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Abstract

This paper is concerned with the Cauchy problem for a nonlinear Schrödinger equation with a harmonic
potential and exponential growth nonlinearity in two space dimensions. In the defocusing case, global
well-posedness is obtained. In the focusing case, existence of nonglobal solutions is discussed via
potential-well arguments.
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1. Introduction

Consider the initial value problem for a nonlinear Schrödinger (NLS) equation with
quadratic potential {

iu̇ + ∆u − |x|2u + εg(u) = 0;
u|t=0 = u0,

(1.1)

where ε ∈ {−1, 1}, u is a complex-valued function of the variable (t, x) ∈ R × R2 and
the nonlinearity takes the Hamiltonian form g(u) := uG′(|u|2) for some positive real
function G ∈ C3(R+) satisfying G(0) = G′(0) = G′′(0) = 0.

Equation (1.1) models Bose–Einstein condensates with attractive interparticle
interactions under a magnetic trap [3, 9, 21, 33, 35]. The isotropic harmonic potential
|x|2 describes a magnetic field whose role is to confine the movement of particles
[3, 9, 33].
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A solution u of (1.1) satisfies formally conservation of the mass and the energy:

M(t) = M(u(t)) := ‖u(t)‖2L2 = M(0);

E(t) = E(u(t)) :=
∫
R2

(|∇u(t)|2 + |xu(t)|2 − εG(|u(t)|2)) dx = E(0).

Moreover, such a solution enjoys the so-called virial identity [7],

1
8

(‖xu(t)‖2L2 )′′ = ‖∇u‖2L2 − ‖xu‖2L2 − ε

∫
R2

(ūg(u) −G(|u|2)) dx. (1.2)

If ε = −1, the energy is always positive and we say that (1.1) is defocusing. Otherwise,
(1.1) is said to be focusing. Naturally, we would like to study the problem (1.1) in
some space where energy and mass are well defined.

Definition 1.1. We define:

(1) the conformal space
Σ := {u ∈ H1, s.t. |x|u ∈ L2},

where here and hereafter s.t. stands for such that;
(2) the conformal norm

‖u‖Σ := (‖u‖2H1 + ‖ |x|u‖2L2 )1/2 = (‖u‖2L2 + ‖∇u‖2L2 + ‖ |x|u‖2L2 )1/2.

In the monomial case g(u) = u|u|p−1 for 1 < p < (n + 2)/(n − 2) if n ≥ 3 and 1 < p <
∞ if n ∈ {1, 2}, local well-posedness in the conformal space was established [7, 19].
By [6], when p < 1 + (4/n) or p ≥ 1 + (4/n) and ε = −1, the solution to the Cauchy
problem (1.1) exists globally. For p = 1 + (4/n), there exists a sharp condition [36] of
the global existence for the Cauchy problem (1.1). When p > 1 + (4/n), the solution
to the Cauchy problem (1.1) blows up in a finite time for a class of sufficiently large
data and globally exists for a class of sufficiently small data [4, 5, 33].

In two space dimensions, the initial value problem (1.1) in the monomial case is
energy subcritical for all p > 1. So, it is natural to consider problems with exponential
nonlinearities, which have several applications, such as for example self-trapped
beams in plasmas [14]. Moreover, the two-dimensional case is interesting because
of its relation to the critical Moser–Trudinger inequalities [1, 22].

The two-dimensional semilinear Schrödinger problem with exponential growth
nonlinearity was studied, for small Cauchy data, by Nakamura and Ozawa [18]. They
proved global well-posedness and scattering. Later on, Colliander et al. [8] obtained
global well-posedness and scattering for small data. The author [25] obtained a decay
result in a critical case.

Recently, the author [23, 27–29] proved global well-posedness and scattering in
the energy space, without any condition on the data, of a Schrödinger equation with
exponential nonlinearity. Moreover, scattering was proved in the conformal space [24]
(similar results were proved for the corresponding wave equation [15, 16, 26, 30]).

It is the aim of this paper to obtain three results about the Cauchy problem (1.1)
in the two-space-dimensional case. First, we prove global well-posedness in the

https://doi.org/10.1017/S1446788714000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000391


80 T. Saanouni [3]

defocusing case. Then, we establish existence of a ground state solution for the
stationary associated problem. Third, we discuss, in the focusing case, either global
well-posedness or finite time blow-up. It is worth pointing out that the present study
uses the potential well method based on the concepts of invariant sets suggested by
Payne and Sattinger [20].

The rest of the paper is organized as follows. The main results and some technical
tools needed in the sequel are listed in the next section. The third section is devoted to
prove well-posedness of (1.1). The goal of the fourth section is to study the stationary
problem associated to (1.1). In the fifth section we prove either global well-posedness
or finite time blow-up of solutions to (1.1) with energy under the ground state one. In
the last section we establish the existence of infinitely many blowing-up solutions to
(1.1), with data near the ground state.

In this paper, we are interested in the two-space-dimensions case, so, here and
hereafter, we denote

∫
. dx :=

∫
R2 . dx. For p ≥ 1, Lp := Lp(R2) is the Lebesgue space

endowed with the norm ‖ · ‖p := ‖ · ‖Lp , ‖ · ‖ := ‖ · ‖2 and H1 is the usual Sobolev space
endowed with the norm ‖ · ‖H1 := (‖ · ‖2 + ‖ ∇. ‖2)1/2.

For T > 0 and X, an abstract functional space, we denote CT (X) := C([0,T ], X), the
space of continuous functions with variable in [0, T ] and values in X and Xrd, the set
of radial functions in X. We mention that C is an absolute positive constant, which
may vary from line to line. If A and B are nonnegative real numbers, A . B means that
A ≤ CB. Finally, we define the operator (D f )(x) := x f ′(x).

2. Background material

In this section, we give the main results and some technical tools needed in the
sequel. First, let us fix the set of nonlinearities considered in this paper.

(i) Ground state condition

∃εg > 0 s.t. min{(D − 1 − εg)G, ((D − 1)2 − εg)G} ≥ 0 on R+. (2.1)

(j) Strong ground state condition

∃εg > 0 s.t. min{(D − 2 − εg)G, ((D − 1)2 − εg)G} > 0 on R∗+. (2.2)

(k) Subcritical case

∀α > 0, |G′′′(r)| = o(eαr) as r→∞. (2.3)

(l) Critical case
∃α0 > 0 s.t. |G′′′(r)| = O(eα0r) as r→∞. (2.4)

We say that the nonlinearity of the problem (1.1) is subcritical (respectively critical)
if G satisfies (2.3) (respectively (2.4)). Moreover, we should assume (2.3) or (2.4)
in order to prove well-posedness of (1.1) and use [(2.1) or (2.2)] with [(2.3) or (2.4)] in
order to obtain existence of a ground state solution to the stationary problem associated
to (1.1).
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Remark 2.1. We give explicit examples.

(1) Subcritical case: G(r) := e(1+r)1/2
− er/2 − e.

(2) Critical case: G(r) = er − 1 − r − (1/2)r2.

Proof. (1) For t :=
√

r + 1, we have G(r) = et − (e/2)t2 − (e/2). Thus, DG(r) =

((t2 − 1)/2t)(et − et). Then, for ε > 0,

φ(t) = 2(D − 1 − ε)G(r) = et
(
t −

1
t
− 2 − 2ε

)
+ e(εt2 + 2 + ε);

φ′(t) = et
(
t −

1
t

+
1
t2 − 1 − 2ε

)
+ 2eεt;

φ′′(t) = et
(
t −

1
t

+
2
t2 −

2
t3 − 2ε

)
+ 2eε ≥ 0.

Since φ(1) = φ′(1) = 0, we have φ ≥ 0. Moreover,

D(D − 1)G(r) =
1
4

et
(
t −

1
t

)(
t − 1 −

1
t

+
1
t2

)
;

[(D − 1)2 − ε]G(r)

=
1
4

[
et
(
t2 − 3t + 2 − 4ε +

4
t

+
1
t2 −

1
t3

)
+ 2eεt2 + 2εe − 4e

]
=

1
4
ψ(t);

ψ′(t) = et
(
t2 − t − 1 − 4ε +

4
t
−

3
t2 −

3
t3 +

3
t4

)
+ 4eεt;

ψ′′(t) = et
(
t2 + t − 2 − 4ε +

4
t
−

7
t2 +

3
t3 +

12
t4 −

12
t5

)
+ 4eε ≥ 0.

