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Abstract

Macdonald processes are measures on sequences of integer partitions built using the Cauchy
summation identity for Macdonald symmetric functions. These measures are a useful tool to
uncover the integrability of many probabilistic systems, including the Kardar–Parisi–Zhang (KPZ)
equation and a number of other models in its universality class. In this paper, we develop the
structural theory behind half-space variants of these models and the corresponding half-space
Macdonald processes. These processes are built using a Littlewood summation identity instead
of the Cauchy identity, and their analysis is considerably harder than their full-space counterparts.

We compute moments and Laplace transforms of observables for general half-space Macdonald
measures. Introducing new dynamics preserving this class of measures, we relate them to various
stochastic processes, in particular the log-gamma polymer in a half-quadrant (they are also related
to the stochastic six-vertex model in a half-quadrant and the half-space ASEP). For the polymer
model, we provide explicit integral formulas for the Laplace transform of the partition function.
Nonrigorous saddle-point asymptotics yield convergence of the directed polymer free energy to
either the Tracy–Widom (associated to the Gaussian orthogonal or symplectic ensemble) or the
Gaussian distribution depending on the average size of weights on the boundary.
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1. Introduction

In commencing the investigation that resulted in this paper, our goal was
to prove limit theorems for the Kardar–Parisi–Zhang (KPZ) stochastic partial
differential equation (PDE) [KPZ86, Cor12, Qua12] in a half-space [CS18],
as well as for the log-gamma directed polymer [Sep12, COSZ14] in a half-
quadrant [OSZ14]. Half-space systems are considerably more complicated to
analyze than their full-space counterparts, and to us, the proper framework in
which to initiate our study seemed to be that of half-space Macdonald processes
(which we introduce here). Based on results from earlier analysis of zero-
temperature models like TASEP and last-passage percolation in a half-space
[BR01a, BR01b, BR01c, SI04, BBCS18b, BBNV18] (solvable via methods
of Pfaffian point processes [BR05]), one may predict a rich phase diagram
detailing the effect of the boundary strength on the fluctuation scalings and
statistics. Despite previous efforts [TW13b, TW13a, OSZ14], there were no
limit results known prior to our investigation (besides [BBCW18], which we
developed with M. Wheeler in parallel to the present work). Even in the physics
literature, the nonrigorous replica Bethe ansatz has proved difficult to apply, with
results limited to two special boundary conditions for the KPZ equation (pure
reflection [BBC16] or pure absorption [GLD12]).

In this paper, we develop the structural theory of half-space Macdonald
processes and explore some of the rich hierarchy of limits and specializations.
The theory of half-space Macdonald processes builds on the case of full-space
Macdonald processes [BC14] but also employs a number of novel ideas.

Before highlighting the new ideas and challenges that arise in this half-space
setting, we briefly recall the major developments in the full-space theory of
Macdonald process (see also the reviews [BG12, Bor14, BP14, Cor14]).

Using operators to compute expectations. Applying operators that act
diagonally on Macdonald polynomials to the normalizing constant
for the measure yields a general mechanism to compute expectations
of observables related to the operators’ eigenvalues. This idea
was introduced in [BC14], wherein Macdonald difference
operators were used extensively, and it is developed further in
[BCGS16, BG15, Dim18, GZ18].

(2+ 1)-dimensional Markovian dynamics. A general scheme to build
Markovian dynamics on two-dimensional triangular arrays preserving
the class of Schur processes (introduced in [Oko01, OR03]) was
proposed in [BF14a, Bor11]. These push–block dynamics were studied
in [BC14] in the Macdonald case, especially at the q-Whittaker level.
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Other dynamics preserving Macdonald processes connected to the RSK
algorithm were studied at the Whittaker level in continuous time in
[BP16, OP13] and in discrete time [MP17]. These RSK-type dynamics
were also studied earlier at the Whittaker level in [O’C12, COSZ14]
and later at the Hall–Littlewood level [BBW16, BP15, BM18].

Marginal Markov processes and their limits. Some marginals of these
(2 + 1)-dimensional dynamics are themselves Markov processes.
Some of these processes were new, while others have been introduced
earlier. This relation has provided some new tools in their studies. Let us
mention the q-TASEP [BC14, BCS14, BC13], q-Push(T)ASEP [CP15],
log-gamma directed polymer [BCR13, COSZ14, Sep12], strict-weak
polymer [CSS15, OO15], O’Connell–Yor polymer [BC14, OY01,
O’C12], KPZ equation [AKQ14, BG97, BCF14, BCFV15, KPZ86],
Stochastic six-vertex model [BCG16, BBW16, GS92], Hall–
Littlewood-PushTASEP [Gho17b] and ASEP [BCS14, BO17, BM18].

Connections to random matrix theory. Relations between the coordinates of
a random partition under the Macdonald measures (in particular, Hall–
Littlewood) and random matrices were explored in [Bor95, Bor99,
BG15, BP15, Ful02, GS15, GKV14].

Gibbsian line ensembles. After taking certain scaling limits, the algebra
disappears but the integrability remains in the form of a Gibbs property;
this is useful in extending one-point to process level asymptotics
[BCT17, CD18, CH14, CH16, CT16].

Curious determinantal identities. In a few specific cases, curious
determinantal identities allow us to relate certain functionals of the
Macdonald measure with the Schur measure or other determinantal
point processes [Agg18, Bor18, AB19, BBCW18, BO17, OP17]. This
typically relates non-free-fermionic models to fermionic ones, and
greatly simplifies the asymptotic analysis.

KPZ universality class asymptotics. For all the above mentioned models, the
Laplace transform of observables of interest can be expressed as a
Fredholm determinant whose asymptotic analysis leads to KPZ-type
limit theorems [AB19, Bar15, BC14, BCF14, BCR13, BCFV15,
BO17, CSS15, FV15, Gho17b, KQ18, OO15].

The story of (full-space) Macdonald processes is far from complete. Many
challenges remain such as computing the asymptotic behavior for the entire
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measure, multipoint fluctuations (that is, convergence to Airy-type processes
and line ensembles) and asymptotics away from the edge (corresponding to bulk
eigenvalue statistics).

Given the success of Macdonald processes in studying systems like the
KPZ equation, log-gamma polymer model and ASEP, it is only natural
to seek an appropriate half-space version of the measures and associated
theory. There is a natural starting point based on the Macdonald polynomial
version of the Littlewood identities. However, there are difficulties—algebraic
(we need new operators to compute expectations of certain observables of
interest), probabilistic/combinatorial (we need new dynamics to deal with the
boundary) and analytic (our formulas do not organize themselves into Fredholm
determinants or Pfaffians). We overcome all of these, except for the analytic ones
where we still manage to obtain the expected phase diagram for fluctuations via
formal steepest descent analysis. Despite the lack of rigor in this last step, it is
the first time that this full phase diagram has been accessed for these models
(even in the physics literature).

We now provide a few details on each of these novelties. The reader not
familiar with Macdonald processes may skip this part on the first reading and
jump to Section 1.1.

Using Littlewood-type identities. The definition of half-space Macdonald
process (Section 2.3) relies on a Macdonald analogue of the Littlewood
symmetric function summation identity (24) from [Mac95] (The term
‘process’ versus ‘measure’ in ‘Macdonald process’ and ‘Macdonald
measure’ distinguishes between measures on interlacing sequences of
partitions and just on single partitions.). The (q = t) half-space (or
Pfaffian) Schur process was defined much earlier in [BR05, SI04] and
studied at length in [BBCS18b] in connection to stochastic processes
like half-space TASEP and last-passage percolation. The half-space
Whittaker measure was introduced in [OSZ14] (the corresponding
Littlewood identity is due to [Sta01]).

Markovian ‘boundary’ dynamics. In order to relate our half-space Macdonald
process to interesting stochastic processes, we construct local
Markovian dynamics on interlacing sequences of partitions, which
preserve the class of Macdonald processes (that is, applying the
dynamics to a sequence distributed according to one Macdonald
process yields, at a later time, another sequence distributed according
to a Macdonald process with modified parameters) and which have
Markovian projections when restricted to a few first or last parts of
the partitions (We will sometimes use ‘Macdonald processes’ as short
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for ‘half-space Macdonald processes’. To avoid any ambiguity, we will
always use precisely ‘full-space Macdonald processes’ when referring
to the original Macdonald processes from [BC14].). The existence
of such dynamics is far from evident. The novelty here (explained in
Section 2.4) is finding appropriate dynamics at the boundary of the
half-space.

Operators. In developing methods to compute distributional information about
marginals of these measures, we construct a new operator (denoted by
Mz

n in the text; see Section 3.5), which is an analytic continuation of a
q-integral operator introduced by Noumi [NS12] (denoted by Nz

n or N
z
n

in the text; see Section 3.3) and which acts diagonally on Macdonald
polynomials. By applying this operator to the normalizing function for
the measure, we are able to prove a (q, t)-Laplace transform formula
for λ1 and λn (where λ1 and λn are the first and last parts of the partition
under the half-space Macdonald measure). The original Noumi operator
cannot be used in computing the Laplace transform of λ1 since in
doing so we must interchange an infinite summation in the definition
of the operator with an infinite summation in the normalizing function.
This interchange is not justifiable and, in fact, leads to the wrong
answer (see Remark 3.23). By working with the analytic continuation
operator Mz

n (which is encoded in terms of Mellin–Barnes-type integrals
with nice convergence properties), we may justifiably perform such
an interchange. When the parameter t = 0 (the case of q-Whittaker
process), this yields a q-Laplace transform formula for q−λ1 , which
cannot be derived from moment formulas due to the ill-posedness of
the moment problem for that random variable. We additionally prove
many other moment formulas as well as a Laplace transform formulas
using ideas that were present in [BC14, BCGS16].

Use of Plancherel specialization and a proof of [OSZ14] conjectural formulas.
Taking the Macdonald parameters t = 0 and q → 1, and performing
appropriate scaling on partitions leads to the half-space Whittaker
process (this limit procedure is similar to that used in the full-space case
in [BC14]). The dynamics we constructed at the top of the Macdonald
hierarchy, when restricted to λ1, converge to the recursion for partition
functions satisfied by the half-space log-gamma polymer model. This
model was studied previously in [OSZ14] by way of applying the
geometric RSK correspondence to a symmetric weight matrix. That
approach only related the polymer partition function on the diagonal
(that is, at the boundary of the domain) to the Whittaker measure. Our
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dynamic approach readily relates the partition function in the entire
half-space to an appropriate Whittaker measure. This ability to work
off the diagonal is, in fact, key—it allows us to introduce a ‘Plancherel’
specialization into our Whittaker measure, which drastically improves
the decay properties of the Whittaker measure density and ultimately
allows us to rigorously derive Laplace transform formulas for the
associated polymer model. The polymer model that comes from this
Plancherel component is a mix of the log-gamma and O’Connell–Yor
polymers (as also considered in [BCFV15] in the full-space setting).
Having established formulas for the mixed model, we can then shrink
the Plancherel component to zero and by continuity we arrive at
formulas for the log-gamma polymer alone. Without the inclusion of a
Plancherel component, the relevant Whittaker measure formulas do not
have sufficient decay to rigorously justify the derivation of the Laplace
transform. In fact, in [OSZ14], the authors performed formal (that is,
neglecting issues of convergence and the applicability of the Whittaker
Plancherel theory) calculations to derive a Laplace transform formula
(both formulas (5.15) and (5.16) in [OSZ14]). They remarked, ‘It seems
reasonable to expect the integral formulas (5.15) and (5.16) to be valid,
at least in some suitably regularized sense.’ We prove these formulas as
Corollary 6.41.

Two types of Laplace transform formulas. We prove two types of half-
space log-gamma polymer Laplace transform formulas. The first type
(Corollaries 6.40 and 6.41, coming from Theorem 6.38) is in terms of
a single n-fold contour integral (and is in the spirit of the speculative
formulas from [OSZ14] as well as formulas proved in the full-space
case in [COSZ14]). The second type, Theorems 3.12 and 3.20, is in
terms of a (finite) series of increasing dimensional integrals. Though
we are unable to write this as a Fredholm Pfaffian, it is the half-space
version of the Fredholm determinant expansion formulas that arise
in [BCR13] and proved, therein, quite useful for asymptotics. We
attempted to perform asymptotics (taking the system size n → ∞)
using these formulas. At the level of studying the term-by-term limit
around the critical points of the integrals, we demonstrate convergence
to the expected Fredholm Pfaffian expansions that govern the half-
space KPZ universality class one-point fluctuation phase diagram.
Unfortunately, the presence of certain gamma function ratios preclude
establishing sufficient control over the tails of the integrals as well as
the series, as would be necessary to rigorously prove our convergence
results. Recently, asymptotics of flat initial data ASEP [OQR17] and
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multipoint formulas for polymers [NZ16] have likewise been stymied
by similar considerations, which have prevented rigorous asymptotics,
despite formal critical point results agreeing with predictions.

