prevent the overly sluggish behaviour
of the quasi-equilibrium model and high-pass filtering plus the inclusion of the laminar
non-equilibrium model is needed to get the correct

√
t behaviour initially. Finally, note
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Figure 11. Time signals at some arbitrary representative horizontal point for (a,b) spanwise pressure gradient
components and (c) spanwise quantities in the LaRTE model relevant for τ̄wz. (a,b) LES pressure gradient
∂ p̃/∂z (black), non-equilibrium pressure gradient ∂p′′/∂z (red), band-pass-filtered pressure gradient ∂ p̄′/∂z
(blue) and equilibrium pressure gradient ∂P/∂z (green) all normalized with h/(ρu2

τ0). (c) Quasi-equilibrium
spanwise wall stress τ̄wz (blue), −Δ(∂ p̄/∂z)/ρ + τ̄Δz (grey) and τ̄Δz (cyan) all normalized with u2

τ0. Thin
dashed horizontal lines indicate steady-state values before and after the SSPG.
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Figure 12. Spanwise wall stress after SSPG (a) after a short period and (b) after a long period.
(a) DNS from Lozano-Durán et al. (2020) (thick dashed black), composite wall stress 〈τ̄wz〉 + 〈τ ′′

wz〉
(solid black), quasi-equilibrium wall stress 〈τ̄wz〉 (blue), non-equilibrium wall stress 〈τ ′′

wz〉 (red), EQWM
(grey) and laminar solution for Stokes’ first problem (thin dashed black). Dotted line in (b) indicates the
steady-state value after the SSPG. Angled brackets indicate ensemble averaging over the horizontal plane and
five separate simulations for (a) and ensemble averaging over the horizontal plane for (b). Here, Reτ0 = 1000
and ∂p∞/∂z = 10∂p∞/∂x for t > 0.

the new wall model has a closer agreement to the DNS than the EQWM which gives a
linear response to the SSPG. We can attribute the faster wall-stress response to the laminar
non-equilibrium model whereas the quasi-equilibrium model has a slow initial response
which approaches the EQWM curve long after the SSPG. We should also note that the
EQWM performance shown here is closer to the DNS than that reported in Lozano-Durán
et al. (2020) for their implementation of the EQWM. We have verified that the difference
is because the wall-model height used here is smaller than that of Lozano-Durán et al.
(2020) which leads to a faster wall-stress response.

The streamwise wall-stress response to the SSPG is shown in figure 13. As can be seen,
the wall model is unable to capture the slight initial decrease in τwx due to a complex
three-dimensional mechanism discussed in Lozano-Durán et al. (2020). The reason is
that the scrambling of momentum transporting turbulent structures due to the sudden
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Figure 13. Streamwise wall stress after SSPG (a) after a short period and (b) after a long period. (a) DNS
from Lozano-Durán et al. (2020) (thick dashed black), composite wall stress 〈τ̄wx〉 + 〈τ ′′

wx〉 (solid black) and
EQWM (grey). Dotted line in (b) indicates the steady-state value after the SSPG. Angled brackets indicate
ensemble averaging over the horizontal plane and five separate simulations for (a) and ensemble averaging
over the horizontal plane for (b). Here, Reτ0 = 1000 and ∂p∞/∂z = 10∂p∞/∂x for t > 0.

spanwise pressure gradient is not included in any part of the present model. Significantly
more sophisticated modelling of the eddy viscosity in the RANS model used to derive
the LaRTE equation would be required. In this case, however, the difference is less than
1 %–2 % of uτ0. The model correctly relaxes towards the DNS trend for tuτ0/h > 1. The
increase in τwx may be attributed to the increase in Reynolds number as the mean pressure
gradient increases in magnitude even as its alignment rotates away from the x-axis. This
behaviour is ‘slow’ and thus is expected to be captured well by the LaRTE model. This
also means that the EQWM is able to capture this behaviour well, as evident from the
similarity between the equilibrium and quasi-equilibrium curves in figure 13. After a long
time, the new equilibrium condition is reached in which the x-component of the pressure
gradient must be balanced by the wall stress and thus the wall stress reduces back to unity
as shown in figure 13(b).