Since ψ(1) = ψ′(1) = 0, we have ψ ≥ 0.
(2) Take ε ∈ (0, 2) and G(x) := ex − 1 − x − x2/2. Then DG(x) = x(ex − 1 − x) and

(D − 1 − ε)G(x) = (x − 1 − ε)ex + (ε − 1)
x2

2
+ εx + 1 + ε := φ(x);

φ′(x) = (x − ε)ex + (ε − 1)x + ε, φ′′(x) = (x − ε + 1)ex + ε − 1;
φ′′(x) = (x − ε + 2)ex ≥ 0.

Since φ(0) = φ′(0) = 0, we have φ ≥ 0. Moreover,

(D − 1)G(x) = (x − 1)ex −
x2

2
+ 1,D(D − 1)G(x) = x(xex − x);

[(D − 1)2 − ε]G(x) = (x2 − x + 1 − ε)ex + (ε − 1) + (ε − 1)
x2

2
+ εx := ψ(x);

ψ′(x) = (x2 + x − ε)ex + (ε − 1)x + ε, ψ′′(x) = (x2 + 3x − ε + 1)ex + ε − 1;
ψ′′′(x) = (x2 + 5x − ε + 2)ex ≥ 0.

Since ψ(0) = ψ′(0) = ψ′′(0) = 0, we have ψ ≥ 0. This finishes the proof. �
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The results proved in this paper are listed in the following subsection.

2.1. Main results. The first result deals with well-posedness of (1.1). Assuming
that the nonlinearity satisfies (2.4), we obtain existence of a unique global solution for
small data.

Theorem 2.2. Assume that g satisfies (2.4). Let u0 ∈ Σ be such that ‖∇u0‖
2 < 4π/α0.

Then there exist T > 0 and a unique solution u to the Cauchy problem (1.1) in the class
CT (Σ). Moreover:

(1) u,∇u, xu ∈ L4
T (L4(R2));

(2) u satisfies conservation of the energy and the mass;
(3) u is global if E(u0) ≤ 4π/α0.

Remark 2.3. Note that if g satisfies (2.3), then global well-posedness holds without
any condition on the data size [28].

Next, we are interested in the focusing case of the Schrödinger problem (1.1). This
case is related to the associated stationary problem. Indeed, under the condition (2.1),
we prove existence of a ground state φ, meaning that φ is a solution of the stationary
problem

−∆φ + φ − |x|2φ = g(φ), 0 , φ ∈ Σ, (2.5)

which minimizes the problem

mα, β := inf
0,v∈Σ
{S (v), s.t. Kα, β(v) = 0}, (2.6)

where α, β ∈ R and

S (v) := E(v) + M(v) = ‖v‖2Σ −
∫

G(|v|2) dx;

Kα, β(v) := 2
∫

[α|∇v|2 + (α + β)|v|2 + (α + 2β)|xv|2 − α|v|g(|v|) − βG(|v|2)] dx.

Precisely, we obtain the next result, where we denote some set depending on the
nonlinearity:

Ag := {(a, b) ∈ R∗+ × R+, s.t. b < aεg}.

Theorem 2.4. Assume that g satisfies (2.1) and [(2.3) or (2.4)]. Let two real numbers
(α, β) ∈ Ag. Then:

(1) there is a minimizer of (2.6), which satisfies (2.5);
(2) m := mα, β is nonnegative and independent of (α, β).

Following the potential well theory [13, 20], we are interested in the focusing case
of the Schrödinger problem (1.1) with data in some stable sets. Here and hereafter, we
denote for (α, β) ∈ R2

+ the sets

A+
α, β := {v ∈ Σ s.t. S (v) < mα, β and Kα, β(v) ≥ 0};

A−α, β := {v ∈ Σ s.t. S (v) < mα, β and Kα, β(v) < 0};
A1,−1 := {v ∈ Σ s.t. S (v) < m1,0, K1,0(v) < 0 and K1,−1(v) < 0}.
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Global existence and finite time blow-up are now discussed.

Theorem 2.5. Assume that ε = 1 and g satisfies (2.3) or (2.4). Let u ∈ CT ∗(Σ) be the
maximal solution to (1.1).

(1) Suppose that (2.2) holds. If there exists t0 ∈ [0,T ∗) such that u(t0) ∈ A1,−1, then u
blows up in finite time.

(2) Suppose that (2.1) holds. If there exist (α, β) ∈ Ag and t0 ∈ [0, T ∗) such that
u(t0) ∈ A+

α, β, then u is global.

The last result concerns the instability by blow-up for the standing waves of the
Schrödinger problem (1.1).

Theorem 2.6. Assume that ε = 1 and g satisfies (2.2) with [(2.3) or (2.4)]. Let φ be
a ground state solution to (2.5). Then, for any ε > 0, there exists u0 ∈ Σ such that
‖u0 − φ‖Σ < ε and the maximal solution to (1.1) given by Theorem 2.2 is not global.

We list in what follows some intermediate results.

2.2. Tools. This subsection is devoted to give some estimates needed in this paper.
First, let us recall some known results [10, 11] about the free propagator associated to
(1.1). The following result holds [6].

Proposition 2.7. There exists a family of operators U := U(t, s), U(t) := U(t, 0) such
that u(t, x) := U(t, s)φ(x) is a solution to the linear problem

iu̇ + ∆u = |x|2u, u(s, ·) = φ.

Moreover, we have the following elementary properties:

(1) U(t, t) = Id;
(2) (t, s) 7→ U(t, s) is continuous;
(3) U(t, s)∗ = U(t, s)−1;
(4) U(t, τ)U(τ, s) = U(t, s);
(5) U(t, s) is unitary of L2.

The Duhamel formula yields the following result.

Proposition 2.8. If u is a solution to the inhomogeneous Schrödinger problem

iu̇ + ∆u − |x|2u = h, u(0, ·) = 0,

then:

(1) u(t) = −i
∫ t

0 U(t − s)h(s, x) ds;

(2) ∇u(t) = −i
∫ t

0 U(t − s)[∇h + 2xu] ds;

(3) xu(t) = −i
∫ t

0 U(t − s)[xh + 2∇u] ds.

Remark 2.9. Taking the derivative of the equation satisfied by u, we obtain the second
point. For the last one, we multiply the same equation with x.
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A classical tool to study Schrödinger problems is the so-called Strichartz-type
estimate.

Definition 2.10. A pair (q, r) of positive real numbers is admissible if

2 ≤ r <∞ and
1
q

+
1
r

=
1
2
.

In order to control an eventual solution to (1.1), we will use the following Strichartz
estimate [6].

Proposition 2.11. For any time slab I and any admissible pairs (q, r) and (α, β):

(1) ‖U(t)φ‖Lq(I,Lr) ≤ Cq‖φ‖ ∀φ ∈ L2;
(2) ‖

∫ t
0 U(t − s)h(s, x)ds‖Lq(I,Lr) ≤ Cα,|I|‖h‖Lα′ (I,Lβ′ ) ∀h ∈ Lα

′

(I, Lβ
′

).

In order to estimate the quantity
∫

G(|u|2) dx, which is a part of the energy, we will
use Moser–Trudinger-type inequalities [1, 17, 32].

Proposition 2.12. Let α ∈ (0, 4π); a constant Cα exists such that for all u ∈ H1

satisfying ‖∇u‖ ≤ 1, ∫
(eα|u(x)|2 − 1) dx ≤ Cα‖u‖2.

Moreover, this inequality is false if α ≥ 4π.

Remark 2.13. The number α = 4π becomes admissible if we take ‖u‖H1 ≤ 1 rather than
‖∇u‖ ≤ 1. In this case,

sup
‖u‖H1≤1

∫
(e4π|u(x)|2 − 1) dx <∞

and this is false for α > 4π. See [22] for more details.

Despite the lack of injection of H1 on the bounded functions set, we can control the
L∞ norm by the H1 norm and some Hölder norm with a logarithmic growth.

