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1. Introduction

Let B be a Banach space and let <Sf(B) denote the space of all bounded
inear operators from B to B, which is a Banach algebra under composition of

operators as multiplication. By a semigroup of operators G on B, we mean a
norm bounded subset G of 3?(B) which is a subsemigroup in the multiplicative
structure of SC(B). The purpose of this paper is to study the existence of nonzero
continuous linear functionals on B invariant under G, that is given B and G,
does there exist fieB*, with fi # 0, such that A*(Sx) = fi(x) for all xeB and
SeG. This question is an attempt to generalize the familiar concepts of invariant
means and amenability of semigroups. If H is any semigroup and m (H) is the
Banach space of all bounded real valued functions on H with supremum norm,
then a mean is a positive normalized continuous linear functional on m(H).
A mean is called (left) [right] invariant if it is invariant under (left) [right] trans-
lations and H is called (left)[right] amenable if there exists such a mean; e.g.,
F is a left invariant mean if F e m (H)* is such that (i) \\F\\ = 1, (ii) F(x) ^ 0
if x(g) ^ 0 for all geH, (iii) F(xg) = F(x) for all xem(H) and geG where
xg(h) = x(gh) for all lieH. Amenability of semigroups has been studied exten-
sively in recent years, for example see Day [2] or Hewitt and Ross [6] for an
introduction, and Day [3] for a comprehensive survey. If H is a (locally compact)
topological group it is appropriate to replace m(H) by one of the following:
C(H) = all bounded continuous functions; LUC(H) = all functions bounded
and left uniformly continuous; similarly RUC(H) and UC(H); finally LX(H) s all
essentially bounded measurable (with respect to Haar measure) functions with
essential supremum norm. See Greenleaf [5] for this topological case. It is ob-
vious that if B is chosen to be one of these Banach spaces and G to be the set
of operators induced on B by the naturally available translations (left or right)
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of H, then G is a semigroup of operators on B and amenability of H is a special
case of the question we posed at the beginning. Our concept of a linear functional
invariant under a semigroup of operators also includes several other instances
where a Banach space of functions is chosen and a semigroup of operators is then
specified; usually these operators are induced by transformations on the domain
space of the functions. We give two such instances: (1) let X be a compact Haus-
dorff space, C(X) continuous functions on X and &~ be a semigroup of homeo-
morphisms of X. See Rich [8] for some results in this setting where he is seeking
a measure on X invariant under 3~. For each x e$~, if we define St:C(X) -> C(X)
by

then it is obvious that G = {St: T E J } is an operator semigroup on C(X) and
a linear functional invariant under G is a measure invariant under 3T (via Riesz-
representation Theorem). (2) Next following Wilde and Tayachandran [9], let
X be an arbitrary set and &~ a semigroup of mappings of X into X. Each t e /
induces a bounded linear operator St on m(X); let

G = {Sz:xe3T}.

Call the pair (X,S~) a transformation semigroup and say that it is amenable
if there is a G-invariant mean on m{X). It is obvious that G is an operator semi-
group and amenability of (X,&~) is a particular case of our question.

Thus it is clear that the concept of a linear functional invariant under a semi-
group of operators is very general. In this paper we study the existence of such
functionals. We let B be a Banach space and G a semigroup of operators on B.
If n6B*, the normed conjugate of B, and n(Sx) = n(x) for all xeB and SeG,
then n is called G-invariant. If such a nonzero (i exists we say B is G-amenable.
Since G £ ^(B) and this latter space has several topologies available, we choose
to consider G as a topological semigroup. As such it is appropriate to consider
the amenability of G in the sense of existence of invariant an mean on C(G). For a
fixed xeB let K(x) denote the weakly closed convex hull of the orbit of x,
{Sx: SeG}. An example of our results is;

THEOREM. / / G is right amenable and if there exists xoeB such that
0£K(xo), then B is G-amenable. Conversely if B is G-amenable then there
exists xoeB such that 0$K(x0).