Figure 14 shows mean spanwise velocity profiles after the SSPG for several different
time instances. Generally, the LES agrees with the DNS for both wall models quite well.
This is consistent with the results reported in Lozano-Durán et al. (2020) where all wall
models considered produced good spanwise velocity profiles upon application of the
SSPG. This is also consistent with the notion that one-point statistics are less sensitive
to the wall model relative to other simulation parameters, as argued earlier in this section.

Figure 15 shows contours of fluctuations of the quasi-equilibrium stress τ̄w. Specifically,
we show contours of τ̄ ′

ws = τ̄w · 〈s〉 − 〈τ̄w〉 · 〈s〉, where 〈s〉 is the plane-averaged unit
vector, i.e. in the direction of the mean LaRTE wall stress. The contours represent
the wall-stress fluctuations aligned with the plane-averaged mean quasi-equilibrium
wall-stress direction. As a reference, the dashed lines shown are aligned with the total
wall stress and thus include the contributions from the laminar boundary layer developing
due to the application of the SSPG. The application of the SSPG disrupts the orientation
and shape of the structures as the mean flow rotates towards the z direction. At later times,
after the SSPG is applied, panels (b, d, f ) show that the structures have had enough time
to orient and advect themselves with the mean wall-stress direction, albeit with a reduced
size.
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Figure 14. Mean spanwise velocity profiles at tuτ0/h = 0.21, 0.405, 0.615, 0.825 and 1.02 from bottom to top.
Open circles: WMLES with composite LaRTE and laminar non-equilibrium components. Plus signs: WMLES
with the EQWM. Lines: DNS from Lozano-Durán et al. (2020).
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Figure 15. Contours of the quasi-equilibrium s-component wall stress (s introduced in § 2) with the
plane-averaged mean subtracted, τ̄ ′

ws, for various times after the SSPG. (a,c,e) Immediately after SSPG; (b,d, f )
later times after SSPG. Dashed lines are aligned with the plane-averaged total wall-stress angle (includes both
quasi-equilibrium and non-equilibrium components).

Figure 16 shows the evolution of the angle (with respect to the x axis) of the
pressure gradients (dashed lines) and resulting plane-averaged total (black line) and
quasi-equilibrium (blue line) wall stresses. As expected, the quasi-equilibrium component
of the wall stress has a delayed and smoothed response to the SSPG, while at
the initial transient the non-equilibrium component dominates the plane-averaged
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Figure 16. Plane-averaged pressure gradient and wall-stress angles after the SSPG; 〈∇hp̄〉 (dashed blue),
〈∇hp∞〉 (dashed black), 〈τ̄w〉 (solid blue), 〈τ̄w〉 + 〈τ ′′

w〉 (solid black) where angled brackets indicate plane
averaging.

wall-stress response. After some adjustment time the quasi-equilibrium component
becomes more dominant, again in establishing the trends of the plane-averaged wall-stress
components such as its direction. At large times, the angle tends to the same angle as the
net applied pressure gradient.

6. Summary and conclusions

We have introduced the LaRTE wall model, representing a quasi-equilibrium dynamics.
The LaRTE model consists of an evolution equation for the friction velocity (and thus the
wall stress) using a method similar to that introduced in Chung & Pullin (2009) where the
law of the wall is utilized to rewrite the unsteady term as ∂uτ /∂t. Also similar to Chung &
Pullin (2009) and Yang et al. (2015), the LaRTE model is based on the vertically integrated
RANS-like thin boundary-layer equations. Remarkably, it is found that generalization to
include the advection terms leads to a Lagrangian form rather than an Eulerian one.
Moreover, the right-hand side of this equation is in the form of a term describing relaxation
towards the stress at the wall-model height, with a relaxation time scale Ts. A priori testing
based on DNS channel flow data shows that the relaxation time scale is consistent, whereas
use of shorter time scales would be inconsistent, with the assumption of quasi-equilibrium.

The proposed formalism allows for separate modelling of non-equilibrium effects not
captured by the LaRTE model. In § 3 we introduce a non-equilibrium wall model to capture
quick transient pressure gradient effects. The approach is well suited for modelling the
laminar Stokes layer observed in the literature for flows with a rapidly changing pressure
gradient.