Proposition 2.14. Let β ∈ (0, 1). For any λ > 1/2πβ and any 0 < µ ≤ 1, a constant Cλ

exists such that, for any function u ∈ (H1 ∩Cβ)(R2),

‖u‖2L∞ ≤ λ‖u‖
2
µ log

(
Cλ +

8β‖u‖Cβ

µβ‖u‖µ

)
, (2.7)

where
‖u‖2µ := ‖∇u‖2 + µ2‖u‖2.

Recall that Cβ denotes the space of β-Hölder continuous functions endowed with
the norm

‖u‖Cβ := ‖u‖L∞ + sup
x,y

|u(x) − u(y)|
|x − y|β

.
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We refer the reader to [12] for the proof of this proposition and for more details. We
just point out that the condition λ > 1/2πβ in (2.7) is optimal.

In the next section, we will use the L∞ logarithmic estimate for β = 1/2, coupled
with the continuous Sobolev injection

W1,4(R2) ↪→ C1/2(R2).

Let us recall some standard Sobolev embeddings [2, 34].

Proposition 2.15.

(1) Whenever 1 < p < q < ∞, s > 0 and 1/p ≤ 1/q + s/d, we have the continuous
injection

W s,p(Rd) ↪→ Lq(Rd).

(2) The compact injection holds:

H1
rd(R2) ↪→↪→ Lp(R2) ∀p ∈ (2,∞).

(3) The following embedding is compact:

Σrd(R2) ↪→↪→ Lp(R2) ∀p ∈ [2,∞). (2.8)

We close this subsection with the following absorption result [31].

Lemma 2.16. Let T > 0 and X ∈ C([0,T ],R+) be such that

X ≤ a + bXθ on [0,T ],

where a, b > 0, θ > 1, a < (1 − 1/θ)1/(θb)1/θ and X(0) ≤ 1/(θb)1/(θ−1). Then

X ≤
θ

θ − 1
a on [0,T ].

3. Well-posedness

This section is devoted to prove Theorem 2.2 about well-posedness of the nonlinear
Schrödinger problem (1.1). In this section, we assume that α0 = 1.

Remark 3.1. Note that in all of this section, if we omit the condition α0 = 1, the spirit
of proof is the same.

Let us identify g with a function defined on R2 and denote byDg the R2 derivative
of the identified function. Then, using (2.4), the mean-value theorem and the convexity
of the exponential function, we derive the following property.

Lemma 3.2. For any ε > 0, there exists Cε > 0 such that

|g(z1) − g(z2)| ≤ Cε|z1 − z2|

2∑
i=1

(e(1+ε)|zi |
2
− 1) ∀z1, z2 ∈ C,

|Dg(z1) −Dg(z2)| ≤ Cε|z1 − z2|

2∑
i=1

(|zi| + e2(1+ε)|zi |
2
− 1) ∀z1, z2 ∈ C.
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The next auxiliary result will be useful.

Lemma 3.3. Let u ∈ CT (H1) ∩ L4
T (W1,4) be a solution to (1.1) satisfying ‖∇u‖2L∞T (L2) <

4π; then there exist two real numbers α < 4 near to 4 and ε > 0 near to zero such that,
for any Hölder couple (p, p′),

‖e(1+ε)|u|2 − 1‖Lp′
T (Lp) . T 1−(1/p) + ‖u‖αL4

T (W1,4)T
(1−(1/p))(1−(α/4)).

Proof. By the Hölder inequality, for any ε > 0,

‖e(1+ε)|u|2 − 1‖Lp′
T (Lp) . ‖e

1/p′(1+ε)‖u‖2
L∞x ‖Lp′ (0,T )‖e

(1+ε)|u|2 − 1‖1/p
L∞T (L1).

We can find ε > 0 small such that (1 + ε)‖∇u‖2 < 4π. So, by the Moser–Trudinger
inequality, ∫

(e(1+ε)|u|2 − 1) dx ≤
∫

(e(1+ε)‖∇u‖2(|u|/‖∇u‖)2
− 1) dx . ‖u‖2 . 1.

For any λ > 1/π and ω ∈ (0, 1], by the logarithmic inequality in Proposition 2.14,

e(1+ε)‖u‖2
L∞x ≤

(
C + 2

√
2
ω

‖u‖C1/2

‖u‖ω

)λ(1+ε)‖u‖2ω
.

Since ‖u‖2ω = ω2‖u‖2 + ‖∇u‖2, we may take 0 < ω, ε near to zero and α < 4 near to 4
such that (1 + ε)‖u‖2ω < απ < 4π. Thus, for λ near 1/π,

e(1+ε)‖u‖2
L∞x ≤

(
C + 2

√
2
ω

‖u‖C1/2

‖u‖ω

)λ(1+ε)‖u‖2ω

. (1 + ‖u‖C1/2 )α . 1 + ‖u‖αW1,4 .

It follows that

‖e(1+ε)|u|2 − 1‖Lp′
T (Lp) . ‖e

1/p′(1+ε)‖u‖2
L∞x ‖Lp′ (0,T )‖e

(1+ε)|u|2 − 1‖1/p
L∞T (L1)

. ‖e1/p′(1+ε)‖u‖2
L∞x ‖Lp′ (0,T )

. ‖1 + ‖u‖αW1,4‖
1/p′

L1(0,T )

. T 1−(1/p) + ‖u‖αL4
T (W1,4)T

(1−(1/p))(1−(α/4)). �

The proof of Theorem 2.2 contains three steps. First, we prove local well-
posedness, second we show uniqueness and third we obtain global well-posedness.
In the two next subsections, we assume that ε = 1. The sign of ε has no local effect.

3.1. Local well-posedness. We use a standard fixed-point argument. For T > 0,
denote IT := (0,T ) and the space

XT := {u ∈ C(IT ,Σ) s.t. u,∇u, xu ∈ L4(IT , L4)}
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endowed with the complete norm

‖u‖T := ‖u‖L∞(IT ,H1) + ‖u‖L4(IT ,W1,4) + ‖xu‖L∞(IT ,L2) + ‖xu‖L4(IT ,L4).

Define the map

φ : v 7−→ −i
∫ t

0
U(t − s)g(v + w)(s) ds,

where w := U(t)u0 is the solution to the associated free problem to (1.1), namely, for
V(x) := |x|2,

iẇ + ∆w = |x|2w w(0, ·) = u0.

With a continuity argument, there exists a positive time T0 > 0 such that
‖∇w‖L∞(IT0 ,L

2) < 4π. We shall prove the existence of T0 > T > 0 such that φ is a
contraction on some closed ball of XT . Using Strichartz estimates in Proposition 2.11
with the facts that ∇φ(v) = −i

∫ t
0 U(t − s)[∇g(v + w)(s) + ∇Vφ(v)] ds and xφ(v) = −i∫ t

0 U(t − s)[xg(v + w)(s) + 2∇φ(v)] ds,

‖φ(v)‖L∞(IT ,L2)∩L4(IT ,L4) . ‖g(v + w)‖L1(IT ,L2)

‖∇(φ(v))‖L∞(IT ,L2)∩L4(IT ,L4) . ‖∇(g(v + w))‖L1(IT ,L2) + ‖φ(v)∇V‖L1(IT ,L2)

. ‖∇(g(v + w))‖L1(IT ,L2) + T‖xφ(v)‖L∞(IT ,L2)

‖xφ(v)‖L∞(IT ,L2)∩L4(IT ,L4) . ‖xg(v + w)‖L1(IT ,L2) + T‖∇(φ(v))‖L∞(IT ,L2).

Thus,

‖φ(v)‖T . ‖g(v + w)‖L1(IT ,Σ) + T (‖∇(φ(v))‖L∞(IT ,L2) + ‖xφ(v)‖L∞(IT ,L2)).

Let v ∈ BT (r) be the closed ball of XT centered on zero and with radius r > 0. Since

‖∇(v + w)‖ ≤ r + ‖∇w‖ ≤ r + ‖∇w‖L∞(IT0 ,L
2),

we can find two small positive numbers denoted by r and ε such that (1 + ε)‖
∇(v + w)‖2 < 4π. By the Hölder inequality,

‖xg(v + w)‖L1(IT ,L2) . ‖x(v + w)‖L4(IT ,L4)‖e(1+ε)|v+w|2 − 1‖L4/3(IT ,L4)

. ‖v + w‖T ‖e(1+ε)|v+w|2 − 1‖L4/3(IT ,L4).