Pfaffian identities. Thus, we fall short of our initial goal of proving asymptotic
limit theorems. There is, however, one exception. In joint work
[BBCW18] with Wheeler—which came as an outgrowth of the present
project and [BBW16, WZJ16]—we found that for a special case of
the half-space Hall–Littlewood process (itself, a special case of the
Macdonald process when q = 0, which relates to the half-quadrant
stochastic six-vertex model) the Laplace transform has an alternative
expression in terms of a related Pfaffian point process (the half-space
or Pfaffian Schur process [BR05]). Through this identity and known
asymptotic techniques for Pfaffian point processes, we were able to
rigorously prove the desired type of KPZ universality class asymptotics.
The presence of Pfaffians in this Laplace transform representation
encapsulates some crucial cancellations, which are not apparent in our
series expression. Unfortunately, this relationship to a Pfaffian point
process is presently mysterious and it is unclear if it generalizes beyond
the one special case (see Section 5.3 for more details).

1.1. Half-space Macdonald measures and processes. Half-space
Macdonald measures, defined more precisely in Section 2.3, are probability
distributions on integer partitions λ = (λ1 > λ2 > · · · > 0) for which (the
notation will be explained below)

Pq,t(λ) =
1

Z(ρ, ρ↙)
Pλ(ρ)Eλ(ρ↙).

Here Pλ are the Macdonald symmetric functions [Mac95, Ch. VI] depending
on two parameters q, t (we assume that these parameters take values in [0, 1)
throughout) and Eλ is another symmetric function defined by

Eλ =
∑
µ′ even

bel
µ

Qλ/µ,

where Pλ/µ, Qλ/µ are skew Macdonald symmetric functions, bel
µ

are explicit
(q, t)-dependent coefficients and the sum is over all partitions, which are dual
even (meaning that µ2i−1 = µ2i for all i). The symbols ρ↙ and ρ represent
specializations of the algebra of symmetric functions that can depend on many
parameters, and Z(ρ, ρ↙) is the normalizing constant that is necessary to make
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Pq,t a probability measure. Section 2.2 provides more details for all of these
objects.

Half-space Macdonald processes (Definition 2.3) are probability measures on
sequences of partitions whose marginals are half-space Macdonald measures.
Macdonald symmetric functions usually take a different name when their
parameters q, t are specialized to certain values. We will name our half-space
processes accordingly. The chart in Figure 1 depicts the hierarchy of these
degenerations and the relations between most integrable half-space systems
discussed in this paper. We will use Pq,t ,Eq,t to denote the probability measure
and expectation operator for the Macdonald process, and Pq,t ,Eq,t for the
Macdonald measure. Setting t = 0 and q general results in the q-Whittaker
case and we write Pq,Eq , where as setting q = 0 and t general results in the
Hall–Littlewood case and we likewise write Pt ,Et . When we consider further
degenerations (for example, the Whittaker case, ASEP etc), we will denote the
probability measure and expectation by P,E.

1.2. Computing expectations of observables. At the Macdonald level, we
are able to compute integral formulas for various moments and Laplace-type
transforms. A general scheme for computing expectations of certain observables
of Macdonald measures was introduced in [BC14, Section 2.2.3], and we
develop this into the half-space setting. As alluded to earlier, in order to compute
one of our (q, t)-Laplace transform formulas—see Theorem B—we need to
introduce a new operator Mz

n , which extends the action of N
z

from polynomials
but has better analytic properties. We briefly review our main Laplace transform
results (we leave the moment formulas, which are in the spirit of the earlier full-
space work of [BC14] to the main text—see Section 3).

Consider real variables x1, . . . , xn ∈ (0, 1) and a specialization ρ. We have the
(Littlewood) identity∑

λ

Pλ(x1, . . . , xn)Eλ(ρ) = Z(x1, . . . xn; ρ),

where the function Z(x1, . . . xn; ρ) has an explicit form (see Section 2.2). We
recognize on the left-hand side the unnormalized density of the half-space
Macdonald measure.

Assume that we have a linear operator An acting on functions in variables
x1, . . . , xn , which is diagonal in the basis of symmetric polynomials {Pλ}
with eigenvalues {dλ}. Applying An to both sides of the above identity and
subsequently dividing both sides by the normalizing constant Z , we find that
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Figure 1. Hierarchy of half-space Macdonald processes and their degenerations.
The arrows mean that one has to take a specialization of parameters or a scaling
limit.

for the half-space Macdonald measure with ρ = (x1, . . . , xn) and ρ↙ = ρ,

Eq,t
[
dλ] =

∑
λ∈Y

dλ
Pλ(x1, . . . , xn)Eλ(ρ)

Z(x1, . . . xn; ρ)
=

An Z(x1, . . . xn; ρ)

Z(x1, . . . xn; ρ)
, (1)
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though one needs to justify that the infinite summation commutes with An . We
may also iterate the procedure to compute more complicated observables.

Such operators diagonalized by Macdonald polynomials are available. In
particular, we will use Macdonald difference operators Dr

n , and a variant of them
that we denote D

r
n , for which

Dr
n Pλ = er (qλ1 tn−1, . . . , qλn t0)Pλ, D

r
n Pλ = er (q−λ1 t1−n, . . . , q−λn t0)Pλ,

where er is the r th elementary symmetric function. We will also use Noumi’s
q-integral operator Nz

n (see Section 3.3), and a variant of it denoted by N
z
n , for

which

Nz
n Pλ =

n∏
i=1

(qλi tn−i+1z; q)∞
(qλi tn−i z; q)∞

Pλ, N
z
n Pλ =

n∏
i=1

(q−λi t i z; q)∞
(q−λi t i−1z; q)∞

Pλ,

where (x)∞ = (x; q)∞ =
∏

i>0(1−q i x). Following arguments similar to [BC14,
BCGS16], we can make the above approach entirely rigorous for operators Dr

n ,
D

r
n and Nz

n , and the action of these operators on the normalizing constant can be
expressed in terms of contour integrals (see Sections 3.2 and 3.4). Regarding the
q-integral operator N

z
n , equation (1) is not true since we cannot justify moving

the operator inside the sum that defines Z (in fact, this interchange is not true
due to a lack of convergence when one tries to use Fubini). This is unfortunate
because the quantity

Eq,t

[
n∏

i=1

(q−λi t i z)∞
(q−λi t i−1z)∞

]
is exactly what we need to compute in order to study the partition function of the
log-gamma polymer. This is why we introduce a different integral operator Mz

n ,
which coincides with N

z
n on polynomials, but not on Z(x1, . . . , xn; ρ), and has

better analytic properties. This is the main technical novelty of the present paper
regarding the computation of observables.

Let a1, . . . , an be parameters in (0, 1). Consider the half-space Macdonald
measure with specializations ρ = (a1, . . . , an) and ρ↙ = ρ. We further assume
that the parameters a1, . . . , an are close enough to each other (see the statements
of Theorem 3.12 and Theorem 3.20 for precise statements).

THEOREM A (Theorem 3.12). Let z ∈ C \ R>0. We have

Eq,t

[
n∏

i=1

(qλi tn−i+1z)∞
(qλi tn−i z)∞

]
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=

n∑
k=0

1
k!

∫ R+i∞

R−i∞

ds1

2iπ
· · ·

∫ R+i∞

R−i∞

dsk

2iπ

∮
dw1

2iπ
· · ·

∮
dwk

2iπ

Aq,t
Es ( Ew)

k∏
i=1

Γ (−si)Γ (1+ si)

×

k∏
i=1

Gq,t(wi)

Gq,t(qsiwi)

φ(w2
i )(−z)si

φ(qsiw2
i )(qsi − 1)wi

, (2)

where R ∈ (0, 1) is chosen such that 0 < q R < ai/a j for all i, j , the positively
oriented integration contours for the variables w j enclose all the ai ’s and no
other singularity, and we have used the shorthand notations

Aq,t
Es ( Ew) :=

∏
16i< j6k

(qs jw j − qsiwi)(wi − w j)φ(qsi+s jwiw j)φ(wiw j)

(qsiwi − w j)(qs jw j − wi)φ(qsiwiw j)φ(qs jw jwi)

and

Gq,t(w) =

n∏
j=1

φ(w/a j)

φ(wa j)

1
Π(w; ρ)

, φ(z) =
(t z)∞
(z)∞

,

with Π(w; ρ) =
∑

λ Pλ(w)Qλ(ρ) (see (29) for an explicit expression).

THEOREM B (Theorem 3.20). Let z ∈ C \ R>0. Under mild assumptions on the
specialization ρ, we have

Eq,t
(a1,...,an),ρ

[
n∏

i=1

(q−λi t i z)∞
(q−λi t i−1z)∞

]
=

n∑
k=0

1
k!

∫ R+i∞

R−i∞

ds1

2iπ
· · ·

∫ R+i∞

R−i∞

dsk

2iπ∮
dw1

2iπ
· · ·

∮
dwk

2iπ
Aq,t
−Es ( Ew)

k∏
i=1

Γ (−si)Γ (1+ si)

×
Gq,t

(wi)

Gq,t
(q−siwi)

φ(w2
i )(−z)si

φ(q−siw2
i )(1− qsi )wi

, (3)

where R ∈ (0, 1) is chosen such that ai < q R < ai/a j for all i, j , the
positively oriented contours for the variablesw j enclose all the ai ’s and no other
singularity, and we have used the shorthand notation

Gq,t
(w) =

n∏
j=1

φ(a j/w)

φ(wa j)

1
Π(w; ρ)

.
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The observables appearing in (2) and (3) above should be thought of as
Laplace transforms. When t = 0 and q → 1, these will become exactly Laplace
transforms of the random variables that we want to study. To be more precise,
take t = 0 for simplicity; using the q-binomial theorem (12), the left-hand side
of (2) becomes

Eq

[
1

(qλn z)∞

]
=

∞∑
k=0

zkEq
[qkλn ]

k!q
,

where k!q denotes the q-deformed factorial (see (11)).
The proof of Theorem B is significantly more delicate than the proof of

Theorem A. This is because the left-hand side of (3) does not expand as a power
series in z. Indeed (we take again the case t = 0 for simplicity of the exposition),

Eq

[
1

(q−λ1 z)∞

]
6=

∞∑
k=0

zkEq
[q−kλ1]

k!q
.

Actually, the moments of q−λ1 grow too fast to determine the distribution
uniquely (and sometimes they do not even exist). Formally taking a moment
generating series of moments would not yield the correct result (see Remarks
3.23 and 4.11). This is why we need to work with the integral operator Mz instead
of the q-integral operator N

z
in the proof of Theorem B in Section 3.4.

A similar moment problem issue came up in the study of full-space Macdonald
processes, and [BCFV15] developed an involved argument (using formal power
series in the variables of the Q Macdonald polynomial) to prove the q-Laplace
transform formula. That argument, however, cannot be applied here as there
is no Q polynomial or extra set of variables in which to expand. Thus, our
new operator Mz

n provides the only apparent route to prove Theorem B. It also
provides an alternative to the approach of [BCFV15] in the full-space case.

1.3. Models related to half-space Macdonald processes.

1.3.1. Log-gamma polymer in a half-quadrant. The log-gamma directed
polymer model was introduced in [Sep12] and further studied in [BCR13,
COSZ14, GRASY15, GS13, GRAS16, Gra17, OSZ14, NZ16, TLD14]. We
consider a variant residing in a half-quadrant of Z2.

DEFINITION 1.1 (Half-space log-gamma polymer). Let α1, α2, . . . be positive
parameters and α◦ ∈ R be such that αi + α◦ > 0 for all i > 1. The half-space
log-gamma polymer is a probability measure on up-right paths confined in the
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Figure 2. An admissible path in the half-space log-gamma polymer.

half-quadrant {(i, j) ∈ Z2
>0 : i > j} (see Figure 2), where the probability of an

admissible path π between (1, 1) and (n,m) is given by

1
Zn,m

∏
(i, j)∈π

wi, j ,

and where
(
wi, j

)
i> j is a family of independent random variables such that for

i > j, wi, j ∼ Gamma−1(αi + α j) and wi,i ∼ Gamma−1(α◦ + αi). The notation
Gamma−1(θ) denotes the inverse of a Gamma distributed random variable with
shape parameter θ (see Definition 6.24). The partition function Z(n,m) is given
by

Z(n,m) =
∑

π :(1,1)→(n,m)

∏
(i, j)∈π

wi, j .

We show (see Proposition 6.34 below) that the observable q−λ1 admits a limit
to Z(t, n) when the parameters of the half-space Macdonald measure are scaled
correctly, t = 0 and q goes to 1 in an appropriate manner. This limit corresponds
to the half-space Whittaker process discussed in Section 6. To prove this result,
we study Markovian dynamics preserving half-space Macdonald processes
(actually, q-Whittaker processes) and interpret them in terms of new integrable
particle systems (see Section 4.3). We then show (following arguments from
[MP17]) that under these dynamics, q−λ1 satisfies a recurrence relation, which,
in the q → 1 limit, relates it to the half-space log-gamma polymer partition
function.