Section 2 contains a brief discussion of semigroups of operators and we
develop a mapping

fa-.B-* C(G)

which transforms the operators in G into right translations on C(G). Besides
being our main tool in the discussion of G-amenability presented in Section 3,
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this mapping is of some interest in itself and we have included some results.
See Theorems 1, 2 and Corollary 2. We note that our results do not yield any
significantly new results in the theory of invariant means. On the contrary, our
aim has been to utilize the available theory of amenable semigroups to obtain
G-invariant linear functionals. (G, s.o.) is a topological semigroup with separat-
ely continuos multiplication.

2.

Let G be a norm-bounded (algebraic) semigroup in =S?(B). We write
(G,w.o.), (G,s.o.) and (G,u.) respectively to mean that G is considered topo-
logized under the relative weak operator, strong operator and uniform topologies
of

LEMMA 1. (a) (G,u.) and (G,s.o.) are topological semigroups with jointly
continuous multiplication, (G,w.o.) is a topological semigroup with separately
continuous multiplication.

(b) Let G be a semigroup in ^C(B) and G its s.o. closure. Then (G.w.o.)
is a topological semigroup.

PROOF, (a) Straightforward and hence omitted, (b) By part (a), to show
that (G, w.o.) is a topological semigroup, it is sufficient to show that G is a bounded
semigroup. Since G is bounded (by N > 0), so is G. Let £ > 0, x in B and S, T
in G; then there are nets {Sa} and {TB} in G such that Sa -+ S[s.o.] and TB -+ T[s.o.~\
Find a0 and /?0 such that

I Sx(Tx) - S(Tx) 1 < | fora>a o

and
|| Tgx - Tx I < ^L forp>p0.

Then

I S^x - STx I ^ I Sx(TBx - Tx) | + fl Sx(Tx) - S(Tx) \\

^ N | Tex - Tx || + ^ < e for a > a0 and 0 > j?0.
Thus STGG.

We adopt some of the notation of [7]. Thus if S is any semigroup and X
a space of functions on E and o-eX and (ea)[rj\ denotes respectively the (left) [right]
translation operators then X is called (left) [right] invariant if xeX implies all
(/ffx)[rffx] are in X. If S is a topological semigroup, C(E) will denote the Banach
space of all continuous bounded real functions under sup norm. An fe C(S)
is called left uniformly continuous (l.u.c.) if the map a -> raf is continuous in
the norm. Right uniformly continuous (r.u.c.) functions are defined similarly
and LUC(£), RUC(£), UC(L) respectively denote the Banach space of all Lu.c ,
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r.u.c. and u.c. functions on X. Again as in [7], we use the same symbols \a, ra

on any invariant linear X. Further let

and similarly for Lj. Now for any right invariant X, RT £ ^C(X). Thus R^, a
semigroup homomorphic to E, can be considered as contained in JS?(C(E)) or
£C(UC(E)). With either choice, by Lemma 1, Rx is a topological semigroup
with three possible topologies. However, it matters very much where Rz is and
what topology is on it. For example let H denote the usual topological group
of real numbers. As a consequence of Theorem 2 of [7] we see that if RH £ J?(C(H),
then (RB; s.o.) is discrete. But if RH £ ^(UC(H)) then (RH; s.o.) is topologically
isomorphic with H. We now return to the general case of an arbitrary Banach
space B and a semigroup of operators G s ££(B).

Let (G, w.o.) be a topological semigroup in £C(B) and let £, e B*. Define
04: B -> C(G) by

for all xeB and SeG. It is obvious that 0$x is a bounded linear real valued
function. The following lemma justifies the use of C(G) as the image space.

LEMMA 2. (a) For each £eB* and xeB, (j>^x
(b) For each SeC^Sx) = rs(04x).

That is each of the maps <}>$ transforms the operators S into right translations
rs on C(G).

(c) / / G is (G,s.o.), then 0<: B -> Lt/C(G).
(d) / / G is (G,u), tAen <pf B - l/C(G).

PROOF, (a) Clearly 0? is linear and bounded in norm by | £ | . Let

K = sup{ |S | :SeG} .

To show 0{xeC(G), let Sa^> S. Then

by definition of [w.o.] convergence,
(b) For TeG,

(c) Let Sa -» S in (G, s.o.) and x e B. Find a0 such that a > a0 implies

I l ^ - S x l ^ ^ .