Now, thanks to Lemma 3.3,

‖xg(v + w)‖L1(IT ,L2) . [T 3/4 + ‖v + w‖αL4
T (W1,4)T

(1−(1/p))(1−(α/4))]‖v + w‖T

. [T 3/4 + ‖v + w‖αT T (1−(1/p))(1−(α/4))]‖v + w‖T .

It remains to control ‖g(v + w)‖L1(IT ,H1). For any ε > 0,

‖∇g(v + w)‖L1(IT ,L2) . ‖∇(v + w)(e(1+ε)|v+w|2 − 1)‖L1(IT ,L2)

. ‖∇(v + w)‖L4(IT ,L4)‖e(1+ε)|v+w|2 − 1‖L4/3(IT ,L4)

. ‖v + w‖T ‖e(1+ε)|v+w|2 − 1‖L4/3(IT ,L4).

https://doi.org/10.1017/S1446788714000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000391


88 T. Saanouni [11]

The previous computations imply that

‖∇g(v + w)‖L1(IT ,L2) . [T 3/4 + ‖v + w‖αT T (1−(1/p))(1−(α/4))] ‖v + w‖T .

Similarly,

‖g(v + w)‖L1(IT ,L2) . ‖(v + w)(e(1+ε)|v+w|2 − 1)‖L1(IT ,L2)

. ‖v + w‖L4(IT ,L4)‖e(1+ε)|v+w|2 − 1‖L4/3(IT ,L4)

. ‖v + w‖T ‖e(1+ε)|v+w|2 − 1‖L4/3(IT ,L4)

. [T 3/4 + ‖v + w‖αT T (1−(1/p))(1−(α/4))] ‖v + w‖T .

Therefore, for 0 < T < T0 small enough,

‖φ(v)‖T . ‖g(v + w)‖L1(IT ,Σ) + T‖φ(v)‖L∞(IT ,Σ)

. ‖g(v + w)‖L1(IT ,Σ) + T‖φ(v)‖T

. [T 3/4 + ‖v + w‖αT T (1−(1/p))(1−(α/4))] ‖v + w‖T + T‖φ(v)‖T

.
[T 3/4 + ‖v + w‖αT T (1−(1/p))(1−(α/4))]

1 − T
‖v + w‖T

.
[T 3/4 + (1 + ‖u0‖Σ)αT (1−(1/p))(1−(α/4))]

1 − T
(1 + ‖u0‖Σ).

Thus, for r, T > 0 small enough, φ maps BT (r) into itself. It remains to prove that φ
is a contraction. Let v1, v2 ∈ BT (r) be solutions to (1.1) and ui := w + vi for i ∈ {1, 2}.
Then

φ(v1) − φ(v2) = −i
∫ t

0
U(t − s)(g(u1) − g(u2))(s) ds.

Using Strichartz estimates in Proposition 2.11 and arguing as previously,

‖φ(v1) − φ(v2)‖L∞(IT ,L2)∩L4(IT ,L4) . ‖g(u1) − g(u2)‖L1(IT ,L2);

‖∇(φ(v1) − φ(v2))‖L∞(IT ,L2)∩L4(IT ,L4)

. ‖∇(g(u1) − g(u2))‖L1(IT ,L2) + T‖x(φ(v1) − φ(v2))‖L∞(IT ,L2);

‖x(φ(v1) − φ(v2))‖L∞(IT ,L2)∩L4(IT ,L4)

. ‖x(g(u1) − g(u2))‖L1(IT ,L2) + T‖∇(φ(v1) − φ(v2))‖L∞(IT ,L2).

Thus, for small T > 0,

‖φ(v1) − φ(v2)‖T . ‖g(u1) − g(u2)‖L1(IT ,Σ) + T‖φ(v1) − φ(v2)‖L∞(IT ,Σ)

.
1

1 − T
‖g(u1) − g(u2)‖L1(IT ,Σ).
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By the Hölder inequality, via Lemma 3.2, for all ε > 0,

‖x(g(u1) − g(u2))‖L1(IT ,L2) .
2∑

i=1

‖x(v1 − v2)(e(1+ε)|ui |
2
− 1)‖L1(IT ,L2)

. ‖x(v1 − v2)‖L4(IT ,L4)

2∑
i=1

‖e(1+ε)|ui |
2
− 1‖L4/3(IT ,L4)

. ‖v1 − v2‖T

2∑
i=1

‖e(1+ε)|ui |
2
− 1‖L4/3(IT ,L4).

By a continuity argument, we can find some small real numbers ε, r, T > 0 such that
(1 + ε)(r + ‖∇w‖L∞(IT ,L2))2 < 4π. Lemma 3.3 implies that

‖x(g(v1 + w) − g(v2 + w))‖L1(IT ,L2) . ‖v1 − v2‖T [T 3/4 + ‖u1‖
α
L4

T (W1,4)T
3/4(1−(α/4))].

Compute

‖∇(g(u1) − g(u2))‖L1(IT ,L2)

= ‖(Dg(u1) −Dg(u2))∇u1 +Dg(u2)(∇v1 − ∇v2)‖L1(IT ,L2)

≤ ‖(Dg(u1) −Dg(u2))∇u1‖L1(IT ,L2) + ‖Dg(u2)∇(v1 − v2)‖L1(IT ,L2)

:= (I) + (II).

By Lemma 3.2, for any ε > 0,

(II) . ‖∇(v1 − v2)(e(1+ε)|u2 |
2
− 1)‖L1(IT ,L2)

. ‖∇(v1 − v2)‖L4(IT ,L4)‖e(1+ε)|u2 |
2
− 1‖L4/3(IT ,L4)

. ‖v1 − v2‖T ‖e(1+ε)|u2 |
2
− 1‖L4/3(IT ,L4)

. ‖v1 − v2‖T [T 3/4 + ‖u2‖
α
L4

T (W1,4)T
3/4(1−(α/4))].

In the last inequality, we used Lemma 3.3. It remains to estimate (I). Write, using
Lemma 3.2, via Sobolev and Hölder inequalities,

(I) .
∑
i=1,2

‖∇u1(v2 − v1)(|u|i + e(1+ε)|ui |
2
− 1)‖L1(IT ,L2)

.
∑
i=1,2

[‖∇u1(v2 − v1)|ui| ‖L1(IT ,L2) + ‖∇u1(v2 − v1)(e(1+ε)|ui |
2
− 1)‖L1(IT ,L2)]

.
∑
i=1,2

‖v2 − v1‖L∞(IT ,H1)‖∇u1‖L4(IT ,L4)[‖ui‖L∞(IT ,H1)T 3/4 + ‖e(1+ε)‖ui |
2
− 1‖L4/3(IT ,L4+ε)]

. ‖v2 − v1‖T ‖∇u1‖T [‖u1‖T T 3/4 + T 3/4 + ‖u1‖
α
L4

T (W1,4)T
3/4(1−(α/4))]

. ‖v2 − v1‖T (1 + ‖u0‖Σ)[(1 + ‖u0‖Σ)T 3/4 + ‖u1‖
α
L4

T (W1,4)T
3/4(1−(α/4))].

Thus, for some α < 4 near to 4,

‖φ(v1) − φ(v2)‖T ≤ C(1 + ‖u0‖Σ)[(1 + ‖u0‖Σ)T 3/4 + (1 + ‖u0‖Σ)αT 3/4(1−(α/4))] ‖v1 − v2‖T .

So, φ is a contraction of BT (r) for some T, r > 0 small enough. Its fixed point v
satisfying u := v + w is a solution to (1.1). The existence is proved.
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3.2. Uniqueness in the conformal space. We prove uniqueness of solutions to
(1.1) in the conformal space. Letting u1, u2 ∈ CT (Σ) be two solutions to (1.1) and
u := u1 − u2,

iu̇ + ∆u = |x|2u + g(u1) − g(u2), u(0, ·) = 0.

With a continuity argument, there exists 0 < T < 1 such that

max
i∈{1,2}

‖∇ui‖
2
L∞(IT ,L2) < 4π and max

i∈{1,2}
‖ui‖L∞(IT ,Σ) ≤ 1 + ‖u0‖Σ.