Taking degenerations of integral formulas obtained for general Macdonald
measures, we obtain the following moment formula (see Corollary 6.36). For
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t > n and k ∈ Z>0 such that k < min{2αi , αi + α◦},

E[Z(t, n)k] =
∮

dw1

2iπ
· · ·

∮
dwk

2iπ

∏
16a<b6k

wa − wb

wa − wb − 1
1+ wa + wb

2+ wa + wb

×

k∏
m=1

1+ 2wm

1+ wm − α◦

t∏
i=1

(
1

αi − wm − 1

) n∏
j=1

(
1

wm + α j

)
, (4)

where the contours are such that for all 1 6 c 6 k, the contour for wc encloses
{−α j }16 j6n and {wc+1 + 1, . . . , wk + 1} and excludes the poles of the integrand
at α◦− 1 and α j − 1 (for 1 6 j 6 t). Note that if k > αi + α j or k > αi + α◦ for
some i < j , the kth moment of Z(t, n) fails to exist.

In order to go around certain technical issues, we also define a hybrid polymer
model corresponding to a sort of convolution of the half-space log-gamma
polymer and the O’Connell–Yor semidiscrete Brownian polymer. We will not
give its exact definition for the moment but refer the reader to Definition 6.33
for the details. We denote its partition function by Z(t, n, τ ), where τ is a
positive parameter (which correspond to the time in the O’Connell–Yor polymer).
The random variable Z(t, n, τ ) weakly converges to the log-gamma partition
function Z(t, n) as τ goes to zero so that Z(t, n, τ ) can be thought of as a
regularization of Z(t, n).

The moments of the partition function Z(t, n) (and Z(t, n, τ ) as well) grow
too fast to determine its distribution uniquely. Nonetheless, by taking appropriate
degenerations of Theorem B, we are able to characterize the distribution of Z(t,
n) via the following Laplace transform formula, which is proved as Corollary
6.20 in the text (or more precisely, a consequence of it stated as (171)).

If the parameters αi > 0 are sufficiently close to each other, for any t > n > 1,
τ > 0 and u > 0,

E[e−u Z(t,n,τ )
] =

n∑
k=0

1
k!

∫ R+i∞

R−i∞

dz1

2iπ
· · ·

∫ R+i∞

R−i∞

dzk

2iπ

∮
dv1

2iπ
· · ·

∮
dvk

2iπ

×

∏
16i< j6k

(zi − z j)(vi − v j)Γ (vi + v j)Γ (−zi − z j)

(z j + vi)(zi + v j)Γ (v j − zi)Γ (vi − z j)

×

k∏
i=1

[
π

sin(π(vi + zi))

G(vi)

G(−zi)

Γ (2vi)

Γ (vi − zi)

uzi+vi

zi + vi

]
, (5)

where R is chosen so that for all i , −αi < R < min{0, α◦, 1− αi}, the contours
for each variable vi are positively oriented circles enclosing the poles {α j }16 j6n
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and no other singularity of the integrand, and

G(v) = e−τv
2/2

Γ (α◦ + v)

∏n
j=1 Γ (α j − v)∏t
j=1 Γ (α j + v)

.

An important feature of (5) is the cross product∏
16i< j6k

Γ (vi + v j)Γ (−zi − z j)

Γ (v j − zi)Γ (vi − z j)
.

If the Gamma functions were replaced by their rational approximation around
zero, that is Γ (z) ∼ 1/z, we could recast the right-hand side of (5) as the
Fredholm Pfaffian of an explicit kernel and the asymptotic analysis would
become much easier. Unfortunately, this cross product grows with k as eck2 ,
which makes it difficult to control the series (5) as the number of terms n goes to
infinity. Similar issues involving a cross product with Gamma factors have been
encountered several times in exact formulas for models in the KPZ universality
class, in particular in [OQR17, NZ16].

1.3.2. Relation to the work of O’Connell–Seppäläinen–Zygouras. A model
equivalent to the half-space log-gamma polymer model was considered in
[OSZ14]. It corresponds to a log-gamma polymer model where paths reside
in the first quadrant, as in the usual log-gamma polymer, but the weights w̃i, j

are symmetric with respect to the first diagonal (w̃i, j = w̃ j,i ). Off-diagonal
weights are distributed as wi, j ∼ Gamma−1(αi + α j) while the diagonal weights
are distributed as wi,i ∼

1
2 Gamma−1(αi + α◦). One can identify the weight of

a path in this model with the weight of a path in the half-space log-gamma
polymer from Definition 1.1 up to a factor (1/2)k , where k is the number of
times the path hits the diagonal. Since there are 2k−1 paths in the symmetrized
model, which correspond to the same path in the half-space model, the partition
function Z̃(t, n) of the symmetrized model is such that Z̃(t, n) = 1

2 Z(t, n).
When t = n, the law of Z̃(n, n) is a marginal of the push-forward of a symmetric
matrix with inverse-Gamma random variables by the geometric RSK algorithm.
[OSZ14] computed this push-forward (and hence the distribution of Z̃(n, n))
as the Whittaker measure (with slightly different notations than in the present
paper). By a formal (see Section 6.8) application of the Plancherel theorem
for Whittaker functions, they derived a conjectural formula for the Laplace
transform of Z̃(n, n) [OSZ14, (5.15), (5.16)]. Though [OSZ14] was unable to
prove this formula, they suggested that ‘it seems reasonable to expect the integral
formulas (5.15) and (5.16) to be valid, at least in some suitably regularized
sense’. In our present work, we show that our hybrid polymer provides such
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an appropriate regularization. The reason why this was inaccessible to [OSZ14]
was that their results (and connection to Whittaker measures) were restricted to
the diagonal and the hybrid polymer requires working off-diagonal, hence the
interest of our study of Markov dynamics on half-space Macdonald processes.
Using Whittaker Plancherel theory for our hybrid model and letting τ go to zero,
we obtain the following formula.

For t > n and any u > 0, we have (see Corollary 6.40)

E[e−u Z(t,n)
]

=
1
n!

∫ r+i∞

r−i∞

dz1

2iπ
· · ·

∫ r+i∞

r−i∞

dzn

2iπ

∏
i 6= j

1
Γ (zi − z j)

∏
16i< j6n

Γ (zi + z j)

Γ (αi + α j)

×

n∏
i, j=1

Γ (zi − α j)

n∏
i=1

(
uαi−zi

Γ (α◦ + zi)

Γ (α◦ + αi)

t∏
j=n+1

Γ (α j + zi)

Γ (α j + αi)

)
, (6)

where r > 0 is such that r + α◦ > 0 and r > αi for all 1 6 i 6 n. We show in
Corollary 6.41 how to deduce rigorously [OSZ14, (5.15), (5.16)] from the above
formula. Note that (6) is more general since we consider the partition function at
any point (t, n), not only when t = n.

Applying the geometric RSK algorithm to inverse-Gamma-distributed
matrices with other types of symmetries was further considered in [BZ19],
but the corresponding polymer models do not seem to be related to the present
paper. Dynamics on Gelfand–Tsetlin patterns restricted by a wall were studied
in Nteka’s PhD thesis [Nte16], but it is not clear if this is related to our present
paper.

1.3.3. Half-space stochastic six-vertex model. The stochastic six-vertex model
was introduced in [GS92] and further studied in [BCG16]. It was related to (full-
space) Hall–Littlewood processes in [Bor18] (see also [BBW16, BM18]). Half-
space variants of the stochastic six-vertex model and half-space Hall–Littlewood
processes were discussed in [BBCW18].

DEFINITION 1.2. Consider the half-quadrant {(x, y) ∈ Z2
>0 : x 6 y}. The

stochastic six-vertex model in the half-quadrant is a probability measure on
collections of up-right paths (see Figure 3). We associate with each vertex a
Boltzmann weight determined by the local configuration of adjacent paths. In
the bulk, for a vertex (x, y) with x > y, there are six possible configurations and
we choose the Boltzmann weights as

P
( )

=
1− axay

1− taxay
, P

( )
=
(1− t)axay

1− taxay
,
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Figure 3. Sample configuration of the stochastic six-vertex model in a half-
quadrant.

P
( )

=
t (1− axay)

1− taxay
, P

( )
=

1− t
1− taxay

.

For a corner vertex of the form (x, x), we choose weights as

P
( )

= P
( )

= 1, P
( )

= P
( )

= 0.

These weights are stochastic in the sense that

P
( )

+ P
( )

= P
( )

+ P
( )

= 1,

P
( )

+ P
( )

= P
( )

+ P
( )

= 1.

We define a probability measure on configurations of up-right paths as follows.
We assume that there is an incoming horizontal edge to each vertex (1, y) on
the left boundary. Assume that for some n > 2, the incoming edge states of the
set of vertices {(x, y)}x+y=n are all determined. Choose the outgoing edge states
of these vertices by sampling from the Bernoulli distribution imposed by the
vertex weights above. This determines the incoming states of the set of vertices
{(x, y)}x+y=n+1, and iterating this procedure defines the probability distribution
of configurations on the whole half-quadrant. This implies that the probability
distribution of the restriction of the configuration to a finite set of vertices near
the origin such as in Figure 3 is given by the product of Boltzmann weights. We
refer the reader to [BBCW18, Section 3] for a more precise definition.
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Using the relation between half-space Hall–Littlewood measures and the
stochastic six-vertex model established in [BBCW18] (see Theorem 5.7), we
obtain moment formulas for the height function, stated as Corollary 5.8 in the
text:

Et
[
t−kh(x,y)

]
= t

k(k−1)
2

∮
C1

dz1

2iπ
· · ·

∮
Ck

dzk

2iπ

∏
16i< j6k

zi − z j

zi − t z j

1− t zi z j

1− zi z j

×

k∏
j=1

(
1
z j

1− t z2
j

1− z2
j

y∏
i=1

1− ai z j

1− tai z j

x∏
i=1

z j − ai/t
z j − ai

)
,

where the contours C1, . . . ,Cm all enclose 0 and ai are contained in the open
disk of radius 1 around zero, and the contours are nested in such a way that for
i < j the contour Ci does not include any part of tC j .

The half-space six-vertex model is a discrete-time version of the half-line
ASEP (see Definition 5.9). The formula above is similar to nested contour
integral formulas obtained in [BCS14] for the full-space ASEP using coordinate
Bethe ansatz. It is likely that the formula above can be obtained through
coordinate Bethe ansatz as well, and we plan to study this further in future work.

Owing to a refined Littlewood identity originally conjectured in [BWZJ15]
and later proved in [Rai18], [BBCW18] determined—for a certain initial data
and a specific boundary condition—the distribution of the height function at the
boundary for ASEP and the KPZ equation in a half-space using a limit of the half-
space stochastic six-vertex model. Note that with the techniques of [BBCW18]
is was possible to characterize the distribution of h(x, y) only when x = y.

1.4. Asymptotics. We turn to the asymptotic results that can be derived (at
least formally) from our formulas.

1.4.1. Log-gamma polymer. In Section 8, we perform an asymptotic analysis
of our Laplace transform formula (5) as n goes to infinity. We assume that the
parameters αi of the log-gamma polymer are all equal to some α > 0, and we
keep the boundary parameter α◦ arbitrary (thus we have weights distributed
as Gamma−1(α◦ + α) on the boundary and Gamma−1(2α) in the bulk). A
nonrigorous application of Laplace’s method yields the following limit laws.
(The digamma and polygamma functions are defined as Ψ (z) = d

dz log(Γ (z))
and Ψn(z) = dn

dznΨ (z).) When α◦ > 0,

lim
n→∞

P
(

log(Z(n, n))− f n
σn1/3

6 x
)
= FGSE(x), (7)

https://doi.org/10.1017/fmp.2020.3 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.3


Half-space Macdonald processes 19

where the quenched free energy f = −2Ψ (α) and σ = 3
√
Ψ2(α). When α◦ = 0,

lim
n→∞

P
(

log(Z(n, n))− f n
σn1/3

6 x
)
= FGOE(x), (8)

with the same free energy f = −2Ψ (α) and σ = 3
√
Ψ2(α). When α◦ < 0,

lim
n→∞

P
(

log(Z(n, n))− fα◦n
σα◦n1/2

6 x
)
=

∫ x

−∞

e−t2/2

√
2π

dt, (9)

where the free energy becomes fα◦ = −Ψ (α − α◦) − Ψ (α + α◦) and σα =√
Ψ1(α + α◦)− Ψ1(α − α◦). Furthermore, if we scale α◦ close to the critical

point as α◦ = n−1/3σ−1$ , FGOE would be replaced in (8) by a crossover
distribution F(x;$) such that F(x; 0) = FGOE(x) and lim$→∞ F(x;$) =
FGSE(x). It was introduced in [BR01b, Definition 4] in relation with asymptotics
of half-space last-passage percolation with geometric weights (see also [FNR06,
BBCS18b, BBCS18a, BBNV18]).