The LaRTE plus laminar non-equilibrium model is tested for (a) simple channel flow
with a constant pressure gradient and (b) the sudden spanwise pressure gradient test case
introduced in Lozano-Durán et al. (2020). These two cases were selected in order to verify
that the LaRTE model elements indeed exhibit quasi-equilibrium behaviour, develop
intuition regarding the model performance and examine its response in a case where the
non-equilibrium effects are known to follow the Stokes laminar solution. Time signals,
wall-stress contour plots and wall-stress PDFs reveal interesting and useful physical insight
as to how the model operates. For example, time signals of the LaRTE-predicted wall
stress are consistent with the idea that the friction velocity relaxes towards its equilibrium
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value at the relaxation time scale. Wall-stress contour plots show that the structures in
the LaRTE model are rather large, of length of the order of or larger than the channel
half-width. LaRTE thus implicitly averages out the turbulence leaving only large-scale
fluctuations that are internally consistent with ‘quasi-equilibrium’, i.e. under conditions
that are sufficiently averaged so that using the locally determined friction velocity one
may assume the law of the wall to hold.

A comparison between Lagrangian and Eulerian versions of the relaxation towards
equilibrium model show the Lagrangian version tends to advect wall-stress structures
whereas the Eulerian version tends to thin out and elongate structures in the streamwise
direction. Wall-stress PDFs show the distribution of wall-stress fluctuations of each
component and how the non-equilibrium model diminishes in importance as Reynolds
number increases. Differences between PDFs from the wall model and filtered DNS show
that additional ingredients will be required to fully capture the turbulent fluctuations in
wall stress, especially in the streamwise direction. For the SSPG test case, time signals
of the plane-averaged mean spanwise and streamwise wall stresses show the model is in
good agreement with the DNS data of Lozano-Durán et al. (2020) and that long after the
application of the SSPG the model approaches the correct steady-state values.

In the LaRTE approach, closure for the total stress τ̄Δ at the wall-model height is
required. Also, the pressure gradient decomposition into various time scales involves some
modelling choices. While a number of other options exist and could be explored, the
corresponding choices used in this paper were justified through physical interpretation
and the model’s ability to yield good results for the test cases considered here.

In summary, the proposed LaRTE model represents a new framework for wall
modelling. Specifically, the formal identification of quasi-equilibrium dynamics enables
us to model the remainder non-equilibrium parts more rigorously. Moreover, the
quasi-equilibrium portion can be further expanded beyond the case of smooth flat-plate
surfaces to include, e.g. roughness effects and additional dependencies on other physical
parameters such as streamline curvature, thermal and compressibility effects, etc. The
choice of model for the turbulence stress at the wall-model height and the pressure
gradient decompositions could also be further improved. We leave such extensions for
future work. Also, the new wall model must be tested in other flows such as flows with
streamwise pressure gradients, flow over a cylinder, steps and others. Finally, for flows
with rapidly oscillating walls for e.g. drag reduction (Jung et al. 1992) in which the
turbulent structure below y = Δ is heavily affected by non-equilibrium scrambling effects,
additional modelling will be required, corresponding to the ‘white’ region in figure 3.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.1156.

Acknowledgements. The authors are grateful to Dr S. Jiang for providing us with the code to compute the
SOE parameters.

Funding. Funding was provided by the Office of Naval Research, grants N00014-17-1-2937 and
N00014-21-1-2162. The program manager was Dr P. Chang.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Mitchell Fowler https://orcid.org/0000-0001-6839-442X;
Tamer A. Zaki https://orcid.org/0000-0002-1979-7748;
Charles Meneveau https://orcid.org/0000-0001-6947-3605.

Author contributions. All three authors contributed to deriving theory, reaching conclusions, and writing
the paper. M.F. performed the simulations and analysis of simulation data.