With the Strichartz estimate,

‖u‖L∞(IT ,L2)∩L4(IT ,L4) . ‖g(u1) − g(u2)‖L1(IT ,L2);
‖∇u‖L∞(IT ,L2)∩L4(IT ,L4) . ‖∇(g(u1) − g(u2))‖L1(IT ,L2) + T‖xu‖L∞(IT ,L2).

Via the previous calculation,

‖∇u1‖L4(IT ,L4) . ‖u0‖H1 + ‖∇u1‖L4(IT ,L4)[T 3/4 + ‖u‖αL4
T (W1,4)T

3/4(1−(α/4))] + T‖xu1‖L∞(IT ,L2)

. ‖u0‖Σ + ‖u1‖
1+α
L4(IT ,W1,4)T

3/4(1−(α/4)).

Moreover,

‖u1‖L4(IT ,L4) . ‖u0‖ + ‖u1‖L4(IT ,L4)[T 3/4 + ‖u‖αL4
T (W1,4)T

3/4(1−(α/4))]

. ‖u0‖Σ + ‖u1‖
1+α
L4(IT ,W1,4)T

3/4(1−(α/4)).

Finally, with the absorption lemma (Lemma 2.16),

‖u1‖L4(IT ,W1,4) . ‖u0‖Σ.

Arguing as previously and using the Moser–Trudinger inequality,

‖u‖L∞(IT ,L2)∩L4(IT ,L4) . ‖g(u1) − g(u2)‖L1(IT ,L2)

.
2∑

i=1

‖u(e(1+ε)|ui |
2
− 1)‖L1(IT ,L2)

.
2∑

i=1

‖u‖L4(IT ,L4)‖e(1+ε)|ui |
2
− 1‖L4/3(IT ,L4)

. ‖u‖L4(IT ,L4)[T 3/4 + ‖u‖αL4
T (W1,4)T

3/4(1−(α/4))]

. ‖u‖L4(IT ,L4)[T 3/4 + (1 + ‖u0‖Σ)αT 3/4(1−(α/4))].

Finally, for T > 0 small enough,

‖u‖L4(IT ,L4) = 0.

So, for small times, u = 0. The proof of uniqueness is achieved via a translation
argument.
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3.3. Global well-posedness in the defocusing case. This subsection is devoted to
prove that the maximal solution of (1.1) is global in the defocusing case and where
E(u0) ≤ 4π. Recall an important fact, that is, the time of local existence depends only
on the quantity ‖u0‖Σ. Let u be the unique maximal solution of (1.1) in the space ET
for any 0 < T < T ∗ with initial data u0, where 0 < T ∗ ≤ +∞ is the lifespan of u. We
shall prove that u is global. By contradiction, suppose that T ∗ < +∞. Consider, for
0 < s < T ∗, the problem

(Ps)
{

i∂tv + ∆v − |x|2v = g(v);
v(s, ·) = u(s, ·).

First, let us treat the simplest case E(u0) < 4π. In this case,

sup
[0,T ∗]
‖∇u(t)‖2 ≤ E(u0) < 4π.

Using the same arguments used in the local existence, we can find a real τ > 0 and a
solution v to (Ps) on [s, s + τ]. According to the section on local existence, and using
the conservation of energy, τ does not depend on s. Thus, if we let s be close to T ∗

such that s + τ > T ∗, we can extend v for times higher than T ∗. This fact contradicts
the maximality of T ∗. We obtain the claimed result.

Second, let us treat the limiting case

E = 4π and sup
[0,T ∗]
‖∇u(t)‖2 = lim sup

T ∗
‖∇u(t)‖2 = 4π.

Then, since x2 . G(x),

lim inf
T ∗
‖G(|u(t)|2)‖1 = lim inf

T ∗
‖u(t)‖4 = lim inf

T ∗
‖xu(t)‖ = 0.

Global well-posedness is a consequence of the following result.

Lemma 3.4. Let T > 0 and u ∈ C([0, T ], Σ) be a solution to the Schrödinger equation
(1.1) with ε = −1 such that E(u0) + M(u0) <∞. Then a positive constant C0 depending
on u0 exists such that, for any R,R′ > 0 and any 0 < t < T,∫

BR+R′

|u(t)|2 dx ≥
∫

BR

|u0|
2 dx −C0

t
R′
. (3.1)

Proof of Lemma 3.4. Let R, R′ > 0, dR(x) := d(x, BR) and a cut-off function φ :=
h(1 − (dR/R′)), where h ∈ C∞(R), 0 ≤ h ≤ 1, h(t) = 1 for t ≥ 1 and h(t) = 0 for t ≤ 0.
So, φ(x) = 1 for x ∈ BR and φ(x) = 0 for x < BR+R′ . Moreover,

∇φ(x) = −
x − R

R′|x − R|
h′

(
1 −

dR(x)
R′

)
1{R<|x|<R+R′};

‖∇φ‖L∞ ≤
‖h′‖L∞([0,1])

R′
.

1
R′
.

Multiplying (1.1) by φ2ū,

φ2ū(iut + ∆u − |x|2u) = φ2|u|2G′(|u|2).
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Integrating over space and then taking the imaginary part yields

∂t‖φu‖2 = −2=
∫

φ2ū∆u dx

= 2=
∫
∇(φ2ū)∇u dx

= 4=
∫

(φ∇φū∇u) dx ≥ −
C0

R′
.

An integration over time achieves the proof. �

We return to the proof of global well-posedness. With the Hölder inequality,
via (3.1),

√
π(R + R′)

(∫
BR+R′

|u(t)|4 dx
)2
≥

∫
BR

|u0|
2 dx −C0

t
R′

≥

∫
BR

|u0|
2 dx −C0

T ∗

R′
.

Taking the lower limit when t tends to T ∗ and then R′ →∞ yields the contradiction
u0 = 0. This ends the proof.

4. The stationary problem

The goal of this section is to prove Theorem 2.4 about existence of a ground state
solution to the stationary problem associated to (1.1).

Remark 4.1. If φ is a solution to the stationary problem (2.5), then eitφ is a solution
to the Schrödinger problem (1.1) with data φ. This particular global solution said
standing wave does not scatter.

For α, β, λ ∈ R and v ∈ Σ, we denote the quantities

S (v) := ‖∇v‖2 + ‖v‖2 + ‖xv‖2 −
∫

G(|v|2) dx;

vλα, β := eαλv(e−βλ.), Lα, βS (v) := ∂λ(S (vλα, β))|λ=0;

Kα, β(v) = 2
∫

[α|∇v|2 + (α + β)|v|2 + (α + 2β)|xv|2 − α|v|g(|v|) − βG(|v|2)] dx;

KQ
α, β(v) := 2

∫
[α|∇v|2 + (α + β)|v|2 + (α + 2β)|xv|2] dx;

KN
α, β(v) := −2

∫
[α|v|g(|v|) + βG(|v|2)] dx;

Hα, β(v) :=
(
1 −

1
2(α + 2β)

Lα, β

)
S (v).
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A direct computation gives Kα, β = Lα, βS and

Hα, β(v) =
1

α + 2β

∫
[β(2|∇v|2 + |v|2) + α|v|g(|v|) − (α + β)G(|v|2)] dx.

Let us start with a useful classical result about the solution to (2.5).

Proposition 4.2 (Generalized Pohozaev identity). If φ is a solution to (2.5), then, for
any α, β ∈ R,

Kα, β(φ) = 0.

Proof. Since S ′(v) = 2〈−∆v + v + |x|2v − vG′(|v|2), ·〉 and φ is a solution to (2.5),
then S ′(φ) = 0. Now, because ∂λ(S (φλα, β))|λ=0 = 〈S ′(φ), ∂λ(φλα, β)|λ=0〉 = 0, we have
Kα, β(φ) = 0. �

We assume in the rest of this section that ε = 1 and (2.1) is satisfied. Our aim is
to prove that (2.5) has a ground state, meaning that it has a nontrivial positive radial
solution which minimizes the action S when Kα, β vanishes. The proof of Theorem 2.4
is based on several lemmas.

Lemma 4.3. Let (α, β) ∈ Ag and φ ∈ Σ. Then:

(1) min(Lα, βHα, β(φ),Hα, β(φ)) ≥ 0;
(2) if αφ , 0, then min(Lα, βHα, β(φ),Hα, β(φ)) > 0;
(3) λ 7→ Hα, β(φλα, β) is increasing.