Let us make clear that unlike all results stated previously, Equations (7), (8)
and (9) are not completely proved, our asymptotics are nonrigorous at the level
of neglecting convergence of tails of series and only focusing on critical points.
Making these rigorous constitutes a significant challenge.

As α goes to zero, the free energy of the (half-space) log-gamma polymer
converges to the last-passage time in a model of last-passage percolation
with exponential weights in a half-quadrant. This model was considered in
[BBCS18b], where the analogues (as α◦, α → 0) of the limit laws (7), (8) and
(9) were proved.

It is reasonable to expect that when α◦ + α is close to zero, the boundary
weights will be so large that their contribution to the free energy will dominate
and fluctuations will be Gaussian on the n1/2 scale. On the contrary, if α◦ & α we
expect that the effect of the boundary should be limited, and fluctuations should
occur on the scale n1/3 by KPZ universality. We explain in Section 8.1 how to
predict the critical α◦ between Gaussian and KPZ behavior. We also provide
heuristic arguments to explain the expression of the constants f, fα◦ and σα◦ in
(7), (8) and (9).

1.4.2. KPZ equation limit regime. Among models in the KPZ universality
class, a central object is the KPZ equation—a stochastic PDE, which reads as

∂t h(t, x) = 1
2∆h(t, x)+ 1

2

[
∂x h(t, x)

]2
+ ξ t > 0, x ∈ R, (10)

where ξ is a Gaussian space–time white noise. This stochastic PDE plays an
important role because many models with a parameter controlling the asymmetry
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or the temperature converge to the KPZ equation under a certain scaling
[AKQ14, DT16, HQ18, DGP17]. This fact is generally referred to as weak
universality. Exact formulas characterizing the distribution of ASEP or directed
polymers yield, after appropriate scaling, information about the distribution
of the solutions to (10). This approach has been successfully implemented
in [ACQ11, SS10, CDR10, Dot10, BCFV15] to determine the one-point
distribution of the KPZ equation on the line R, starting from several types of
initial data. Since we know that statistics in the KPZ class usually depend on
the geometry, it is natural to ask how the distribution would change for the KPZ
equation on another spatial domain, for instance a circle, a segment or a half-line.
A partial answer is provided in [BBCW18] for the KPZ equation on R>0 with
Neumann-type boundary condition ∂x h(t, 0) = −1/2.

As in the full-space case [BC14, BCFV15], our formulas for the half-
space log-gamma should give, in the appropriate scaling regime, distributional
information about the KPZ equation on R>0 with Neumann-type boundary
condition ∂x h(t, 0) = A (or, in other terms, the free energy of the continuous
directed polymer model with a pinning at the boundary). It is not clear how to
rigorously take asymptotics of our Laplace transform formulas (5) and (6) in the
appropriate scaling regime. However, we consider in Section 7 the limit of our
moment formula (4) and we do recover moment formulas obtained in [BBC16]
for the partition function of the half-space continuous directed polymer (see
Corollary 7.1). (The approach in [BBC16] requires uniqueness of the system
of ordinary differential equations defining the delta Bose gas in a half-space
[BBC16, Definition 3.2], which has not been proved.) In particular, we relate
the parameter α◦ of the half-space log-gamma polymer with the parameter A
involved in the boundary condition for the KPZ equation (we simply have
α◦ = A + 1/2 with our scalings).

1.5. Outline of the paper.

Section 2 After providing some background on Macdonald symmetric
functions, we define half-space Macdonald measures and processes.
We also provide a general scheme to build dynamics on sequences of
partitions preserving the class of half-space Macdonald processes.

Section 3 We use operators, in particular Macdonald difference operators and
Noumi’s q-integral operator, diagonalized by Macdonald symmetric
functions, to produce integral formulas for moments and Laplace
transforms of Macdonald measures for general q, t parameters.

Section 4 We study in more detail the case t = 0, q ∈ (0, 1), called half-space
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q-Whittaker process. We consider the degeneration of general formulas
and study a particular class of dynamics related to q-deformations of
the RSK algorithm, introduced in [MP17]. This allows us to relate the
half-space q-Whittaker process to the distribution of certain q-deformed
particle systems (Section 4.3).

Section 5 We study in more detail the case q = 0, t ∈ (0, 1), called the Hall–
Littlewood process. We provide moment formulas, which, using results
from [BBCW18], relate to the stochastic six-vertex model in a half-
quadrant.

Section 6 We consider the q → 1 degeneration of the half-space q-Whittaker
process, called the half-space Whittaker process. The q → 1
degeneration of the dynamics studied in Section 4 gives rise to the
half-space log-gamma polymer. We also consider the degeneration
of our integral formulas and relate them to the log-gamma directed
polymer partition function.

Section 7 We define the KPZ equation on the positive reals and consider the
scaling of the log-gamma directed polymer at high temperature which
should lead to the continuous directed polymer, whose free energy
solves the KPZ equation. We show that under these scalings, our
moment formulas coincide with moment formulas previously obtained
for the continuous directed polymer in a half-space in [BBC16].

Section 8 We consider asymptotics of the free energy log
(
Z(n, n)

)
of the half-

space log-gamma polymer. We first provide probabilistic heuristics to
predict the constants arising in limit theorems, for different ranges of
α◦. Then, we explain how, for each possible range of α◦, the Tracy–
Widom GSE or GOE or the Gaussian Central Limit Theorem arises
from the Laplace transform formula (5). These asymptotics are, however,
nonrigorous.

2. Half-space Macdonald processes

After fixing some useful notations and providing background on symmetric
functions, we define in this section half-space Macdonald processes and explain
a general scheme to build Markov dynamics preserving the set of such measures.
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2.1. q-analogues. Throughout the paper, we assume that 0 6 q < 1. Recall
the definition of the q-Pochhammer symbol

(a; q)n = (1− a)(1− aq) . . . (1− aqn−1) and (a; q)∞ =
∞∏

i=0

(1− aq i).

When there is no ambiguity possible, we may write simply (a)∞ instead of
(a; q)∞. Since 1−qn

1−q goes to n as q goes to 1, it is natural to define the q-integer
[n]q , the q-factorial k!q and q-binomial coefficients

(n
k

)
q

as

[n]q =
1− qn

1− q
, k!q =

(q; q)k
(1− q)k

= [1]q . . . [k]q,
(

n
k

)
q

=
(q; q)n

(q; q)k(q; q)n−k
.

(11)
The q-binomial theorem states that for |z| < 1,

∞∑
k=0

zk(a; q)k
(q; q)k

=
(az; q)∞
(z; q)∞

. (12)

The q-exponential function is defined as

eq(z) =
1

(z(1− q); q)∞
. (13)

The q-binomial theorem shows that eq(z) converges as q goes to 1 to the usual
exponential ex uniformly on any compact set in the complex plane. The q-
Gamma function is defined by

Γq(z) =
(q; q)∞(1− q)1−z

(q z; q)∞
. (14)

When z is not a negative integer, Γq(z) converges to Γ (z) as q goes to 1. We
refer the reader to [AAR99] for more details.

2.2. Background on Macdonald symmetric functions. For a more
comprehensive overview on (Macdonald) symmetric functions, see [Mac95] or
[BC14, Section 2.1].

2.2.1. Partitions and Gelfand–Tsetlin patterns. A partition λ is a
nonincreasing sequence of nonnegative integers λ1 > λ2 > · · · . The length
of λ is the number of its nonzero parts and is denoted by `(λ). The weight of
λ is denoted as |λ| :=

∑
i λi . If |λ| = n, one says that λ partitions n (notation

https://doi.org/10.1017/fmp.2020.3 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.3


Half-space Macdonald processes 23

λ ` n). The transpose λ′ of a partition is defined by λ′i = |{ j : λ j > i}|. Let Y
be the set of all partitions and let Yk be its subset of partitions of length k. We
will generally use Greek letters like λ,µ, κ, ν, π, τ to represent partitions. The
empty partition (such that λ1 = 0) is denoted by ∅. We will denote by m i(λ) the
multiplicity of the integer i in the sequence λ, and sometimes use the notation
λ = 1m1 2m2 . . . .

A partition can be identified with a Young diagram or with a particle
configuration in which for each i , there is a corresponding particle at position
λi (see Figure 4). For a box 2 in a Young diagram, leg(2) is equal to the number
of boxes in the diagram below it (the leg length) and arm(2) is equal to the
number of boxes in the diagram to the right of it (the arm length). A partition is
even if all λi are even. We write µ ⊆ λ if µi 6 λi for all i and call λ/µ a skew
Young diagram.

A partition µ interlaces with λ if for all i , λi > µi > λi+1. In the language of
Young diagrams, this means that λ can be obtained fromµ by adding a horizontal
strip in which at most one box is added per column. We denote interlacing by
µ ≺ λ. In terms of the particle representation, interlacing refers to the interlacing
of the locations of the two sets of particles. See Figure 4 for illustrations of some
of these definitions.

2.2.2. Symmetric functions. Symmetric functions are defined with respect to
an infinite number of formal variables (we will generally use arguments like
x = (x1, x2, . . .) or y = (y1, y2, . . .) although the order of variables does not
matter, or simply leave off the argument of a symmetric function when it is not
important). We denote the algebra of symmetric functions by Sym. It can be seen
as a commutative algebra R[p1, p2, . . . ], where pk(x) = x k

1 + x k
2 + · · · are the

Newton power sum symmetric functions, and we refer the reader to [Mac95, I]
or [BC14, Section 2.1.2] for more details.

The skew Macdonald P (Q) functions Pλ/µ (Qλ/µ) (see [Mac95, Ch. VI]) are
symmetric functions indexed by skew partitions λ/µ that have coefficients in
Q(q, t), which is the space of rational functions in two auxiliary parameters q, t
(we will assume them to be in [0, 1)). For λ ∈ Y, define symmetric functions

Eλ =
∑

µ′∈Y even

bel
µQλ/µ, (15)

where ‘el’ stands for ‘even leg’, and bel
µ ∈ Q(q, t) is given by

bel
µ =

∏
2∈µ

leg(2) even

bµ(2), bµ(2) =


1− qat`+1

1− qa+1t`
2 ∈ µ

1 2 /∈ µ

(16)
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Figure 4. (i) Young diagram corresponding to the partition λ = (6, 4, 2, 2, 1); the
black box has arm length a(�) = 4 and leg length `(�) = 3. (ii) Young diagram
corresponding to λ’s transpose λ′ = (5, 4, 2, 2, 1, 1). (iii) The diagram contains
a horizontal strip in gray added to the diagram µ = (6, 3, 1, 1); the gray boxes
are also the skew diagram κ/µ, where κ = (8, 5, 2, 1, 1).

with ` = leg(2) and a = arm(2) in the definition of bµ(2) (see Figure 4 for the
definitions of leg(2) and arm(2)).

Macdonald symmetric functions satisfy the following combinatorial formula
[Mac95, VI, (7.13)]. For two partitions λ,µ such that λ/µ is a horizontal strip,
define coefficients

ϕλ/µ =
∏

16i6 j6`(λ)

f (qλi−λ j t j−i) f (qµi−µ j+1 t j−i)

f (qλi−µ j t j−i) f (qµi−λ j+1 t j−i)
, (17)

ψλ/µ =
∏

16i6 j6`(µ)

f (qµi−µ j t j−i) f (qλi−λ j+1 t j−i)

f (qλi−µ j t j−i) f (qµi−λ j+1 t j−i)
, (18)

where f (u) = (tu; q)∞/(qu; q)∞. Then, we have that

Pλ/µ(x1, . . . , xn) =
∑

λ(1),...,λ(n−1)

n∏
i=1

ψλ(i)/λ(i−1)x |λ
(i)
|−|λ(i−1)

|

i , (19)

where the sum runs over sequences of partitions such that

µ = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(n) = λ,
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where for all 1 6 i 6 n, λ(i)/λ(i−1) is a horizontal strip. Similarly,

Qλ/µ(x1, . . . , xn) =
∑

λ(1),...,λ(n−1)

n∏
i=1

ϕλ(i)/λ(i−1) x |λ
(i)
|−|λ(i−1)

|

i . (20)

2.2.3. Identities. We recall certain identities involving symmetric functions,
which will be utilized in the remainder of the paper. In this section, all
summations run over the set Y of all partitions, unless otherwise specified.

The skew Cauchy identity [Mac95, VI.7] holds for two sets of formal variables
x and y: ∑

κ

Pκ/ν(x)Qκ/λ(y) = Π(x; y)
∑
τ

Qν/τ (y)Pλ/τ (x), (21)

where Π(x; y) is given by [Mac95, VI, (2.5)]

Π(x; y) :=
∑
κ

Pκ(x)Qκ(y) =
∏

i, j>1

φ(xi y j) where φ(x) =
(t x; q)∞
(x; q)∞

. (22)

Macdonald P and Q functions also satisfy a sort of semigroup property called
branching rule whereby [Mac95, VI.7]∑

µ

Pν/µ(x)Pµ/λ(y) = Pν/λ(x, y) and
∑
µ

Qν/µ(x)Qµ/λ(y) = Qν/λ(x, y).