Then
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= SUP {\r»J>tx ~ r,<j>
T

= sup I (T*O(Sxx-Sx)\ ^ supK I d | • I Sxx - Sx II
r T

< s.

Thus \<l>(x-> r^x in CfG) and faxeLUCiG).
(d) is proved similarly.

A natural question to ask is when will the map </>$ be an isometry; the next
theorem gives necessary and sufficient conditions. Let - G = { —S: SeG}.

THEOREM 1. The map <f>^ will be an isometry if and only ifK, the w*-closed
convex hull of

{S*£:SeG(J -G}

is equal to the unit ball Uo of B*.

PROOF. We will use the following variation of the Krein-Mil'man Theorem,
Day [1]: K = Uo if and only if for each fe (B*, w*)*,

sup{/(>/) :t]eK} = sup{f(n) :neU0}.

Assume 0{ is an isometry and fe (B*, w*)*. Then there is an x0 e B such that
/ = 6*o where Q is the natural map of B to B**. Then

eK} = sup{«2xo)(/,): r,eK}

= sup{(S*O(xo):SeGU-G}

= sup{£(Sxo):SeGu -G}

= sup {(^{x0) (S): S e G U - G}

= sup{|(<£{x0)(S)|: SeG} =

= | x o | = sup {n(xo):neUo}

= sup {{Qxo)(n):neUo}

Thus K = Uo.
Assume now that K = Uo. Then for x0 e B we have

= sup {I (^Xo(S)): S e G} = sup{| £(Sx0) |: S e G}

= sup {t(Sx0): S e G U - G} = sup {(S*£) (x0): S e G U - G}

= sup {(6x0) (S*£): S e G U - G} = sup {(Qx0) (»/): IJ e X}
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= sup{(Qxo)(n):rieUo} = sup{i1{x0):rleU0}

= li xo \ •
Thus 4>i is a n isometry. .

It is well known that every Banach space B is isometrically isomorphic to
a subspace of C(A) where A can be taken to be a compact Hausdorff' space. We
give the following variation as an application of Theorem 1.

THEOREM 2. Every Banach space B is isometrically isomorphic to a sub-
space of C(G) where G is a (closed) topological subsemigroup (of (£C(B),v/.o.)).

PROOF. Let B be any Banach space and £, e B* with | £ | = 1. Take

G = {SeJ?(B):| |S| ^ 1}.

Then G is a (weak operator) topological semigroup and the closed convex hull of
{S*^: SeG} equals the unit ball of B*. By Theorem 1, the map 4>^ is an isometric
isomorphism.

It is interesting to note that the condition given in Theorem I is independent
of the topology chosen for G. However, Lemma 2 implies G must have a topo-
logy at least as strong as the [w.o.] topology. With this in mind we have

THEOREM 2'. Every Banach space B is isometrically isomorphic to a sub-
space of UC(G) where G can be taken to be a (closed metrizabie topological
semigroup (in

PROOF. AS in the proof of Theorem 1, <£? is an isometry if

G = {Se&(B): \\S\\ ^ 1}.

If G is (G,u), then by Lemma 2(d) </>%: B ->_ UC(G) and B is isometrically
isomorphic to a subspace of UC(G).

Contrary to first appearance, Theorem 2' may not be stronger than Theorem
2. This is because the size of C(G) may be increased when the topology of G
is increased from [w.o.] to norm.

We note that if B is reflexive then the unit ball of -S?(B) is compact [4] in
the [w.o.] topology. Thus

COROLLARY 1. If B is reflexive, then B is isometrically isomorphic to a
subspace of C(G) where G is a compact topological semigroup.

3.

In this section we study the following question: Given a Banach space B,
what conditions on a bounded semigroup G £ ^(B) imply the existence of
\i i= 0 in B* such that /i(Sx) = n(x) for all xeB and SeG'! If such a n exists
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for a given G then B is called G-amenable and fi is called G-invariant. We will
assume, as we may without loss of generality, that the identity operator / is in G.