934 A44-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
56

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1156
https://orcid.org/0000-0001-6839-442X
https://orcid.org/0000-0001-6839-442X
https://orcid.org/0000-0002-1979-7748
https://orcid.org/0000-0002-1979-7748
https://orcid.org/0000-0001-6947-3605
https://orcid.org/0000-0001-6947-3605
https://doi.org/10.1017/jfm.2021.1156


M. Fowler, T.A. Zaki and C. Meneveau

Appendix A. Derivation of integral of advective term

Here, we provide evaluation of the vertical integration of the advective terms in (2.5),
namely ∫ Δ

0

[
∂s(ūsūs)+ ∂y(v̄ūs)

]
dy. (A1)

We develop the second term
∫ Δ

0 ∂y(v̄ūss) dy = v̄(Δ)ūs(Δ)s, which together with (2.10)
can be written as∫ Δ

0
∂y(v̄ūss) dy = v̄(Δ)ūs(Δ)s = −∂uτ

∂s
Δf 2(Δ+)(uτ s). (A2)

Next, we develop the term
∫ Δ

0 ∂s(ū2
s s) dy that can be written as

∂

∂s

(
u2
τ s
∫ Δ

0
f 2( y+) dy

)
= (uτ s)

∂

∂s

(
uτ

∫ Δ

0
f 2( y+) dy

)
+
(

uτ

∫ Δ

0
f 2( y+) dy

)
∂

∂s
(uτ s).

(A3)
Using

∂

∂s

[
uτ

∫ Δ

0
f 2( y+) dy

]
= ∂uτ

∂s

∫ Δ

0

[
f 2( y+)+ y+df 2/dy+

]
dy = ∂uτ

∂s
Δf 2(Δ+), (A4)

we obtain∫ Δ

0
∂s(ū2

s s) dy =
(

uτ

∫ Δ

0
f 2( y+) dy

)
∂

∂s
(uτ s)+ ∂uτ

∂s
Δf 2(Δ+)(uτ s). (A5)

Combining with the vertical advection term evaluated in (A2) we see that the last term
cancels exactly and we obtain simply∫ Δ

0

[
∂s(ū2

s s)+ ∂y(v̄ūs)
]

dy =
(

uτ

∫ Δ

0
f 2( y+) dy

)
∂

∂s
(uτ s) =

∫ Δ

0
f 2( y+) dyuτ · ∇huτ ,

(A6)
since uτ s = uτ and ∂s = s · ∇h. Furthermore, from the definitions of the cell thicknesses
δ∗Δ and θΔ it is easy to show that∫ Δ

0
f 2( y+) dy = f 2(Δ+)Δ

(
1 − δ∗Δ

Δ
− θΔ

Δ

)
. (A7)

Division by Δf (Δ+) and multiplication by uτ s = uτ leads to the advective velocity V τ as
stated in (2.12).

Appendix B. Derivation of integral of horizontal diffusion term

Here, we develop one of the expressions needed for the diffusive term, namely

Dτν =
∫ Δ

0
ν
[
∇hūs + (∇hūs)

�
]

dy, (B1)

i.e. the contribution to Dτ = Dτν + DτT from the constant (molecular) viscosity. Using
again ūs = ūs( y)s and ∇h = s∂s, we consider

ν

∫ Δ

0
s∂s
[
ūs( y)s

]
dy = ν

∫ Δ

0
∂s
[
uτ f ( y+)

]
dy(ss)+ νuτ

∫ Δ

0
f ( y+) dy

(
s
∂s
∂s

)
. (B2)
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Since
∫ Δ

0 ∂s[uτ f ( y+)]dy = Δf (Δ+)∂uτ /∂s, we obtain

ν

∫ Δ

0
s∂s
[
ūs( y)s

]
dy = νΔf (Δ+)

∂uτ
∂s
(ss)+ νuτ

∫ Δ

0
f ( y+) dy

(
s
∂s
∂s

)

= νΔf (Δ+)s
∂(uτ s)
∂s

− νuτ δ∗Δ

(
s
∂s
∂s

)
. (B3)

Adding the transpose and writing si∂sj + sj∂si = ∂(sisj) as ∂s(ss) = s · ∇h(ss) we obtain,
finally,

Dτν = νΔf (Δ+)
[
∇huτ + (∇huτ )�

]
− νδ∗Δuτ · ∇h (ss) . (B4)

The first term is in the form of standard horizontal diffusion proportional to viscosity
and the symmetric part of the friction velocity horizontal gradient tensor. The last term is
non-standard and represents spatial direction changes. However, since δ∗ is expected to be
typically much smaller than Δf (Δ+) this term can be expected to be small (similarly to
the term in the Eulerian time derivative proportional to δ∗Δ in (2.9)).