(23)
Turning to the Eλ function, from [Mac95, VI.7, Ex. 4(i)] we have

Φ(x) :=
∑

ν′∈Y even

bel
ν Pν(x) =

∏
i< j

φ(xi x j). (24)

It follows from the definition of Eµ along with (23) that∑
µ

Qλ/µ(x)Eµ(y) = Eλ(x, y). (25)

From there, one can show (see for example [BBCW18, Proposition 2.1]) that

Eµ(x) = Φ(x)−1
∑

ν′∈Y even

bel
ν Pν/µ(x). (26)

Combining (21) with (26) yields∑
µ

Eµ(x)Pµ/λ(y) = Π(x; y)Φ(y) Eλ(x, y), (27)
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and in particular ∑
µ

Eµ(x)Pµ(y) = Π(x; y)Φ(y). (28)

In the following, we will refer to (28) as the generalized Littlewood identity.

2.2.4. Specializations. A specialization ρ of Sym is an algebra
homomorphism of Sym to C—see [BC14, Section 2.2.1] for a more involved
discussion. We denote the application of ρ to f ∈ Sym as f (ρ). The trivial
specialization ρ = ∅ takes the value 1 for the constant function 1 ∈ Sym and
0 for all homogeneous functions f ∈ Sym of higher degree. The union of two
specializations ρ1, ρ2 is defined via the relation

pk(ρ1, ρ2) = pk(ρ1)+ pk(ρ2).

Since the power sums pk span Sym (algebraically), one can extend the definition
of the union to any symmetric function. Notationally, we will write the union of
ρ1, ρ2 by putting a comma between them.

We say a specialization ρ is Macdonald nonnegative if for every skew diagram
λ/µ, Pλ/µ(ρ) > 0. For nonnegative numbers α = {α}i>1, β = {βi}i>1 and γ such
that

∑
i αi + βi <∞, we define the specialization ρ = ρ(α, β, γ ) by

Π(u; ρ) =
∑
n>0

un Q(n)(ρ) = exp(γ u)
∏
i>1

(tαi u; q)∞
(αi u; q)∞

(1+ βi u). (29)

It has recently been proved in [Mat19, Theorem 1.4] that a specialization ρ is
Macdonald nonnegative if and only if ρ = ρ(α, β, γ ) for some α, β, γ as above
(the if part is not hard to show; the only if part was conjectured by Kerov in 1992).
Note that we have used the same notation asΠ(x; y), where x is specialized into
a single variable u and y is specialized into ρ. The αi variables are called usual
(because they correspond to the usual notion of evaluation of a polynomial into
some variables), the βi are called dual and the γ is called Plancherel. When ρ
only involves usual variables α1, . . . , αk (and all other α, β, γ are zero), Pλ is
supported on partitions λ of `(λ) 6 k and is a polynomial in the variables αi ;
when ρ only involves dual variables β1, . . . , βk (and all other α, β, γ are zero),
Pλ is supported on partitions λ of `(λ′) 6 k (in other words, all λi 6 k).

Specializations of Sym allow us to turn the formal summation identities of
Section 2.2.3 into analytic ones. In particular, if there exist 0 < R < 1 and
specializations ρ1, ρ2 such that for all k > 1,

|pk(ρ1)| < Rk and |pk(ρ1)pk(ρ2)| < Rk,
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then the formal identity (28) becomes, after specializing x into ρ2 and y into ρ1,∑
λ∈Y

Eλ(ρ2)Pλ(ρ1) = Π(ρ1, ρ2)Φ(ρ1), (30)

where the sum is absolutely convergent.

2.2.5. Orthogonality. Macdonald symmetric functions Pλ and Qλ form a basis
of Sym, and they are orthogonal with respect to the scalar product 〈·, ·〉q,t defined
by

〈pµ, pλ〉q,t = 1λ=µ
∏

i

imi (λ)m i(λ)!

`(λ)∏
i=1

1− qλi

1− tλi
.

When specialized into n usual variables, Macdonald symmetric functions are
polynomials in these variables, and they are orthogonal with respect to another
scalar product, introduced in [Mac95, VI, (9.10)]. In [BC14, Section 2.1.5], it is
written as

〈 f, g〉′ =
∫
Tn

f (z)g(z)mq,t
n (z)

n∏
i=1

dzi

zi
, mq,t

n (z) :=
1

(2iπ)nn!

n∏
i 6= j=1

(zi/z j ; q)∞
(t zi/z j ; q)∞

,

where Tn is the n-fold torus
(
{e2iπθ
}θ∈[0,1)

)n . Using the identity (22), we may
write

Qλ(x) =
〈Π(·, x), Pλ(·)〉′

〈Pλ, Pλ〉′
.

Similarly (28) would suggest

Eλ(x)
?
=
〈Π(·, x)Φ(·), Pλ(·)〉′

〈Pλ, Pλ〉′
,

but this does not make sense because Φ has singularities on the torus, and (28)
is not valid with such arguments. Thus, we rewrite the scalar product as

〈〈 f, g〉〉 =
∫
Tn

f (z)g(z−1)mq,t
n (z)

n∏
i=1

dzi

zi
, (31)

where z−1
= (1/z1, . . . , 1/zn). (This is actually the original definition in [Mac95,

VI.9].) Since for w ∈ T, w = 1/w, the scalar products 〈·, ·〉′ and 〈〈·, ·〉〉 coincide
on polynomials, and Macdonald symmetric polynomials are orthogonal with
respect to 〈〈·, ·〉〉 as well, with the same norm. In (31), the integrand is analytic
as long as f and g are, so that we may use Cauchy’s theorem and deform the
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contour. It is particularly convenient for us to take the contour as cT, where
0 < c < 1. We obtain using (28) that

Eλ(x) =
1

〈〈Pλ, Pλ〉〉

∫
(cT)n

Pλ(z−1)Π(z, x)Φ(z)mq,t
n (z)

n∏
i=1

dzi

zi
. (32)

REMARK 2.1. A very similar scalar product 〈〈·, ·〉〉 appears in [BCPS15a,
BCPS15b, Bor17, BP18]. More precisely, taking s = 0 in [Bor17, Theorem
7.2], we recover the orthogonality of Hall–Littlewood polynomials with respect
to 〈〈·, ·〉〉.

2.3. Definition of half-space Macdonald processes. We define half-space
Macdonald processes in terms of a certain type of paths in the sector {(i,
j) ∈ Z2

: 0 6 j 6 i} decorated with Macdonald nonnegative specializations.
An analogous definition of Pfaffian Schur processes—which are a particular
case q = t of the following—was described in [BBCS18b, Section 3.2].
An alternative but equivalent definition of half-space Macdonald processes
was provided in [BBCW18, Definition 2.3]. The paths we consider are half-
infinite and oriented, starting at (+∞, 0) and proceeding to some (i, 0) before
proceeding by unit steps along upward and leftward edges until the diagonal, at
which point there is a final edge connecting that point to (0, 0) where the path
terminates. We will call such a path ω and denote its set of vertices as V (ω) and
edges as E(ω). Denote the set of vertical edges by E↑(ω), of horizontal edges by
E←(ω) (we do not include edges along the x-axis) and the singleton containing
the diagonal edge by E↙(ω). The set of all such paths will be denoted by Ω .
Note that the last diagonal edge is a single edge, not a union of all of the

√
2

length edges between consecutive diagonal lattice points. Likewise, V (ω) does
not include these intermediate diagonal points. We introduce a natural ordering
on vertices: v < v′ if v comes before v′ in ω; likewise define similar precedence
ordering on edges as well as between vertices and edges.

We label each edge e ∈ E(ω) with a Macdonald specialization ρe. We label
each vertex v ∈ V (ω) by a partition λv with the convention that λv ≡ ∅ for all
v with y-coordinate equal to 0. Figure 5 provides an example of one such path
(the ∅ vertices have been labeled, but all other vertices and edge labels are not
present in the figure).

For a given path ω ∈ Ω and set of specializations ρ = {ρe}e∈E(ω), we associate
a weight to the sequence of partitions λ = {λv}v∈V (ω):

W (λ) :=
∏

e∈E(ω)

W(e), (33)
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Figure 5. A possible path ω ∈ Ω . The vertices with y-coordinate 0 are labeled
with trivial partitions, while all others are (not shown) labeled with partitions and
all edges are labeled with Macdonald nonnegative specializations.

where the weight of an edge e is given as follows. Let κ denote the partition at
the start of e and µ the partition at the end of e. Then,

W(e) =


Eκ(ρe) if e ∈ E↙(ω),
Qκ/µ(ρe) if e ∈ E←(ω),
Pµ/κ(ρe) if e ∈ E↑(ω).

We use the convention P∅/∅ = 1 so that if e is a leftward edge with y-coordinate
0, then W(e) = 1.

PROPOSITION 2.2. Assuming each term on the right-hand side is finite,∑
λ

W (λ) =
∏
e<e′:

e∈E↑(ω),
e′∈E←(ω)∪E↙(ω)

Π(ρe; ρe′)Φ(∪e∈E↑(ω)ρe). (34)

Proof. This can be proved through applying (specializations of) identities (21),
(23), (25) and (27). We provide a pictorial proof that explains in which order
these identities must be used. Figure 6 provides a graphical representation for
the meaning of each identity.

Starting from any path ω, one may apply these elementary moves until ω
is reduced to the trivial path (with x-coordinate always equal to zero), which
assigns weight 1 to trivial partitions and 0 otherwise. Figure 7 provides a step-
by-step illustration of this reduction process. Keeping track of the products ofΠ
and Φ terms yields the desired formula.
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Figure 6. Graphical representations of summation identities. The boxes represent
vertices whose partitions are being summed over; the directed edges are labeled
by Macdonald nonnegative specializations; the blobs represent other terms that
may arise in the weight of a path ω, which are not involved in these identities.
Graphics (a) represents the branching rule (23) for Macdonald polynomials Q,
(b) represents the branching rule for polynomials P , (c) represents the skew
Cauchy identity (21), (d) represents (25) and (e) represents (27).

DEFINITION 2.3. For a given path ω ∈ Ω and a set of Macdonald nonnegative
specializations ρ = {ρe}e∈E(ω) such that (34) is finite, the half-space Macdonald
process Pq,t

ω;ρ is a measure on the sequence of partitions λ = {λv}v∈V (ω) given by

Pq,t
ω;ρ (λ) :=

W (λ)∏
e<e′:

e∈E↑(ω),
e′∈E←(ω)∪E↙(ω)

Π(ρe; ρe′)Φ(∪e∈E↑(ω)ρe)
.

The half-space Macdonald measure is a measure on a single partition. It is
a special case of the process when the path ω = , that is, the path with only
one vertex above the x-axis at position (1, 1). In that case, the only nontrivial
partition is λ(1,1) (which we will just write as λ) and the only specializations that
matter are those for the upward edge into (1, 1), which we denote by ρ, and
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Figure 7. To compute the normalizing constant for a path ω, one sums over all
nontrivial partitions labeled by vertices. The boxes represent these summations,
and the figure shows the sequential application of the identities in Figure 6. The
multiplicative factors of Π and Φ, which arise from each summation are not
shown nor are the specializations.

that of the diagonal edge out of (1, 1), which we denote by ρ↙. The half-space
Macdonald measure is then simply written as Pq,t

ρ,ρ↙
and is explicitly given by the

formula

Pq,t
ρ,ρ↙

(λ) =
Pλ(ρ)Eλ(ρ↙)
Π(ρ; ρ↙)Φ(ρ)

.

It is convenient to also introduce an expectation operator, which for the half-
space Macdonald process is denoted by Eq,t

ω;ρ and for the measure is denoted by
Eq,t

ρ,ρ↙
.

It is easy to show using the relations in Figure 6 that various marginals of half-
space Macdonald processes to subsequences of λ remain half-space Macdonald
processes. In particular, for a particular vertex v ∈ ω, the marginal distribution
of λv under the half-space Macdonald process Pq,t

ω;ρ is given by the half-space
Macdonald measure Pq,t

ρ,ρ↙
(λ), where

ρ =
⋃

e<v:e∈E↑(ω)

ρe and ρ↙ =
⋃

e>v:e∈E(ω)

ρe.

REMARK 2.4. (Full-space) Macdonald processes [BC14] can be defined in
a similar manner. The difference is that the paths ω that index Macdonald
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processes start at (+∞, 0) and end at (0,+∞). The weight of a collection of
partitions on vertices of the path is still given by the product of specialized skew
Macdonald P or Q functions along the edges.