Proof. Denote L := Lα, β. With (2.1),

Hα, β(φ) =
1

α + 2β

[
β(2‖∇φ‖2 + ‖φ‖2) + α

∫ (
|φ|g(|φ|) −

(
1 +

β

α

)
G(|φ|2)

)
dx

]
=

1
(α + 2β)

[
β(2‖∇φ‖2 + ‖φ‖2) + 2α

∫ (
D −

(
1 +

β

α

))
G(|φ|2) dx

]
≥ 0.

Moreover, with a direct computation,

LHα, β(φ) = L

(
1 −

1
2(α + 2β)

L

)
S (φ)

= −
1

2(α + 2β)
(L − 2α)(L − 2(α + 2β))S (φ) + 2α

(
1 −

1
2(α + 2β)

L

)
S (φ)

= −
1

2(α + 2β)
(L − 2α)(L − 2(α + 2β))S (φ) + 2αHα, β(φ).

Now, since (L − 2α)‖∇φ‖2 = (L − 2(α + 2β))‖xφ‖2 = 0, we have (L − 2α)(L − 2
(α + 2β))[‖∇φ‖2 + ‖xφ‖2] = 0. Moreover, LG(|φ|2) = 2[(αD + β)G](|φ|2), so

LHα, β(φ) ≥
1

2(α + 2β)

∫
(L − 2α)(L − 2(α + 2β))G(|φ|2) dx

=
2

α + 2β

∫
[α(D − 1) + β][α(D − 1) − β]G(|φ|2) dx

=
2α2

α + 2β

∫ ([(
(D − 1)2 −

(
β

α

)2)
G
]
(|φ|2)

)
dx ≥ 0.
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The last inequality comes from (2.1). The two first points of the lemma follow. The
last point is a consequence of the equality ∂λHα, β(φλ) = LHα, β(φλ). �

The next intermediate result is the following lemma.

Lemma 4.4. Let α > 0, β ≥ 0 and (φn) be a bounded sequence of Σ − {0} such that
limn KQ

α, β(φn) = 0. Then there exists n0 ∈ N such that Kα, β(φn) > 0 for all n ≥ n0.

Proof of Lemma 4.4. We start with the subcritical case.
(1) Subcritical case. Using (2.1) and (2.3), there exists p > 4 such that

supr≥0 (|rg(r) + G(r2)|)/(rper2
) . 1. Thus, for any q ≥ 1,

KN
α, β(φn) .

∫
|φn|

p(e|φn |
2
− 1) dx + ‖φn‖

p
p

. ‖φn‖
p
qp‖e|φn |

2
− 1‖q′ + ‖φn‖

p
p

. ‖φn‖
p
qp‖eq′ |φn |

2
− 1‖1/q

′

1 + ‖φn‖
p
p.

Now, if q′2‖φn‖
2
H1 < 2π, thanks to the Moser–Trudinger inequality, via the interpolation

inequality,
‖ · ‖r . ‖ · ‖

2/r‖ ∇. ‖1−(2/r) ∀r ∈ [2,∞),

KN
α, β(φn) . ‖φn‖

p
qp + ‖φn‖

p
p . ‖φn‖

2/q‖∇φn‖
p−(2/q) + ‖φn‖

2‖∇φn‖
p−2. (4.1)

The proof is achieved by the fact that ‖∇φn‖
2 . KQ

α, β(φn) and taking q such
that p > 2 + (2/q).

(2) Critical case. By (2.1) and (2.4), there exist p > 4 and a > 0 such that
supr≥0 (|g(r) + G(r2)|)/(rpear2

) . 1. Thus, for any q ≥ 1,

KN
α, β(φn) .

∫
|φn|

p(ea|φn |
2
− 1) dx + ‖φn‖

p
p

. ‖φn‖
p
qp‖ea|φn |

2
− 1‖q′ + ‖φn‖

p
p

. ‖φn‖
p
qp‖eq′a|φn |

2
− 1‖1/q

′

1 + ‖φn‖
p
p.

The rest is similar to the previous proof via the Moser–Trudinger inequality, since
‖∇φn‖

2 . KQ
α, β(φn)→ 0. � �

We have the last lemma of this section.

Lemma 4.5. Let α > 0 and β ≥ 0. Then

mα, β = inf
0,φ∈Σ

{Hα, β(φ), s.t. Kα, β(φ) ≤ 0}.

Proof of Lemma 4.5. Let m1 be the right-hand side; it is sufficient to prove that
mα, β ≤ m1. Take φ ∈ Σ such that Kα, β(φ) < 0; then, by Lemma 4.4 and the facts
that limλ→−∞ KQ

α, β(φ
λ
α, β) = 0 and λ 7→ Hα, β(φλ) is increasing, there exists λ < 0

such that
Kα, β(φλ) = 0, Hα, β(φλ) ≤ Hα, β(φ). (4.2)
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Then
mα, β ≤ S (φλ) = Hα, β(φλ) ≤ Hα, β(φ).

The proof is completed. �

Proof of Theorem 2.4.
Proof. First case (2.3).

Let (φn) a minimizing sequence, namely

0 , φn ∈ Σ, Kα, β(φn) = 0 and lim
n

Hα, β(φn) = lim
n

S (φn) = m. (4.3)

With a rearrangement argument via (4.2), we can assume that (φn) is radial decreasing
and satisfies (4.3). Then α[‖φn‖

2
Σ
−

∫
|φn|g(|φn|) dx] = β[

∫
G(|φn|

2) dx − ‖φn‖
2 − 2

‖xφn‖
2]. Denoting λ := β/α yields ‖φn‖

2
Σ
−

∫
|φn|g(|φn|) dx = λ[‖∇φn‖

2 − ‖xφn‖
2 −

‖φn‖
2
Σ

+
∫

G(|φn|
2) dx]. Thus,

λ
[
‖φn‖

2
Σ −

∫
G(|φn|

2) dx
]

= λ[‖∇φn‖
2 − ‖xφn‖

2] − ‖φn‖
2
Σ +

∫
|φn|g(|φn|) dx.

So, the following sequence: λ[‖∇φn‖
2 − ‖xφn‖

2] +
∫

(|φn|g(|φn|) − G(|φn|
2)) dx is

bounded. Since (‖φn‖
2
Σ
−

∫
G(|φn|

2))→ m, the sequence λ‖∇φn‖
2 +

∫
(|φn|g(|φn|) −

(1 + λ)G(|φn|
2)) dx − λ(‖φn‖

2
Σ
−

∫
G(|φn|

2) dx) + λ‖φn‖
2
H1 is also bounded. Then

sup
n

[
λ‖∇φn‖

2 +

∫
(|φn|g(|φn|) − (1 + λ)G(|φn|

2)) dx + λ‖φn‖
2
H1

]
<∞.

Suppose that β , 0. Thus, taking account of the assumption (D − 1 − λ)G ≥ 0, we
have ‖φn‖

2
H1 . 1. This implies that (φn) is bounded in Σ; in fact, if ‖φn‖H1 . 1 and

‖xφn‖ → ∞,∫
G(|φn|

2) dx ≥ −2m − 1 + ‖φn‖
2 + ‖xφn‖

2 ≥ C(‖φn‖
2 + ‖xφn‖

2).

By the Moser–Trudinger inequality, we obtain the absurdity

∞←

∫
G(|φn|

2) dx . ‖φn‖
2.

So, (φn) is bounded in Σ. Assume now that β = 0; then

‖φn‖
2
Σ =

∫
|φn|g(|φn|) dx,

(
‖φn‖

2
Σ −

∫
G(|φn|

2) dx
)
→ m.

Thus, for any real number a , 0,(
(1 − a)‖φn‖

2
Σ + a

∫ [
|φn|g(|φn|) −

1
a

G(|φn|
2)
]

dx
)

=

(
(1 − a)‖φn‖

2
Σ + a

∫ [
D −

1
a

]
G(|φn|

2) dx
)
→ m.
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Taking (1/1 + εg) < a < 1, we conclude that (φn) is bounded in Σ. This implies, via
the compact injection H1

rd ↪→ Lp, for any 2 < p <∞, that, for some subsequence also
denoted (φn),

φn ⇀ φ in Σ and φn → φ in Lp ∀p ∈ (2,∞).

