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ON THE KUIPER-KUO THEOREM

CHUAN I. CHU

ABSTRACT.  In this note we shall give a simple and more direct proof of the Kuiper-
Kuo Theorem. Also, we shall simplify Kuiper’s proof of the Morse Lemma.

1. Introduction. In the studying of C°- or C'-equivalence of jets, Kuiper [5] and
Kuo [6] constructed vector fields and local flows to obtain the required homeomorphism
or diffeomorphism.

In this note we shall use the technique by Bochner [1] to give an explicit formula of
the vector field which is simpler than those used by Kuiper and Kuo. This vector field
also provides us a method to show that two jets are C’-equivalent.

As an application of this vector field, we shall give a simple proof of Kuiper’s version
of the Morse lemma [4].

The author would like to thank T. C. Kuo for valuable communications and sugges-

tions.

2. The Kuiper-Kuo Theorem. For a C* function f: R” — R, let f: R” — R”"
be the unique C*~! mapping from R” into R" defined by df (x)(y) = f(x) - y for all
y € R". Here \7f(x) - y is the usual inner product in R".

We denote by J*(n, 1) the space of all k-jets at O of all C* functions f: R* — R such

that f(0) = 0.
THEOREM 2.1. Letf € J*(n, 1) satisfy the Kuiper-Kuo condition

(1) | vl Z ellx)**

for all x in a neighborhood U of 0, where 0 < ¢ and 0 < § = 1 are constants. Let
g:U — R be a C? function such that g(x) = O(||x||**"),vgx) = O(|x||*). Then
f + g is CP-equivalent to f. That is, there exists a local homeomorphism v at 0 such
that (f + g)(¢ (x)) = f(x). Here 1 is defined on some neighborhood U, of 0, Uy C U.

PROOF. For0 =< ¢ = 1, ||x|| small, define B(0,#) = 0, and

g(x)
2 B(x, t) = N 0
@ D= TRy em e VI
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Note that for || x|| small,
| V@I +1v 8 - vf @) 2 | VF@I° —dll v f@I | v sl
| N v f@I = || v gl

[ 2k—26 )

v

v

c'[|x]

Here ¢ is some positive constant. Thus B(x, r) is well defined for || x|| smalland 0 < ¢ =
1. Also Bis C! at (x,t) for x # 0, || x|| small.
Next, we consider for x # 0, ||x|| small,

[EEX |8
E R E S S
3 < . lgWl
e
< o x||°.

Here ¢ and c; are positive constants. Thus B is uniformly continuous for0 = ¢ = 1.
Note that this also shows that B is differentiable at (0, #) and dB(0, t) = O for all ¢.
Consider the differential equation

0
“4) _aﬁ; (x, n=—B(¢(x, 0),0), ¢(x, 0) = x.
Since B is continuous, (4) has a solution. We have to show that (4) has a unique solution.
Suppose x # 0. Then (4) has a unique solution ¢ (x, #) with initial condition x since
B(x,t) is C' for x # 0.
Then from (3) we have

)
2 0| = 1B@ e 0, 0l < allo o
for some positive constant a and || x|| small.
Now 3 36
—_ 2 —_ — « —_—
5, (1606 DI = =206 - == (x 1
2
< fléG nl* + aai:(x, 1)
= d+a)éx nl”
Thus

]
5 e nlI*) z —b|| ¢ (x, v|%,

here b = 1+a®. Hence || ¢ (x,1)|| 2 ¢ %||x||. Thus a solution curve with initial condition
x # 0 will not meet a solution curve with initial condition x = 0. Thus the solution curve
of (4) is unique and hence ¢ is continuous. (c.f. Hartman [2])

Define F(x, 1) = f(x) +tg(x) forx € U,0= ¢t = 1.

Then it is straightforward to see that d/ dt (F(qb (x, 1), t)) = 0. Thus F(¢ (x,0),1) =
const. Hence ¢ (x) = ¢ (x, 1) yields the required local homeomorphism. ]
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THEOREM 2.2. If6 = 1 then the assumption of g can be taken to be: g is C* and
8(x) = o(||x[|*) and 7g(x) = o(||x[|*).