REMARK 2.5. Macdonald (and in particular, Schur) processes are commonly
defined as measures on sequences λ = (λ(1), . . . , λ(N )) and µ = (µ(1), . . . ,

µ(N−1)) of partitions satisfying the interlacing condition

∅ ⊂ λ(1) ⊃ µ(1) ⊂ λ(2) ⊃ µ(2) ⊂ · · · ⊃ µ(N−1)
⊂ λ(N ) ⊃ ∅.

In the context of half-space Macdonald processes, we could similarly define
our measure on such a set of partitions by fixing Macdonald nonnegative
specializations ρ+0 , . . . ρ

+

N−1, ρ
−

1 , . . . , ρ
−

N and defining a weight

W(λ,µ) := Pλ(1)(ρ+0 ) Qλ(1)/µ(1)(ρ
−

1 )Pλ(2)/µ(1)(ρ
+

1 ) · · · Pλ(N )/µ(N−1)(ρ+N−1) Eλ(N )(ρ−N ).

This was the definition employed in [BBCW18, Definition 3.2] and [BR05]
in the Schur case. It is easy to match this measure to a half-space Macdonald
process indexed by a particular choice of path ω (which maximally zigzags from
the x-axis to the diagonal). More general choices ofω come from choosing trivial
specializations (which force equality of consecutive partitions). Thus Definition
2.3 is equivalent to [BBCW18, Definition 3.2]—see also [BBCS18b, Remark
3.6] about the equivalence between both formulations.

The next proposition is a useful identity in law valid only when the diagonal
specialization is the evaluation into a single variable (see Section 8.1 for an
application). In the Schur degeneration, one recovers [BR01a, Corollary 7.6]
(see also [BBCS18b, Proposition 3.4]).

PROPOSITION 2.6. Let µ be distributed according to the Macdonald measure
Pq,t
ρ,α where α is a single variable specialization, and let λ be distributed

according to the Macdonald measure Pq,t
ρ′,0 with ρ ′ = (ρ, α). Then (λ1, λ3, . . . )

and (µ1, µ3, . . . ) have the same distribution.

Proof. Since Eλ(0) is supported on partitions with even dual,

Pq,t
ρ′,0

(
λ1 6 `1, λ3 6 `3, . . .

)
=

∑
λ′even

bel
λ Pλ(ρ ′),

where the sum runs over partitions λ such that λi 6 `i for all odd i . Using (23),
the sum can be rewritten as∑

λ′even

∑
µ⊂λ

bel
λ Pλ/µ(α)Pµ(ρ) =

∑
µ≺λ

∑
λ′even

bel
λψλ/µα

|λ−µ|Pµ(ρ), (35)
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where on the right-hand side the first sum runs over partitionsµ such thatµi 6 `i

for all odd i . Now we will use the fact that if µ ≺ λ and λ′ is even, then we have
(see [Mac95, VI.7 Ex. 4, Eq. (4)])

bel
λψλ/µ = bel

ν ϕµ/ν,

where ν is the only partition such that ν ≺ µ and ν ′ is even, and the coefficients
ψλ/µ, ϕµ/ν are defined in (18). Since we also have |λ−µ| = |µ− ν|, (35) equals∑

µ

bel
ν ϕµ/να

|µ−λ|Pµ(ρ).

We recognize Eµ(α) = bel
ν ϕµ/να

|µ−λ| and conclude that

Pq,t
ρ′,0

(
λ1 6 `1, λ3 6 `3, . . .

)
= Pq,t

ρ,α

(
µ1 6 `1, µ3 6 `3, . . .

)
.

2.4. Markov dynamics on half-space Macdonald processes.

2.4.1. Bulk and boundary transition operators. We consider here Markov
transition operators that map half-space Macdonald processes with one set
of parameters to those processes with an updated set of parameters. We will
leverage the graphical representation of the half-space Macdonald process so
as to describe a general mechanism through which to ‘grow’ such a measure.
We refer to [BBCS18b, Section 3.3], where such a procedure is explained in
the case of the Pfaffian Schur processes. In terms of the path ω, there are two
elementary moves (see Figure 8), which can be used to transition between any ω
and ω′ where ω′ contains ω (in the sense that ω sits entirely to the bottom left of
ω′). The first move—bulk growth—takes a piece x in ω with corner coordinates
(i, j) with i > j and inverts it into piece q with corner coordinates (i + 1,
j + 1). The second move—boundary growth—takes the piece composed of the
diagonal from (i, i) to (0, 0) and the leftward edge immediately preceding it and
replaces it with the diagonal from (i + 1, i + 1) to (0, 0) and an upward edge
immediately preceding it. To each type of moves, we associate an operator. For
the bulk growth, out of corner (i, j) with i > j , we associate the operator Ux

i, j

and for the boundary growth, out of corner (i, i) we associate the operator U 6i,i .
The specializations will be carried out from the initial path to the new one as

follows. The operator Ux
i, j will encode a Markov transition from λ(i, j) to λ(i+1, j+1)

and will be chosen so as to map the half-space Macdonald process to a new
half-space Macdonald process on the new path ω′ where the specializations all
remain the same, except the leftward one into (i, j) becomes the leftward one
out of (i + 1, j + 1) and likewise the upward one out of (i, j) becomes the
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Figure 8. Operators Ux
(i, j) and U 6(i,i) map a half-space Macdonald process to a

new half-space Macdonald process indexed by a new path with specializations
chosen as above. The dashed part of the path does not play any role.

upward one into (i+1, j+1). The operator U 6i,i will encode a Markov transition
from λ(i,i) to λ(i+1,i+1) and should map the half-space Macdonald process to a
new half-space Macdonald process on the new path ω′ where the specializations
all remain the same (including the diagonal edge from (i + 1, i + 1) to (0, 0)),
except the leftward one into (i, i) becomes the upward one into (i + 1, i + 1).

Our use of the operator Ux implies that we use the same specializations on
all vertical edges at the same ordinate and on all horizontal edges at the same
abscissae. Let us denote by ρh

i the specialization carried by any horizontal edge
between a point (i − 1, j) to a point (i, j), and ρv

j the specialization carried by
any vertical edge between a point (i, j − 1) to a point (i, j). Moreover, our use
of the operator U 6 implies that for every i ∈ Z>0, ρh

i = ρ
v
i . We will henceforth

use the notation ρi := ρ
h
i = ρ

v
i . We will also denote by ρ◦ the specialization on

the diagonal edge.
Note that despite this seemingly restrictive choice of specializations, any half-

space Macdonald process—defined by any admissible path ω ∈ Ω and arbitrary
specializations on E(ω)—can be realized as the output of the above transition
operators along a sequence of elementary moves from the empty path to the
path ω.

There may be many ways to choose the operators Ux and U 6 . We will restrict
our attention to those Ux

(i, j) that only depend on the partitions at the three vertices
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(i, j + 1), (i, j), (i + 1, j) as well as the two specializations between these
vertices, and those U 6i that only depend on the two vertices at (i, i) and (i+1, i)
as well as the specialization between these vertices and (0, 0).

LEMMA 2.7. Let i, j be nonnegative integers. The transition operators Ux
i, j

and U 6i,i map a half-space Macdonald process to another half-space Macdonald
process as specified above if and only if they satisfy the following two equations:
For all partitions κ, µ, ν, π and all specializations ρ◦, ρi+1, ρ j+1 for which
normalizations remain finite,∑
µ

Qκ/µ(ρi+1)Pν/µ(ρ j+1)Ux(π |κ, µ, ν) =
Pπ/κ(ρ j+1)Qπ/ν(ρi+1)

Π(ρ j+1, ρi+1)
, (36)

∑
µ

Qκ/µ(ρi+1)Eµ(ρ◦)
Π(
⋃

e∈E↑(ω) ρe; ρi+1)
U 6 (π |κ, µ) = Pπ/κ(ρi+1)Eπ (ρ◦)

Φ(
⋃

e∈E↑ ρe)−1Φ(
⋃

e∈E↑ ρe, ρi+1)
.

(37)

Proof. Let us explain how these equations are derived. It will be clear from the
proof why they are sufficient to define bona fide bulk and boundary operators
preserving the half-space Macdonald process. We focus only on U 6 . The
analogous result for Ux can be proved similarly and was essentially already
obtained in the literature (see [MP17, Eq. (2.24)] and references therein, in the
context of dynamics preserving the full-space Macdonald process).

Let ω ∈ Ω such that (i, i) ∈ ω and the edge (i + 1, i) → (i, i) ∈ E(ω)
and let ω′ be the path obtained from ω by changing the leftward edge into
(i, i) to an upward edge into (i + 1, i + 1). The fact that U 6i,i maps a half-
space Macdonald process on ω to a half-space Macdonald process on ω′ with
specializations chosen according to Figure 8 is equivalent to∑

λ

Pq,t
ω,ρ (λ) U

6

i,i(λ
(i+1,i+1)

|λ(i+1,i), λ(i,i)) = Pq,t
ω′,ρ′(λ

′), (38)

where λ and λ′ (respectively, ρ and ρ ′) are the sequences of partitions
(respectively, specializations) along ω and ω′. Removing on both sides of
(38) the weights corresponding to the edges shared by ω and ω′, one is left with∑

λ(i,i)

Qλ(i+1,i)/λ(i,i)(ρi+1)Eλ(i,i)(ρ◦)
Π(
⋃

e∈E↑(ω) ρe; ρi+1)
U 6i,i(λ(i+1,i+1)

|λ(i+1,i), λ(i,i))

=
Pλ(i+1,i+1)/λ(i+1,i)(ρi+1)Eλ(i+1,i+1)(ρ◦)

Φ(
⋃

e∈E↑ ρe)−1Φ(
⋃

e∈E↑ ρe, ρi+1)
,

which must hold for any partitions λ(i+1,i) and λ(i+1,i+1).
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2.4.2. Push–block dynamics. It is nontrivial to solve equations (36) and (37)
in general. It simplifies things considerably if we assume that Ux(π |κ, µ, ν) =

Ux(π |κ, ν) and U 6 (π |κ, µ) = U 6 (π |κ) (that is, they do not depend on the
partition that is being summed over in (36) and (37)). In such a case, Ux(π |κ,

ν) and U 6 (π |κ) factor out of the left-hand side of these equations, and we can
compute the summation over µ as∑

µ

Qκ/µ(ρi+1)Pν/µ(ρ j+1) =
∑
π

Pπ/κ(ρ j+1)Qπ/ν(ρi+1)

Π(ρ j+1, ρi+1)
, (39)

∑
µ

Qκ/µ(ρi+1)Eµ(ρ◦)
Π(
⋃

e∈E↑(ω) ρe; ρi+1)
=

Eκ(ρ◦, ρi+1)

Π(
⋃

e∈E↑(ω) ρe; ρi+1)
. (40)

Thus, we may choose Ux
i, j(π |κ, µ, ν) as

Ux
i, j(π |κ, µ, ν) = Ux

i, j(π |κ, ν) =
Pπ/κ(ρ j+1)Qπ/ν(ρi+1)∑
π Pπ/κ(ρ j+1)Qπ/ν(ρi+1)

.

This transition operator was introduced in [BC14, Section 2.3] following an
approach introduced in the work of Diaconis–Fill [DF90] for general Markov
chains and developed by Borodin–Ferrari [BF14b] in the Schur process case.
The term push–block dynamics comes from [BF14b], where the dynamics on
Gelfand–Tsetlin patterns (that give a way of encoding a sequence of interlacing
partitions), interpreted as particle system dynamics, are described using nearest
neighbor interaction of particles with pushing and blocking mechanisms. At the
Macdonald process level of generality, these push–block dynamics do not admit
a particularly nice interpretation in terms of local moves on a Gelfand–Tsetlin
pattern. In the special case of t = 0 (Section 4), we will recall two other choices
of dynamics from [MP17] that have nicer marginals.

Using (40), the operator U 6i,i may be chosen as

U 6i,i(π |κ, µ) = U 6i,i(π |κ) =
Pπ/κ(ρi+1)Eπ (ρ◦)

Eκ(ρi+1, ρ◦)Π(ρi+1, ρ◦)Φ(ρi+1)
.

REMARK 2.8. The above construction also provides a way to grow usual
Macdonald processes [BC14]. In that case, we would consider a path starting
from the horizontal axis and ending on the vertical axis, the growth mechanism
would involve only the bulk transition operator Ux and the set of specializations{
ρh

i

}
i>1 on horizontal edges and

{
ρv

i

}
i>1 on vertical edges can be different.

REMARK 2.9. The degeneration of these dynamics when q = t preserve the
Pfaffian Schur process. They are studied in [BBCS18b] to justify that the first
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coordinates λ1 of random partitions in a Pfaffian Schur process have the same
law as last-passage times along a down-right path in a model of last-passage
percolation in a half-quadrant.