Assume that φ = 0. There exist p > 2 and a > 0 small enough such that

max{G(r2), rg(r)} . rp(ear2
− 1).

Since (φn) is bounded in H1 and using the Moser–Trudinger inequality,

max
{∫

G(|φn|
2) dx,

∫
|φn|g(|φn|) dx

}
. ‖φp

n (ea|φn |
2
− 1)‖1

. ‖φn‖
p
2p‖e

2a|φn |
2
− 1‖1/21

. ‖φn‖
p
2p‖φn‖ → 0. (4.4)

By Lemma 4.4, Kα, β(φn) > 0 for large n, which is absurd. So,

φ , 0.

With lower semicontinuity of the conformal norm, we have Kα, β(φ) ≤ 0 and Hα, β

(φ) ≤ m. Using (4.2), we can assume that Kα, β(φ) = 0 and S (φ) = Hα, β(φ) ≤ m, so that
φ is a minimizer satisfying 0 , φ ∈ Σrd, Kα, β(φ) = 0 and S (φ) = Hα, β(φ) = m. Since

Hα, β(φ) =
1

α + 2β

[
β(‖∇φ‖2 + ‖φ‖2) + α

∫ (
D −

(
1 +

β

α

))
G(|φ|2) dx

]
and (β/α) ≤ εg,

m > 0.

Now there is a Lagrange multiplier η ∈ R such that S ′(φ) = ηK′(φ). So, recalling that
LS (φ) = (∂λS (φλα, β))|λ=0,

0 = Kα, β(φ) = LS (φ) = 〈S ′(φ), (∂λφλα, β)|λ=0〉

= η〈K′(φ), (∂λφλα, β)|λ=0〉

= ηLK(φ) = ηL2S (φ).

With a previous computation and taking account of (2.1),

−(L − 2(α + 2β))(L − 2α)S (φ) = 2α2
∫ ([(

(D − 1)2 −

(
β

α

)2)
G
]
(φ2)

)
dx

= −L2S (φ) − 4α(α + 2β)S (φ)
> 0.

Thus, η = 0 and S ′(φ) = 0. So, φ is a ground state and m is independent of α, β.
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Second case (2.4).
The proof is similar to the first case; the only point to change is (4.4). Let, for

λ ∈ (0, (1/(α0 supn ‖φn‖H1 ))), φn,λ := λφn. Thanks to the Moser–Trudinger inequality,

max
{∫

G(|φλn |
2) dx,

∫
|φλn |g(|φλn |) dx

}
. ‖(φλn)p(eλ

2α0 |φn |
2
− 1)‖1

. ‖φλn‖
p
2p‖e

2λ2α0 |φn |
2
− 1‖1/21

. ‖φλn‖
p
2p‖φ

λ
n‖ → 0.

Thus, KN(φn,λ)→ 0 as n→∞. Moreover,

Kα, β(φn,λ) = KN
α, β(φn,λ) + KQ

α, β(φn,λ)

= KN
α, β(φn,λ) − λ2KQ

α, β(φn)
≤ 0 for large n.

Now, since λ 7→ Hα, β(φn,λ) is increasing, we have, for large n,

Kα, β(φn,λ) ≤ 0, Hα, β(φn,λ) ≤ m.

So,
Kα, β(φn,λ) ≤ 0, Hα, β(φn,λ) = m.

By Lemma 4.4, Kα, β(φn,λ) > 0 for large n, which is absurd. �

5. Invariant sets and applications

This section is devoted to prove either global well-posedness or finite time blow-up
of the solution to (1.1) with data in some stable sets. In all of this section, we assume
that ε = 1. Our aim is to prove Theorem 2.5. Denote, for v ∈ Σ and λ ∈ R, the quantities

K(v) = K1,−1(v) = 2‖∇v‖2 − 2‖xv‖2 − 2
∫

[|v|g(|v|) −G(|v|2)] dx;

I(v) = K1,0(v) = 2‖v‖2Σ − 2
∫
|v|g(|v|) dx;

m1,−1 := inf
0,v∈Σ
{S (v), s.t. K(v) = 0 and I(v) ≤ 0}.

First, let us prove existence of a ground state to (2.5) for (α, β) = (1,−1).

Proposition 5.1. Assume that g satisfies (2.2) with [(2.3) or (2.4)] and take φ to be a
ground state solution to (2.5). Then

m1,−1 = S (φ) = m1,0.

Proof of Proposition 5.1. Let (φn) be a minimizing sequence, supposed to be radial
with a classical rearrangement argument, namely

0 , φn ∈ Σrd, K(φn) = 0, I(φn) ≤ 0 and lim
n

S (φn) = m1,−1.
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Then

‖∇φn‖
2 − ‖xφn‖

2 =

∫
(D − 1)G(|φn|

2) dx and
(
‖φn‖

2
Σ −

∫
G(|φn|

2) dx
)
→ m1,−1.

So, for any real number a , 0,(
(1 − a)‖∇φn‖

2 + (1 + a)‖xφn‖
2 + ‖φn‖

2 + a
∫ [

D − 1 −
1
a

]
G(|φn|

2) dx
)
→ m1,−1.

Taking a := 1/(1 + εg),( εg

1 + εg
‖∇φn‖

2 +
2 + εg

1 + εg
‖xφn‖

2 + ‖φn‖
2 +

1
1 + εg

∫
[D − 2 − εg]G(|φn|

2) dx
)
→ m1,−1.

We conclude, via (2.2), that (φn) is bounded in Σrd. Taking account of the compact
injection (2.8), we take φ ∈ Σrd satisfying

φn ⇀ φ in Σ and φn → φ in Lp ∀p ∈ [2,∞).

We have I(φn) ≤ 0 and K(φn) = 0; then

‖xφn‖
2 = ‖∇φn‖

2 −

∫
(D − 1)G(|φn|

2) dx;

2‖∇φn‖
2 ≤

∫
[(2D − 1)G(|φn|

2) − |φn|
2] dx.

Assume, by contradiction, that φ = 0. Using the Moser–Trudinger inequality and
arguing as previously, ∫

(2D − 1)G(|φn|
2) dx→ 0 as n→∞.

Then, following (4.1),

‖∇φn‖
2 .

∫
(2D − 1)G(|φn|

2) dx = o(‖∇φn‖
2) as n→∞.

This contradiction implies that
φ , 0.

With lower semicontinuity of the Σ norm,

K(φ) ≤ 0, I(φ) ≤ 0 and S (φ) ≤ m1,−1.

Using Lemma 4.5,
m1,0 ≤ H1,0(φ) ≤ S (φ) ≤ m1,−1 ≤ m1,0.

Finally, taking account of Theorem 2.4, we get S (φ) = m1,−1 = m1,0 and φ is a ground
state solution to (2.5). Then K(φ) = 0 and the proof is finished. �

We now have the last auxiliary result of this section.
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Proposition 5.2. Let (α, β) ∈ Ag. Then:

(1) mα, β is independent of (α, β);
(2) the sets A+

α, β, A1,−1 and A−α, β are invariant under the flow of (1.1);
(3) the sets A+

α, β and A−α, β are independent of (α, β).

Proof. Let (α, β) and (α′, β′) inAg.
(1) Let φ be a minimizing of (2.6) which satisfies (2.5); then Kα′,β′(φ) = 0. Thus,

mα, β ≤ mα′,β′ . In the same way, we have the opposite inequality.
(2) Let u0 ∈ A+

α, β and u ∈ CT ∗(Σ) be the maximal solution to (1.1). Assume that for
some time t0 ∈ (0, T ∗), u(t0) < A+

α, β. Since the energy is conserved, Kα, β(u(t0)) ≤ 0.
So, with a continuity argument, there exists a positive time t1 ∈ (0, t0) such that
Kα, β(u(t1)) = 0. This contradicts the definition of mα, β. The proof is similar for A−α, β.

Let u0 ∈ A1,−1 and u ∈ CT ∗(Σ) be the maximal solution to (1.1). Assume that for
some time t0 ∈ (0, T ∗), u(t0) < A1,−1. Since the energy is conserved, K(u(t0)) > 0 or
I(u(t0)) > 0. With a continuity argument, there exists a positive time t1 ∈ (0, t0) such
that either K(u(t1)) = 0 and I(u(t1)) < 0, which contradicts the definition of m1,−1, or
K(u(t1)) < 0 and I(u(t1)) = 0, which contradicts the definition of m1,0.