REMARK 2.3. Theorem 2.1 and Theorem 2.2 lead to the C?-sufficiency of k-jets for
C**! functions and C* functions respectively. For C%-sufficiency of jets, we refer to the
works of Koike [3], Kuiper [5] and Kuo [6].

REMARK2.4. The vector field B(x, ) could also be applied to some g such that g(x) =
O(|| x||*) as well.

Let f(x1,x2) = x{ +x3 € J42,1) and g(x;,x2) = bx?x} with 0 < b < 2. Then it is
easy to see that

| 7 f0n,:)|| 2 203 +5)Y2 > bed +2)Y2 2 | v g, x|

if (x1,x2) # (0,0). In this case, B(x, f) is defined and uniformly continuous for0 < ¢ < 1
and ||x|| < 1 say.
Hence x} + x4 is C%-equivalent to x{ + x5 — bx3x3.

3. C*-smoothness of B. In this section, we shall discuss some sufficient conditions
that yield the C*-differentiability of B.

PROPOSITION 3.1.  Let f € J*(n, 1) be such that | 7 f@)|| 2 c||x]|*!, f(x) =
O(|| x||*) for || x|| small and ko < k. Let p be a real number such thatp Z k—ko. Suppose
g is C? defined on a small neighborhood of 0 with the property that g(x) = o(||x||**?),
ve) = o(||x||***~") and d(x7g)(x) = o(||x||**?~2). Then B is C'.

PROOF. B is clearly C! for x # 0, ||x|| small. Also we have seen in the proof of
Theorem 2.1 that 0B/ dx (0,7) = 0. To show 0B/ dx (x,?) is continuous at (0, 1) we
consider for x # 0,y € R” that

dg(x - X
BaCE s o VIO T 7l RS
X (7))
2V ) - d(7HD) + 1d(7)N0) - () +17 g) - d(ZHE)
(I V@12 +1v ) - 7f @)’

0B
3 & DO =

v f().

— g()

Thus,

“a t)] Ivewl . lsw]lld v/l
ox @l =l ve®ll | V@I +17 () - vf ()

2[g@)| |dZH®| . [g@)| ||d 7 g)||
2
(I vf@l -1 ve@l) (I vf@l -1 ve@l)
| 7 gl 1dzH@)|| | g(x)|

v fol (n VIl -1l vl

+
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Then it is easy to see that the right hand side of the above inequality is o(|| x|| 7 =*).
Thus, 9B/ ox (x, 1) — 0 uniformly for 0 < r < 1. Therefore, 0B/ dx (x,1) is continuous
at (0, 7). Similarly, we can show that 0B/ dt is continuous. Thus B is ct. n

COROLLARY 3.2.  Supposef € J*(n, 1) is homogeneous of degree k. Assume that f
and g satisfy the conditions in Proposition 3.1. Then f is C'-equivalent to f + g. Hence f
is C'-sufficient for C¥*P functions (cf. Theorem 2 of Kuiper [5]).

LEMMA 3.3. Let U be an open set in R" containing 0. Suppose that Q: U — Ris
C* (s 2 1) and such that |Q(x)| cllx||” forx € U,c > 0,r > 0. Assume that Q(x) =
O(|| x||™) where 0 < r, = r. Let k be a positive integer such thatk = 2°r—(2° — 1)r, +s.
For C* map P: U — R"™ such that j*(P) = 0, define H: U — R™ by
P(x)

H
= 60

x# 0, HO) =
Then H is C°.

PROOF. 'We prove by induction on s. First, we assume that s = 1.
Clearly, His C' atx # 0,x € U. Now forx # 0, x € U, consider

1l _ Pl 1Pw]
Il llxll [Q@) — elfx([™+!
Since j*(P) = 0, o(P(x)) = k Z 2r —r,+ 1 2 r+ 1. Hence
|H®||

—0 as x—0.