The case of y-dependent eddy viscosity to determine DτT can be developed similarly
but includes more complicated expressions. In the simulations presented in this paper
the horizontal diffusion terms are not explicitly included while some horizontal diffusion
is provided by the low-order discretization method employed to solve the Lagrangian
advection part of the equation efficiently.

Appendix C. Fits for f (Δ+), cell thickness scales and ReτΔ

Here, we provide details how the cell thickness scales δ∗Δ and θΔ, and law-of-the-wall
quantities f (Δ+) and ReτΔ, are evaluated. We begin with the velocity profile fit to the
numerically obtained solution to the ‘full equilibrium’ streamwise momentum equation
with a prescribed eddy viscosity. As in Meneveau (2020), a mixing length model with the
van Driest damping function is used. All variables are non-dimensionalized in inner units
such that we can obtain u+ = f ( y+), i.e. the law of the wall. We then develop a fit for this
velocity profile as a function of the wall-model height in inner units Δ+ ≡ uτΔ/ν where
uτ is the friction–velocity magnitude obtained from the quasi-equilibrium wall model (its
value at the previous time step is used for explicit evaluation)

f (Δ+) =
[

1
κ

log(κ2 +Δ+)+ B
] [

1 +
(
κ−1

1 Δ+
)−β]−(1/β)

. (C1)

We set κ = 0.4 and other fitting parameters are chosen to minimize the error between the
fit and the numerical solution. This yields

B = 4.95, κ2 = 9.753, β = 1.903, κ1 = 1
κ

log(κ2)+ B, (C2a–d)

where the last choice is required to ensure the near-wall viscous layer asymptote f (Δ+) =
Δ+. The fit has an error, relative to the numerical solution, of less than one per cent for
Δ+ > 5 and an error less than 2.25 % for 0 ≤ Δ+ ≤ 5. Other fits could also be used, such
as the traditional Reichardt fit (Reichardt 1951): f (Δ+) = κ−1 log(1 + κΔ+)+ 7.3[1 −
exp(−Δ+/11)− (Δ+/11) exp(−Δ+/3)]. But it yields over 3 % relative error near Δ+ ∼
10, so we prefer to use (C1) instead.
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From the numerical solution of the velocity profile we can obtain the cell thickness
scales from their definitions in (2.8) and (2.13) through numerical integration. We then
provide fits for these scales (non-dimensionalized by Δ) to eliminate the need for
numerical integration while implementing the wall model. The fits were developed by
analytically determining the length scales when Δ lies in the viscous sublayer or when Δ
lies in the log layer and then using a merger function to create a function valid for any Δ
within the range of Δ+ considered. The log-layer solutions are denoted with superscript
‘log’. The cell displacement thickness fit is

δ∗Δ
Δ

= 1
2
γ1 + (1 − γ1)

C3

(
δ
∗ log
Δ

Δ

)
, (C3)

where

δ
∗ log
Δ

Δ
= C1

ReΔ
+ 1
κ

Δ+

ReΔ
, γ1 = 1

1 + C2ReC4
Δ

,

C1 = 23.664, C2 = 0.0016, C3 = 1.516, C4 = 1.177.

⎫⎪⎪⎬
⎪⎪⎭ (C4)

Similarly, the cell momentum thickness fit is

θΔ

Δ
= 1

6
γ2 + (1 − γ2)

C8

(
θ

log
Δ

Δ

)
, (C5)

where

θ
log
Δ

Δ
= 1

ReΔ

(
C5 + Δ+

κ

)
+ Δ+

Re2
Δ

(
C6 − 2Δ+

κ2

)
, γ2 = 1

1 + C7ReΔ
,

C5 = −103.5, C6 = 2586, C7 = 0.00154, C8 = 2.475.