3. Observables of half-space Macdonald processes

Consider positive variables x1, . . . , xn and a Macdonald nonnegative
specialization ρ. The generalized Littlewood summation identity (30)∑

λ∈Y

Pλ(x1, . . . , xn)Eλ(ρ) = Π(x1, . . . xn; ρ)Φ(x1, . . . , xn)

holds as a numeric identity under some assumptions on x1, . . . , xn and ρ. Let us
assume that we have a linear operator An which acts on n-variable symmetric
functions and which is diagonal in the basis {Pλ} of symmetric polynomials,
with eigenvalues {dλ}. Then, applying An to both sides of the above equality in
the variables x1, . . . , xn and subsequently dividing both sides byΠ(x1, . . . xn; ρ)

Φ(x1, . . . , xn), we find that

Eq,t
(x1,...,xn),ρ

[
dλ] =

∑
λ∈Y

dλ
Pλ(x1, . . . , xn)Eλ(ρ)

Π(x1, . . . xn; ρ)Φ(x1, . . . , xn)

=
An Π(x1, . . . xn; ρ)Φ(x1, . . . , xn)

Π(x1, . . . xn; ρ)Φ(x1, . . . , xn)
,

where the numerator on the right-hand side An Π(x1, . . . xn; ρ)Φ(x1, . . . , xn)

stands for the application of An to the function (x1, . . . , xn) 7→ Π(x1, . . . xn; ρ)

× Φ(x1, . . . , xn) and then subsequent evaluation at the point (x1, . . . , xn). If
there are many operators that are all mutually diagonalized by Pλ, then applying
them sequentially yields formulas for moments involving the products of their
eigenfunctions; cf. [BC14, Section 2.2.3], where this scheme was first realized
in a similar context. Note that one must check the validity of exchanging the
action of An with the summation over λ.

3.1. Macdonald difference operators.

DEFINITION 3.1. For any u ∈ R and 1 6 i 6 n, define the shift operator Tu,xi

by
(Tu,xi F)(x1, . . . , xn) = F(x1, . . . , uxi , . . . , xn),

and for any subset I ⊂ {1, . . . , n} with r elements, define

A I (x; t) = t
r(r−1)

2

∏
i∈I, j /∈I

t xi − x j

xi − x j
.
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For r = 1, 2, . . . , n, define the r th Macdonald difference operator

Dr
n =

∑
I⊂{1,...,n}
|I |=r

A I (x; t)
∏
i∈I

Tq,xi .

Also, define a variant of the Macdonald difference operator

D
r
n = t−

n(n−1)
2 Dn−r

n Tq−1,

where the operator Tq−1 multiplies all variables by q−1, Tq−1 = Tq−1,x1, . . . ,

Tq−1,xn .

PROPOSITION 3.2. For any partition λ with `(λ) 6 n,

Dr
n Pλ(x1, . . . , xn) = er (qλ1 tn−1, qλ2 tn−2, . . . , qλn t0)Pλ(x1, . . . , xn), (41)

D
r
n Pλ(x1, . . . , xn) = t−

n(n−1)
2 q−|λ|en−r (qλ1 tn−1, . . . , qλn t0)Pλ(x1, . . . , xn) (42)

= er (q−λ1 t1−n, q−λ2 t2−n, . . . , q−λn t0)Pλ(x1, . . . , xn). (43)

Here er is the elementary symmetric function,

er (x1, . . . , xn) =
∑

16i1<···<ir6n

xi1 · · · xir .

Proof. The first identity is from [Mac95, VI(4.15)] and the next two follow
easily, as explained in [BC14, Remark 2.2.12].

PROPOSITION 3.3. Fix k > 1 and consider functions H(u1, . . . , un) =∏n
i=1 h(ui) and Φ(u1, . . . , un) =

∏
i< j φ(ui u j), where h(·) and φ(·) are

univariate locally holomorphic functions as specified below. Then(
(D1

n)
k(HΦ)

)
(x1, . . . , xn)

(HΦ)(x1, . . . , xn)
=
(t − 1)−k

(2π i)k

∮
· · ·

∮
×

∏
16a<b6k

(twa − qwb)(wa − wb)

(wa − qwb)(twa − wb)

φ(q2wawb)φ(wawb)

φ(qwawb)2

×

k∏
m=1

n∏
j=1

(
twm − x j

wm − x j

φ(qx jwm)

φ(x jwm)

)
h(qwm)φ(w

2
m)

h(wm)φ(qw2
m)

dwm

wm

and (
(tn−1D

1
n)

k(HΦ)
)
(x1, . . . , xn)

(HΦ)(x1, . . . , xn)
=
(t − 1)−k

(2π i)k

∮
· · ·

∮
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×

∏
16a<b6k

(twa − qwb)(wa − wb)

(wa − qwb)(twa − wb)

φ
(

1
q2wawb

)
φ
(

1
wawb

)
φ
(

1
qwawb

)2

×

k∏
m=1

n∏
j=1

(
1− twm x j

1− wm x j

φ
( x j

qwm

)
φ
( x j

wm

) ) h
(

1
qwm

)
φ
(

1
w2

m

)
h
(

1
wm

)
φ
(

1
qw2

m

) dwm

wm
.

There are some assumptions we must make on the contours and functions h,
φ for the above equalities to hold. In the first formula, we assume that the
(positively oriented) contour for wc, 1 6 c 6 k, contains {x1, . . . , xn} and the
image of the wc+1, . . . , wk contours multiplied by q, and does not contain any
other singularities of the integrand. In the second formula, we assume that the
(positively oriented) contour for wc, 1 6 c 6 k, contains {x−1

1 , . . . , x−1
n } and the

image of the wc+1, . . . , wk contours multiplied by q, and does not contain any
other singularities of the integrand. In both cases, we also assume that h and φ
are holomorphic and nonzero on a suitably large complex neighborhood so as
not to yield any singularities when the integrals are evaluated through residues
by shrinking the contours.

Proof. We prove the first equality (the second follows similarly) via the approach
used in the proofs of [BC14, Propositions 2.2.11, 2.2.14] (which correspond to
the special case when φ is assumed to be constant). Let us consider the effect of
the φ terms. Observe that due to the multiplicative structure of Φ,

(Tq,x jΦ)(x1, . . . , xn)

Φ(x1, . . . , xn)
= Subsz=x j

φ(z2)

φ(qz2)

n∏
i=1

φ(qxi z)
φ(xi z)

,

where Subsz=x means the substitution of z = x into the expression that follows.
Combining with the proof of [BC14, Propositions 2.2.11], we arrive at

(
D1

n(HΦ)
)
(x1, . . . , xn) =

(t − 1)−1

2π i

∮ n∏
j=1

(
tw1 − x j

w1 − x j

φ(qx jw1)

φ(x jw1)

)

×
h(qw1)φ(w

2
1)

h(w1)φ(qw2
1)

dw1

w1
(HΦ)(x1, . . . , xn),

which is the k = 1 case of the proposition we seek to prove.
Observe that inside the integral formula for

(
D1

n(HΦ)
)
(x1, . . . , xn), the

variables x1, . . . , xn arise in the terms

(HΦ)(x1, . . . , xn)

n∏
j=1

tw1 − x j

w1 − x j

φ(qx jw1)

φ(x jw1)
,
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which is equal to H1Φ where H1(x1, . . . , xn) :=
∏N

i=1 h1(xi) with

h1(x) := h(x)
tw1 − x
w1 − x

φ(qxw1)

φ(xw1)
.

Applying D1
n , we find that by linearity it can be taken into the integrand and it

applies just to H1Φ, which introduces a second integral (appealing to the k = 1
case we have already proved). We obtain(
(D1

n)
2(HΦ)

)
(x1, . . . , xn)

=
(t − 1)−2

(2π i)2

∮ ∮
(tw1 − qw2)(w1 − w2)

(w1 − qw2)(tw1 − w2)

×
φ(q2w1w2)φ(w1w2)

φ(qw1w2)2

n∏
j=1

(
tw2 − x j

w2 − x j

φ(qx jw2)

φ(x jw2)

)
h(qw2)φ(w

2
2)

h(w2)φ(qw2
2)

dw2

w2

×

n∏
j=1

(
tw1 − x j

w1 − x j

φ(qx jw1)

φ(x jw1)

)
h(qw1)φ(w

2
1)

h(w1)φ(qw2
1)

dw1

w1
(HΦ)(x1, . . . , xn),

where the contour for w1 encircles the xi ’s and qw2, and the contour for w2

encircles the xi ’s. Now the variables x1, . . . , xn arise inside the double integral
as H2Φ, where H2(x1, . . . , xn) =

∏n
i=1 h2(xi) with

h2(x) = h(x)
tw2 − x
w2 − x

tw1 − x
w1 − x

φ(qxw1)

φ(xw1)

φ(qxw2)

φ(xw2)
.

Repeating k times leads to the claimed formula.

PROPOSITION 3.4. Fix r > 1, H(u1, . . . , un) =
∏n

i=1 h(ui) and Φ(u1, . . . ,

un) =
∏

i< j φ(ui u j), where h and φ are holomorphic and nonzero on a suitably
large complex neighborhood so as not to yield any singularities when both
integrals below are evaluated through residues. Then

Dr
n(HΦ)(x1, . . . , xn)

(HΦ)(x1, . . . , xn)

=
1
r !

∮
dz1

2iπ
· · ·

∮
dzr

2iπ
det

[
1

t zk − zl

]r

k,l=1

×

r∏
j=1

(
h(qz j)

h(z j)

n∏
m=1

t z j − xm

z j − xm

) ∏
16i< j6r

φ(q2zi z j)

φ(zi z j)

×

n∏
i=1

r∏
j=1

φ(qz j xi)

φ(z j xi)

r∏
i, j=1

φ(zi z j)

φ(qzi z j)
, (44)
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where the contours are positively oriented contours encircling {x1, . . . , xn} and
no other singularity of the integrand.

We also have

D
r
n(HΦ)(x1, . . . , xn)

(HΦ)(x1, . . . , xn)

=
1
r !

∮
dw1

2iπ
· · ·

∮
dwr

2iπ
det

[
1

twk − wl

]r

k,l=1

×

r∏
j=1

(
h((qw j)

−1)

h(w−1
j )

n∏
m=1

tw j − x−1
m

w j − x−1
m

) ∏
16i< j6r

φ((q2wiw j)
−1)

φ((wiw j)−1)

×

n∏
i=1

r∏
j=1

φ(xi/(qw j))

φ(xi/w j)

r∏
i, j=1

φ((wiw j)
−1)

φ((qwiw j)−1)
, (45)

where the contours are positively oriented circles encircling {1/x1, . . . , 1/xn}

and no other singularity.

Proof. Note that for |I | = r , one has that∏
i∈I

Tq,xiΦ

Φ
(x1, . . . , xn)

= Subs
z1=xi1...
zr=xir

 ∏
16<i< j6r

φ(q2zi z j)

φ(zi z j)

n∏
i=1

r∏
j=1

φ(qz j xi)

φ(z j xi)

r∏
i, j=1

φ(zi z j)

φ(qzi z j)

 .
Then, one proceeds as in [BC14, Proposition 2.2.11] evaluating the integral
through the residues at x1, . . . , xn .

3.2. Moment integral formulas. In this section, we consider the half-space
Macdonald measure with specializations ρ = (a1, . . . , an), where ai ∈ (0, 1),
and ρ↙ = ρ, where ρ is a Macdonald nonnegative specialization such that
Π
(
Ea; ρ

)
Φ(Ea) can be expanded via the generalized Littlewood identity (30).

PROPOSITION 3.5. For any positive integer k,

Eq,t
(a1,...,an),ρ

[(
qλ1 tn−1

+ qλ2 tn−2
+ · · · + qλn

)k
]

=
1

(t − 1)k

∮
dw1

2iπ
· · ·

∮
dwk

2iπ
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×

∏
16a<b6k

(twa − qwb)(wa − wb)

(wa − qwb)(twa − wb)

(1− qwawb)(1− twawb)

(1− qtwawb)(1− wawb)

×

k∏
m=1

( n∏
j=1

twm − a j

wm − a j

1− a jwm

1− ta jwm

)
Π(qwm; ρ)(1− tw2

m)

Π(wm; ρ)(1− w2
m)

1
wm
, (46)

where the contour for wc, 1 6 c 6 k, contains {a1, . . . , an} and the image
of the wc+1, . . . , wk contours multiplied by q, and does not contain any
other singularities of the integrand (this may restrict the choice of admissible
specializations ρ).

Similarly, assume that ρ and k are chosen so thatΠ
(
q−k
Ea; ρ

)
Φ(q−k

Ea) can be
expanded via the generalized Littlewood identity (30). Then we also have

Eq,t
(a1,...,an),ρ

[(
q−λ1 + q−λ2 t + · · · + q−λn tn−1)k

]
=

1
(t − 1)k

∮
dw1

2iπ
· · ·

∮
dwk

2iπ

×

∏
16a<b6k

(twa − qwb)(wa − wb)

(wa − qwb)(twa − wb)

(q2wawb − t)(qwawb − 1)
(q2wawb − 1)(qwawb − t)

×

k∏
m=1

( n∏
j=1

1− twma j

1− wma j

qwm − ta j

qwm − a j

)
Π
(
(qwm)

−1
; ρ
)
(qw2

m − 1)

Π
(
(wm)−1; ρ

)
(qw2

m − t)
1
wm
, (47)

where the contour for wc, 1 6 c 6 k, contains {1/a1, . . . , 1/an} and the
image of the wc+1, . . . , wk contours multiplied by q, and does not contain any
other singularities of the integrand (this may restrict the choice of admissible
specializations ρ). All contours above are positively oriented.