A natural condition to impose on G is that it be amenable (in the sense
of Day [2]). However, this is not sufficient as we can easily see by the example
G = {/,—/}. G is finite and thus amenable but B is not G-amenable since if
it were, then there would be a nonzero fi in B* such that fi(Ix) = n(—Ix) for
all x eB, an impossibility. In fact if —/is in any G (with / in G by assumption),
then B is not G-amenable. One condition on G which insures that — / and /
be not both in G is that G has a nonzero fixed point, that is there is a nonzero
x0 in B such that Sx0 = x0 for all S e G. This condition is satisfied by the semi-
groups Rz snd Lj; of operators on m(Z) since the function e{a) = 1 is fixed under
all ra and /„.

We will actually show that a condition weaker than this fixed point condi-
tion is sufficient.

LEMMA 3. Let G be a bounded semigroup in £?{B). Suppose there is
a /.i # 0 in C(G*) which is right invariant and suppose there is a t,eB* and
xoeB such that ju(</>,*x0) # 0. Then B is G-amenable.

PROOF. For £ and G as in Lemma 3 we have (j>i: B -»• C(G) by Lemma 2
and thus

4>l: C(G)* -» B * .

For pi right invariant in C(G)* let p = <j>*n. Then

and thus p # 0. Let SeG and xeB. Then

p(Sx) = (#AJ)(SX) = M<MS*)) = 0W0«*)) = iKfax) = {<t>*n){x) = p(x).

Thus B is G-amenable by the element p = >̂*/z in B*.

THEOREM 3. Suppose there is an x0 in B such that 0 is not in then closed
convex hullL(x0) of{Sx0: SeG}. Then B is G-amenable ofG is right amenable.
Conversely, if B is G-amenable then there is an x0 in B such that 0£K(x0).

PROOF. Let xoeB be such that 0 ^ K(x0), and ft a right invariant element
of C(G)*. Then the Support Theorem in an LCS [1] guarantees the existence
of an t, e B* such that

(x): xeK(x0)}.

It is easily shown that
gl (s) ^ 0 for all S e G.
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Then, since fi is a right invariant mean in C(G)* we have /*[0,*xo — (i<5)e] ^ 0.
Hence

0) =

By Lemma 3 B is G-amenable.
Conversely, suppose B is G-amenable by peB*. Then p(Sx) = p(x) for all

xeB and SeG. Find x o eB such that p(x0) = 1. The convex combinations
S" = i <4S,<x0 are dense in K(x0). Also

( n \ n n

£ *tS*x0 I = E tkp(Skx0) = £ rtp(x0)
4 = 1 / fc = 1 fc = l

Hence p is identically one on the (weakly) closed convex hull of {Sx0: SeG}
Hence 0$K(xo).

COROLLARY 2. Suppose G is right amenable and G has a nonzero fixed
point x0 in B. Then B is G-amenable.

We will now impose further restrictions on G to insure the G-amenability
of B.

DEFINITION. The semigroup G c J?(B) is called almost periodic (AP) if the
norm closure of 0(x) = {Sx: SeG} is compact for each xeB.

LEMMA 4. If G is AP, then for all xeB and S,eB* the set

is relatively compact in C(G).

PROOF. Let x e B and £ e B*. To show c(x) is relatively compact in C(G),
let {rSr0{x} be any net in c(x). Since 0(x) is relatively compact in B, there is a
subnet {Sn} of {SJ such that Snx -> y for some yeB. Since fa is continuous

4>i(Snx) -> fay in C(G).

Hence
rsS4>(X) = fa(Snx) -> fay

and c(x) is relatively compact in C(G).

The next theorem is suggested by the proof of Theorem 1 of Chapter XI
of [4].
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LEMMA 5. Suppose G is AP and has a nonzero fixed point x0. Let 4>i

be an isometry and D rhe Banach space {(fr^x: xeB} = 0{B <= C(G). Then
(i) eeD, where e(S) = 1 for all SeG.
(i) Ra = {rt:SeG} £ J2?(D).
(iii) R* is equicontinuous on the set

K = {peD*: fl P | ^ 1, )?(e) = 1 and p(f) ̂  0 /or allf^O in D]

where the topology on K is the induced w*-topology.