⎫⎪⎬
⎪⎭ (C6)

For both fits, ReΔ = Δ+f (Δ+) and κ = 0.4. The fitting functions from (C3) and (C5)
have a maximum error of 0.5 per cent (over the range 10−1 ≤ Δ+ ≤ 105) compared
with the numerical solutions obtained by integrating the velocity profile. Note (C3) and
(C5) require the fit f (Δ+) given by (C1). Figure 17 displays the results as well as the
associated cell shape factor HΔ = δ∗Δ/θΔ. Note that its low Reynolds number limit is not
the traditional Blasius profile value, but HΔ → 3 associated with a linear profile.

Furthermore, to evaluate τΔ according to (2.20) in terms of Repres
τΔ , we use the fitting

function provided in Meneveau (2020) reproduced here for completeness. Since the
applications in the present paper only deal with smooth surfaces the merging with rough
wall parameterizations treated in Meneveau (2020) is omitted. Mean pressure gradients
are included, however, and so we use Repres

τΔ that generalizes Refit
τΔ to include pressure

gradients. The inputs are ReΔ = ULESΔ/ν and ψp = ρ−1(∇hP · êu)Δ
3/ν2, and the fitting

function Meneveau (2020) is provided in algorithm 1.

Appendix D. Verification of the accuracy of the SOE method

We now validate the accuracy of the SOE method presented in § 4.3 by comparing it with
the more costly, but well-established ‘L1 method’ (Li & Zeng 2015). A typical pressure
gradient signal from real flow simulations for Reτ = 1000 and Δ = h/30 is used for the
comparison. The SOE constants ω and s and the number of exponential terms, Nexp, are
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Figure 17. (a) Numerical evaluation of the cell displacement thickness (red), cell momentum thickness
(blue), (b) cell shape factor (green) and their corresponding fits (dashed black).

Algorithm 1: Repres
τΔ = Repres

τΔ (ReΔ,ψp)where 0 < ReΔ < 107 and |ψp|<2 × 107

β1 = [1 + 0.155/Re0.03
Δ ]−1, β2 = 1.7 − [1 + 36/Re0.75

Δ ]−1,

κ = 0.4, κ3 = 0.005, κ4 = κ
β1−1/2
3 ,

Refit
τΔ = κ4Reβ1

Δ [1 + (κ3ReΔ)−β2](β1−1/2)/β2

if ψp < 0 then

ReτΔ−min(ψp) = 1.5(−ψp)
0.39

[
1 +

(
1000
−ψp

)2
]−0.055

,

p(ψp) = 2.5 − 0.6
[
1 + tanh(2(log10(−ψp)− 6))

]
,

Repres
τΔ =

(
(ReτΔ−min)

p + (Refit
τΔ)

p
)1/p

else

ReΔ−min(ψp) = 2.5ψ0.54
p

(
1 +

[
30
ψp

]1/2
)−0.88

if ReΔ > ReΔ−min then
Repres
τΔ = Refit

τΔ

(
1 − (1 + log[ReΔ/ReΔ−min])−1.9)

else
Repres
τΔ = 0 (flow separation)

end
end

functions of the error of the SOE approximation, ε, the time-step size, δt, and the length

of time considered, T . The method guarantees that |t−1/2 −Σ
Nexp
m=1ωm exp(−smt)| ≤ ε but

it does not guarantee that the error in computing the integral in (4.8) is below a desired
value. Therefore, we simply compare the SOE method with the L1 method to show that
the errors between the two are insignificant despite the significant computational cost
differences between the two numerical methods. The results are presented in figure 18.
Panel (a) shows the input signal and (b) shows the output signal. The time-step size
used for computing the SOE constants matches the time-step size of the pressure gradient
signal, thus error in the approximation of the kernel is guaranteed. Visually, the differences
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Figure 18. (a) Representative non-equilibrium pressure gradient signal and (b) corresponding non-equilibrium
wall stress. Red and blue curves correspond to the x and z components, respectively. For (b), solid lines are
computed using the L1 method and dashed black lines are computed using the SOE method. The SOE constants
are computed using δt = 4 × 10−4, ε = 10−9, and T = 1 (yielding Nexp = 48).