(3) By the first point, the reunion A+
α, β ∪ A−α, β is independent of (α, β). So, it is

sufficient to prove that A+
α, β is independent of (α, β). If S (φ) < m and Kα, β(φ) = 0, then

φ = 0. So, A+
α, β is open. The rescaling φλ := eαλφ(e−βλ) implies that a neighborhood of

zero is in A+
α, β. Moreover, this rescaling with λ→ −∞ gives that A+

α, β is contracted to
zero and so is connected. Now, by the definition, A−α, β is open, and 0 ∈ A+

α, β ∩ A+
α′,β′ .

Writing

A+
α, β = A+

α, β ∩ (A+
α′,β′ ∪ A−α′,β′) = (A+

α, β ∩ A+
α′,β′) ∪ (A+

α, β ∩ A−α′,β′),

we have A+
α, β = A+

α′,β′ . The proof is achieved. �

Finally, we are ready to prove the main result of this section.

Proof of Theorem 2.5. Using a time-translation argument, we can assume that t0 = 0.
(1) With Proposition 5.2, u(t) ∈ A1,−1 for any t ∈ [0, T ∗). By contradiction, assume

that T ∗ =∞. With the virial identity (1.2),

1
8

(‖xu(t)‖2)′′ = ‖∇u‖2 − ‖xu‖2 −
∫

(ūg(u) −G(|u|2)) dx =
1
2

K(u(t)) < 0.

We infer that there exists δ > 0 such that K(u(t)) < −δ for large time. Otherwise, there
exists a sequence of positive real numbers tn → +∞ such that K(u(tn))→ 0. By the
definition of m1,−1,

m1,−1 ≤
(
S − 1

2 K
)
(u(tn)) = S (u0) − 1

2 K(u(tn))→ S (u0) < m1,−1.

This absurdity finishes the proof of the claim. Thus, (‖xu‖2)′′ < −4δ. Integrating twice,
‖xu(t)‖ becomes negative for some positive time. This contradiction closes the proof.
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(2) By Proposition 5.2, u(t) ∈ A+
α, β for any t ∈ [0,T ∗). Then

m > S (u(t))

> Hα, β(u(t))

=
α

α + 2β

∫ [
β

α
(2|∇u(t)|2 + |u(t)|2) + |u(t)|g(|u(t)|) −

(
1 +

β

α

)
G(|u(t)|2) dx

]
& ‖u(t)‖2H1 +

∫
G(|u(t)|2) dx.

If β , 0, with the energy conservation,

sup
t∈[0,T ∗]

‖u(t)‖Σ <∞.

Assume now that β = 0. Then

(1 + εg)
∫

G(|u|2) dx <
∫
|u|g(|u|) dx < ‖u‖2Σ < mα, β +

∫
G(|u|2) dx.

The first inequality is by (2.1) and the two other inequalities follow from the definition
of A+

α, β. This implies that

sup
t∈[0,T ∗]

‖u(t)‖Σ <∞ and T ∗ =∞.Λ

6. Instability in the focusing case

In this section, existence of infinitely many nonglobal solutions to (1.1) in the
focusing case is proved. We say that the problem (1.1) is strongly unstable. In the
rest of this paper, we assume that ε = 1 and (2.2) is satisfied. We keep the notation
of the previous section, namely K = (1/2)K1,−1, I = (1/2)K1,0 and denote for v ∈ Σ the
scaling vλ := λv(λ.), where λ is a nonnegative real number. Let us prepare the proof of
Theorem 2.6.

Lemma 6.1. Let v ∈ Σ be such that I(v) ≤ 0 and K(v) ≤ 0. Then, for any λ > 1:

(1) (∂/∂λ)S (vλ) = (2/λ)K(vλ);
(2) K(vλ) < 0 when λ is close to 1.

Proof. (1) Compute

λ

2
∂

∂λ
S (vλ) =

λ

2
∂

∂λ

(
λ2‖∇v‖2 + ‖v‖2 + λ−2‖xv‖2 − λ−2

∫
G(|λv|2) dx

)
= λ2‖∇v‖2 − λ−2‖xv‖2 − λ−2

∫
(D − 1)G(|λv|2) dx

= K(vλ).
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(2) We have I(v) ≤ 0 and K(v) ≤ 0; then

‖xv‖2 ≥ ‖∇v‖2 −
∫

(|v|g(|v|) −G(|v|2)) dx := ‖∇v‖2 −
∫

h(|v|) dx;

2‖∇v‖2 ≤
∫

[h(|v|) + |v|g(|v|) − |v|2] dx.

Moreover,

K(vλ) = λ2‖∇v‖2 − λ−2‖xv‖2 − λ−2
∫

(|λv|g(|λv|) −G(|λv|2)) dx

≤

(
λ2 −

1
λ2

)
‖∇v‖2 +

∫
h(|v|) − h(|λv|)

λ2 dx

≤
1
λ2

[
(λ4 − 1)

∫ (
|v|g(|v|) −

G(|v|2)
2
−
|v|2

2

)
dx +

∫
h(|v|) − h(|λv|) dx

]
≤

1
λ2

[
(λ4 − 1)

∫ (
h(|v|) +

G(|v|2)
2
−
|v|2

2

)
dx +

∫
h(|v|) − h(|λv|) dx

]
≤

1
λ2

∫ [
(λ4 − 1)

(G(|v|2)
2
−
|v|2

2

)
+ λ4h(|v|) − h(|λv|)

]
dx.

Take, for t > 0, the real function defined on (1,∞) by

f (r) := (r2 − 1)(G(t) − t) + 2r2h(
√

t) − 2h(
√

rt)
:= (r2 − 1)(G(t) − t) + 2r2(D − 1)G(t) − 2(D − 1)G(rt).

Then the derivative satisfies the following equation when r tends to 1:

f ′(r) = 2r(G(t) − t + 2(D − 1)G(t) − t2G′′(rt))
' 2(G(t) − t + 2(D − 1)G(t) − t2G′′(t))
' −2((D2 − 3D + 1)G(t) + t).

This implies, via (2.2), that for r > 1 and close to 1, f ′(r) < −2(D2 − 3D + 1)
G(t) = −2[(D − 1)(D − 2) − 1]G(t) < 0 and f is decreasing near to 1. Since f (1) = 0,
we get f < 0 near to 1. The proof of the second point of the lemma is finished. �

We have the next intermediate result.

Lemma 6.2. Let φ to be a ground state solution to (2.5), λ > 1 a real number close to 1
and u the solution to (1.1) with data φλ. Then, for any t ∈ (0,T ∗),

S (u(t)) < S (φ), I(u(t)) < 0 and K(u(t)) < 0.

Proof. By Lemma 6.1,

S (φλ) < S (φ) and K(φλ) < 0.

Moreover, since I(φ) = K(φ) = 0,
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I(φλ) = S (φλ) + K(φλ) − ‖∇φλ‖2 + ‖xφλ‖2

= S (φλ) + K(φλ) − λ2‖∇φ‖2 + λ−2‖xφ‖2

≤ S (φ) + K(φ) − I(φ) − λ2‖∇φ‖2 + λ−2‖xφ‖2

≤ (1 − λ2)‖∇φ‖2 + (−1 + λ−2)‖xφ‖2 < 0.

Thanks to the conservation laws, it follows that, for any t > 0,

S (u(t)) = S (φλ(t)) < S (φ).

Then K(u(t)) , 0 and I(u(t)) , 0 because φ is a ground state. Finally, K(u(t)) < 0 and
I(u(t)) < 0 with a continuity argument. �

Now we are ready to prove the instability result.

Proof of Theorem 2.6. Take uλ ∈ CT ∗(Σ), the maximal solution to (1.1) with data φλ,
where λ > 1 is close to 1 and φ is a ground state solution to (2.5). With the previous
lemma,

uλ(t) ∈ A1,−1 for any t ∈ (0,T ∗).

Then, using Theorem 2.5,
lim
t→T ∗
‖uλ(t)‖Σ =∞.

The proof is finished via the fact that

lim
λ→1
‖φλ − φ‖Σ = 0.
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