Il
This shows that H is differentiable at 0 and dH(0) =
Now for x # 0,x € U, we have

dP() _ dO()

dH(x) = P
(x) 0(x) Q2 ( x) (x)
and hence [[dPe|| | [[dM)||
dH)|| = ~ P
IHOT= "ot * Tocor 1PN

Again, since k 2 2r — r, + 1, ||dH(x)|| — 0 as x — 0. This shows that H is C'.
Assume the lemma holds for s — 1,5 2 2. Suppose that k = 2°r — (2* — 1)r, +s. Then
sincek 2 2(r—ry,)+r,+ 1,His C..
Define H,, H>: U — L(R",R™) (= the linear space of all linear maps from R” into

R™) b
' He = P9 20 H©O)=0
T 0w e
H0 = I P x40, Hi(0) = 0.

Since o(P(x)) = k, o(dP(x)) = k — 1. Also, by assumption we have k — 1 = 2" !(r —
r,) +r, + s — 1. Hence, by the induction hypothesis, H, is . Also from the fact that
o(P(x)dQ(x)) = k+r,—1,0(Q*(x)) = 2r, and k+r,—1 = 27121 —Q2 ' —1)2r,)+s—1
we have, by the induction hypothesis, H, is C*~'. Thus from dH(x) = H,(x) — Ha(x) we
have that dH is C5~!. That is, H is C". "
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COROLLARY3.4. Letf € J'(n,1)satisfy || 7f@)|| Z c||x||™! andf(x) = O(||x||")
for ||x|| small, 0 < r, £ r,c > 0,r 2 2. Letk Z 2*'(r —r,) + s+ r, — 1 and g be C*
with j*g = 0. Then B(x, 1) defined by (2) is C* for0 < t < 1 and ||x|| small. Here we
assume s 2 1.

PROOF. Take Q(x,t) = || Vf(x)||? +1t v g(x) - Vf(x) and P(x) = g(x) V.f(x). Then
apply the above lemma to B(x, r) and 0B/ 9t (x, 7). .

REMARK 3.5. Lemma 3.3 is a sufficient condition for general mappings. However,
in our case, B(x, ) is rather special. We can apply the technique used by Taken [7] to
improve the condition to k 2 s(r — r,) + s+ r — 1. For s = 1, this is already shown in
the proof of Proposition 3.1.

COROLLARY 3.6. Suppose f € J'(n,1) is homogeneous of degree r satisfying || <7
f@ 2 c||x||™! for ||x|| small. Let k Z r and g be C* with j*g = 0. Then B defined by
(2) is CF+1,

COROLLARY 3.7.  Same as in Corollary 3.6 with r = r, = 2. Then B is C*~1.

EXAMPLE 3.8. —x3 +x3 +2x; is C'-equivalent to —x? + x3. However, —x} +x +x)/?
is C*-equivalent to —x3 +x3.

THEOREM 3.9 (KUIPER-MORSE). Let f: R" — R be a C* function, k Z 2. Assume
that 0 is an isolated non-degenerate critical point of f, f(0) = 0. Put f> = j*(f). Then
f is C*"-equivalent to f>. That is, there exists a neighborhood U of 0 in R" and a C*~!
diffeomorphism 1 : U — 1 (U) such that f(x) = fo(¢ (x)) for x € U.

PROOF. Letf; = j*(f)and g = f — fi. If g = 0, then f = f;; so we can apply Part
A of Kuiper [4].

Assume that g # 0. Then gis C* and j*g = 0. Since f; is non-degenerate, || VA (x)|| 2
c||x|| for ||x|| small, ¢ > 0. Hence || 7 f(*)|| 2 ci||x|| for some constant ¢; > 0 and
||x|| small.

Define

8(x)
B(x, 1) = V fi(x) forx #0
IVA@IP+1ve® - vA® ¥ ?
and B(0,1) = 0,0 = ¢t = 1.
Then by Corollary 3.4, B is C*~!. Hence its local flow ¢ is also C*~1. (c.f. Hartman
[2]). That is, f = f; + g is C*"1-equivalent to f;. By part A of Kuiper [4], f; is C*!-
equivalent to f>. Hence by transitivity, f is C~!-equivalent to f>. =
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