PROOF. Since 4>i is an isometry we have | <^x0 | = | x0 | ^ 0 and ^>4x0 ^ 0.

Also

thus </>,«x0 is a nonzero constant function and hence eeD.

To show (ii), l e t / = 0{x be in D and S e G . Then

rj= rrfix = (/>i(Sx)e<piB = D.

Hence (ii) is shown.

To show (iii) let V be any w*-open neighborhood of zero in D*. Then there
are xux2, •••,xn in B and e > 0 such that

V = {p

By Lemma 4 we know

M=

is relatively compact in C(G) and hence D. M is thus totally bounded and there
exists >'1,_y2,---,>'minBsuch that each rs$4Xj is at a distance of less than e/4 from
some (^X;. Let

U={yeD*:\y(cpiyi)\<^, i = 1,2,-,n}.

Then for pup2e.K and /?, - J?2 e 1/ we have for each S e G

2 1 r^jx, - 4>(yt I

< 2%e + }s = e.

Thus r*(Pi-p2)eV and (iii) is proved.
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THEOREM 4. / / in addition to the hypothesis of Lemma 5 we assume G
is a group, then D is Ra-amenable and B is G-amenable.

PROOF. AS above let

K = {PeD*: \\p\\ ^ 1, P(e) = 1 and p(f) ^ 0 for all / ^ 0 in D}.

Clearly r*: K ~* K for each SeG. Hence R% is a group of operators equicon-
tinuous on the compact convex set K and R*: K-+K. Then by Kakutanis'.
Theorem [4], R% has a fixed point 0 . Since QeK, &(e) = 1 and 0 # O . For
feD we have

0(rs /) = (rs*0) (/) = O

and D is i?G-ameneable.
To show B is G-amenable let x e B and SeG. Then

(</>*0)(Sx) = 0|>4(Sx)} = 6 ^ ) ] = 0(<^x) = (<^0)(x)

and hence p = (j>*® is a G-invariant element of B*. Since </>̂  is an isometry
from B onto D and 0 # 0 we have that

0 4 : £»* -»• B*
is 1-1 and <#j!0 # 0.

COROLLARY 3. Let G be such that (i) there is an x0 in B such that 0£K(x0)
and (ii) G* = {S*:SeG} is equicontinuous on the w*-closed convex hull of
{S*P:SeG} where P is such that P(Sx0) ^ m > 0 for all SeG. Then B is
G-amenable.

PROOF. Same as that of Theorem 4. Note that the existence of a /? e B* such
that P(Sx0) ^ m > 0 for all S is guaranteed by (i) and the Support Theorem.

Another result concerning G-amenability is

THEOREM 5. / / G has a nonzero fixed point, then B* is G*-amenable.
Conversely, if B* is G*-amenable and B is reflexive, then G has a nonzero fixed
point.

PROOF. Let x0 # 0 be a fixed point of G and Q the natural map of B into
B**; then Qx0 # 0. We have

(Qxo)(S*P) = (S*p)(x0) = P(Sx0) = p(x0) = (Qxo)08)

for all S* e G* and p e B*. Hence B* is G*-amenable.
If B* is G*-amenable by feB** and B is reflexive, t h e n / = Qx0 for some

xoeB. Let SeG and £e£*. Then

(S-0(x0) = (Qxo)(S*i) = f*(SO =/(£>
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Thus £(Sx0) = £(x0) for all £, e B* and S e G. Since B* is total over B it must
be that Sx0 = x0 for all S e G.

There are many elementary geometric conditions one may put on G to insure
the G-amenability of B. Among them is

THEOREM 6. There is a unique G-invariant element fi of B* if and only
if the factor space L has deficiency one where L is the closed subspace gener-
ated by

{Sx-x:SeG,xeB}.

NOTE. By the uniqueness of n we mean that if 0 is also G-invariant, then
P = t® for some real number t ^ 0. The proof of this theorem is easy and
omitted.

We conclude with a corollary to Corollary 2.

THEOREM 7. If G has a nonzero fixed point and if G is either a finite group
or an abelian semigroup, then B is G-amenable.

PROOF. In either case, G is amenable by [2].
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