between the two methods are not noticeable. Quantitatively the root-mean-sum difference
between the methods, normalized with u2

τ0, is less than 0.021 in the x-direction and less
than 0.011 in the z-direction. Therefore, differences between the two methods are shown to
be small enough to be neglected for current applications. The L1 method requires O(NT)
computations per time step and O(NT) terms to be stored. The SOE method, on the other
hand, requires O(Nexp) computations per time step and (Nexp) terms to be stored where
Nexp can be estimated from (4.10). For a large number of time steps Nexp ∼ O(log NT),
which in practice is held constant to avoid a dynamic storage size. Therefore, the SOE
method has been shown to be significantly cheaper (with a non-dynamic storage size)
relative to the L1 method while still providing accurate results.

The SOE constants, ω and s, used in all simulations in this paper are included in the
supplementary materials available at https://doi.org/10.1017/jfm.2021.1156. Dr S. Jiang
kindly provided the source code for computing these coefficients.

Appendix E. Alternate form of friction–velocity evolution equation

At the end of § 4.2 it is mentioned that the ∂ts term in the friction–velocity evolution
equation is discretized using s known at the n − 1 and n − 2 time steps. This is done to
avoid coupling between the x and z evolution equations. Alternatively, it is possible to
rewrite (2.14) without an additional ∂ts time derivative term. The resulting set of equations
require additional evaluations of spatial gradients, thus we prefer working with (2.14).
However, for completeness we here provide the alternate form of the LaRTE equation that
does not contain the non-standard ∂ts term.

We begin with (2.14) and move all the time derivative terms to the left-hand side of the
equal sign and the remaining terms to the right-hand side. The resulting equation is

∂uτ
∂t

− uτ
δ∗Δ
Δ

∂s
∂t

= RHS∗, (E1)

where

RHS∗ = −V τ · ∇huτ + 1
Ts

[
1
uτ

(
−Δ
ρ

∇hp̄ + τ̄Δ

)
− uτ

]
+ 1

Δf (Δ+)
∇h · Dτ , (E2)
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Lagrangian relaxation towards equilibrium wall model

with the same definitions presented in § 2. Then using the definition s ≡ uτ /uτ we write
∂ts in terms of friction–velocity time derivatives, i.e.

∂s
∂t

= 1
uτ

∂uτ
∂t

− uτ
u3
τ

(
uτ · ∂uτ

∂t

)
. (E3)

Using (E1) we replace ∂tuτ with RHS∗ + uτ (δ∗Δ/Δ)∂ts and solve for ∂ts to get

∂s
∂t

=
(

1 − δ∗Δ
Δ

)−1 [ 1
uτ

RHS∗ − uτ
u3
τ

(
uτ · RHS∗)] , (E4)

where we have utilized uτ · ∂ts = 0. Substituting back into (E1) we obtain a governing
equation for the friction–velocity vector without the ∂ts term

∂uτ
∂t

= RHS∗ − δ∗Δ
Δ− δ∗Δ

(
s(s · RHS∗)− RHS∗) . (E5)

We can further simplify this equation using the vector identity s × (s × RHS∗) = s(s ·
RHS∗)− RHS∗(s · s) so that the final, rewritten, evolution equation for uτ is

∂uτ
∂t

+ V τ · ∇huτ = 1
Ts

[· · · ] + 1
Δf (Δ+)

∇h · Dτ − δ∗Δ
Δ− δ∗Δ

s × (s × RHS∗), (E6)

where · · · is the entire relaxation term in the square parenthesis in (E2). Equation (E6)
is an alternate form of writing the LaRTE wall-model equation, again confirming the
Lagrangian relaxation dynamics for uτ but now including the additional term proportional
to δ∗Δ/(Δ− δ∗Δ) written without time derivatives. Again, similarly to ∂ts, this term is
perpendicular to s. However, in seeking to implement this term using the Lagrangian time
derivative approach the evaluation of RHS∗ in the cross-product becomes cumbersome
because it contains the advective term V τ · ∇huτ and we would require additional
evaluation of the spatial gradients of uτ at the upstream location. This is why (2.14) is
the preferred form for the LaRTE wall model, at least in our implementation.
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