Proof. Plug in h(u) = Π(u; ρ) and φ(u) = (tu;q)∞
(u;q)∞

in Proposition 3.3. This

yields integral formulas for (D1
n)

k Π(Ea,ρ)Φ(Ea)
Π(Ea,ρ)Φ(Ea) and (D1

n)
k Π(Ea,ρ)Φ(Ea)
Π(Ea,ρ)Φ(Ea) , where the

operators act on the variables ai . These quantities are related to the desired
expectations by Proposition 3.2. In (47), we need the extra assumptions on
ρ that Π

(
q−k
Ea; ρ

)
Φ(q−k

Ea) can be expanded via the generalized Littlewood

identity (30) to ensure that one can commute the action of the operator
(
D

1
n

)k

with the expectation Eq,t
(a1,...,an),ρ

and one obtains using the Fubini theorem that(
D

1
n

)k
Π(Ea, ρ)Φ(Ea)

Π(Ea, ρ)Φ(Ea)
= Eq,t

(a1,...,an),ρ

[(
q−λ1 + q−λ2 t + · · · + q−λn tn−1)k

]
.

REMARK 3.6. If ρ is of the form ρ = ρ(α, β, γ ) as in Section 2.2.4, the
hypothesis that Π

(
q−k
Ea); ρ

)
Φ(q−k

Ea) can be expanded via the generalized
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Littlewood identity (30) is equivalent to the fact that maxi{αi}maxi{ai} < qk

and
(

maxi{ai}
)2
< qk . Otherwise, the expectation on the left-hand side in (47)

would fail to exist (see Section 2.2.4).

PROPOSITION 3.7. Let r be a positive integer. We have

Eq,t
(a1,...,an),ρ

[
er
(
qλ1 tn−1, qλ2 tn−2, . . . , qλn

)]
=

1
r !

∮
dz1

2iπ
· · ·

∮
dzr

2iπ

× det
[

1
t zk − zl

]r

k,l=1

r∏
j=1

(
Π(qz j ; ρ)

Π(z j ; ρ)

n∏
i=1

(
t z j − ai

z j − ai

1− z j ai

1− t z j ai

))

×

r∏
i=1

1− t z2
i

1− z2
i

∏
16i< j6r

1− qzi z j

1− tqzi z j

1− t zi z j

1− zi z j
, (48)

where the contours are positively oriented closed curves around {a1, . . . , an} and
no other singularity of the integrand.

Moreover, assume that ρ and r are chosen so that Π
(
q−r
Ea; ρ

)
Φ(q−r

Ea) can
be expanded via the generalized Littlewood identity (30). Then,

Eq,t
(a1,...,an),ρ

[
er
(
q−λ1 t1−n, q−λ2 t2−n, . . . , q−λn

)]
=

1
r !

∮
dw1

2iπ
· · ·

∮
dwr

2iπ

× det
[

1
twk − wl

]r

k,l=1

r∏
j=1

(
Π((qw j)

−1
; ρ)

Π(w−1
j ; ρ)

n∏
i=1

(
1− ai tw j

1− aiw j

qw j − tai

qw j − ai

))

×

r∏
i=1

qw2
i − 1

qw2
i − t

∏
16i< j6r

(q2wiw j − t)(qwiw j − 1)
(q2wiw j − 1)(qwiw j − t)

, (49)

where the contours are positively oriented closed curves around {1/a1, . . . ,

1/an} and no other singularity.

Proof. The proof is similar as the proof of Proposition 3.5, using Proposition 3.4
instead of Proposition 3.3.

3.3. Noumi’s q-integral operator and variants. In order to lighten some
notations, we set in this section (a)n = (a; q)n for any n ∈ Z>0 ∪ {∞}, and we
will use the function φ(x) = (t x)∞/(x)∞ from (22) and the function f (x) =
(t x)∞/(qx)∞ from (18).
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Define the operator Nz
n acting on analytic functions in x1, . . . , xn by

Nz
n =

∞∑
η1,...,ηn=0

z|η|hη(x; q, t)
n∏

i=1

(
Tq,xi

)ηi
,

where |η| = η1 + · · · + ηn and

hη(x; q, t) =
n∏

i=1

t (i−1)ηi
(t)∞(qηi+1)∞

(tqηi )∞(q)∞

×

∏
i< j

(qηi−η j xi/x j)∞(q1−η j t−1xi/x j)∞(t xi/x j)∞(q1+ηi xi/x j)∞

(q−η j xi/x j)∞(qt−1xi/x j)∞(tqηi xi/x j)∞(q1+ηi−η j xi/x j)∞
.

Proposition 2.2.17 in [BC14] states that for |z| < 1,

Nz
n Pλ(x) =

n∏
i=1

(qλi tn−i+1z)∞
(qλi tn−i z)∞

Pλ(x). (50)

(More precisely, [BC14, Proposition 2.2.17] states the identity as a formal power
series in z, and one can see that the right-hand side is a convergent series when
|z| < 1 using the q-binomial theorem (12).)

PROPOSITION 3.8. The operator Nz can be rewritten as

Nz
n =

∞∑
η1,...,ηn=0

z|η|
∏
i< j

qη j x j − qηi xi

x j − xi

∏
i, j

(t xi/x j)ηi

(qxi/x j)ηi

n∏
i=1

(
Tq,xi

)ηi
.

REMARK 3.9. Proposition 3.8 shows that Nz
n coincides with an operator

known as Noumi’s q-integral operator. The eigenrelation (50) first appeared in
[FHH+09], where it is attributed to [NS]. Additional properties of Nz

n can be
found in [NS12], which in particular gives a proof of (50) (see around equation
(5.6)). Note that [BCGS16, Section 5] provides yet another proof of (50) by E.
Rains.

Proof. We need to show that

hη(x; q, t) =
∏
i< j

qη j x j − qηi xi

x j − xi

∏
i, j

(t xi/x j)ηi

(qxi/x j)ηi

. (51)

On the left-hand side, we have

hη(x; q, t) =
n∏

i=1

f (1)
f (qηi )

∏
i< j

tη j (1− qηi−η j xi/x j)(t xi/x j)∞

f (q−η j t−1xi/x j) f (qηi xi/x j)(qt−1xi/x j)∞
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=

n∏
i=1

f (1)
f (qηi )

∏
i< j

tη j (1− qηi−η j xi/x j) f (xi/x j) f (t−1xi/x j)

(1− xi/x j) f (q−η j t−1xi/x j) f (qηi xi/x j)
.

On the other hand,
(t xi/x j)ηi

(qxi/x j)ηi

=
f (xi/x j)

f (qηi xi/x j)

so that

R.H.S. (51)

=

n∏
i=1

f (1)
f (qηi )

∏
i< j

qη j (1− qηi−η j xi/x j)

1− xi/x j

f (xi/x j)

f (qηi xi/x j)

f (x j/xi)

f (qη j x j/xi)
.

Thus, it is sufficient to show that

tη j f (t−1xi/x j)

f (q−η j t−1xi/x j)
=

qη j f (x j/xi)

f (qη j x j/xi)
,

which is equivalent to

tη j (q1−η j t−1xi/x j)η j

(q−η j xi/x j)η j

=
qη j (t x j/xi)η j

(qx j/xi)η j

. (52)

It is easy to check that

t N (q1−N t−1 X)N

q N (q−N X)N
=
(t X−1)N

(q X−1)N

so that (52) is established by setting X = xi/x j , N = η j .

In Section 3.1, we discussed two types of Macdonald difference operators Dr

and D
r
. We define now an operator N

z
n , similar to Nz

n , but having eigenvalue∏n
i=1

(q−λi t i z)∞
(q−λi t i−1z)∞

instead of
∏n

i=1
(qλi tn−i+1z)∞
(qλi tn−i z)∞

. Let

N
z
n =

∞∑
η1,...,ηn=0

z|η|hη(x−1
1 , . . . , x−1

n ; q, t)
n∏

i=1

(
Tq−1,xi

)ηi
.

Equivalently, using Proposition 3.8,

N
z
n =

∞∑
η1,...,ηn=0

z|η|
∏
i< j

qη j xi − qηi x j

xi − x j

∏
i, j

(t xi/x j)η j

(qxi/x j)η j

n∏
i=1

(
Tq−1,xi

)ηi
.
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PROPOSITION 3.10 [NS12]. We have the following formal power series identity
in the variable z:

N
z
n Pλ(x) =

n∏
i=1

(q−λi t i z)∞
(q−λi t i−1z)∞

Pλ(x). (53)

Moreover, when z is such that for all i = 1, . . . n, |zq−λi t i−1
| < 1, the identity

above is an equality of absolutely convergent series.

Although this eigenrelation can be deduced from [NS12, (5.13)], we give
another proof in the spirit of [BC14, Proposition 2.2.17].

Proof.
Step 1: Let us show that identity (53) holds for a certain set of specializations of
xi . For the moment, we work with formal power series in the variable z. Let uµ
be the specialization (of the ring of rational functions) that substitutes qµi tn−i in
place of xi for all i . Let ūµ be the specialization that substitutes q−µi t i−n in place
of the variable xi . The eigenvalue appearing in (53) can be rewritten as

n∏
i=1

(q−λi t i z)∞
(q−λi t i−1z)∞

= ūλ
(
Π(ztn−1, x)

)
= ūλ

(∑
m>0

gm(x; q, t)zm t (n−1)m
)
, (54)

where gm is the q, t analogue of complete homogeneous symmetric functions,
that is, gm = Q(m).

We now show that equality (53) holds under specialization ūµ for any µ.
Macdonald symmetric polynomials satisfy an index–variable duality relation

uµ(Pλ) =
u0(Pλ)
u0(Pµ)

uλ(Pµ).

Since it is true for any q, t , we also have that

ūµ(Pλ(x; q−1, t−1))ū0(Pµ(x; q−1, t−1))

= ū0(Pλ(x; q−1, t−1))ūλ(Pµ(x; q−1, t−1))

and since Pλ(x; q−1, t−1) = Pλ(x; q, t) (cf. [Mac95, p.324]), we have another
index–variable duality involving the specialization ū, which reads as

ūµ(Pλ) =
ū0(Pλ)
ū0(Pµ)

ūλ(Pµ).

Moreover, using the combinatorial formula for Macdonald polynomials P (see
(19)),

ū0(Pλ)
ū0(Pµ)

= t (1−n)|λ/µ| u0(Pλ)
u0(Pµ)

.
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As in the proof of Proposition 2.2.17 in [BC14], we can specialize the Pieri rule
(for P) as

ūλ(gm(x; q, t))ūµ(Pλ) =
∑

ν�µ : |ν/µ|=m

ū0(Pν)
ū0(Pµ)

ϕν/µūν(Pλ). (55)

We need to show that the application of ūµ to the right-hand side of (53) equals
the application of ūµ to the left-hand side. Using (54) and (55), applying ūµ to
the right-hand side of (53) yields∑

ν�µ

z|ν/µ|t (n−1)|ν/µ| ū0(Pν)
ū0(Pµ)

ϕν/µūν(Pλ).

On the other hand, the application of ūµ to the left-hand side of (53) is

ūµ

(∑
η

z|η|hη(x−1
1 , . . . , x−1

n ; q, t)
(
Tq−1,xi

)ηi Pλ(x)

)
.

If ηi = νi − µi for all i , then ūµ
((

Tq−1,xi

)ηi Pλ
)
= ūν(Pλ). So, it is enough to

show that for ηi = νi − µi ,

ūµ
(

hη(x−1
1 , . . . , x−1

n ; q, t)
)
=

ū0(Pν)
ū0(Pµ)

ϕν/µt (n−1)|ν/µ|.

This holds true since it is shown in the proof of Proposition 2.2.17 in [BC14]
that

uµ
(

hη(x1, . . . , xn; q, t)
)
=

u0(Pν)
u0(Pµ)

ϕν/µ.

Step 2: Let us extend the result to any x . Let us denote by [zm
] N

z
n the operator

corresponding to the zm coefficient, that is,

[zm
] N

z
n =

∑
η1,...,ηn>0,|η|=m

hη(x−1
1 , . . . , x−1

n ; q, t)
n∏

i=1

(
Tq−1,xi

)ηi
.

We have shown that for any partition µ,

ūµ
(
[zm
] N

z
n Pλ(x)

)
= gm(q−λ1 t0, . . . , q−λn tn−1

; q, t)ūµ (Pλ(x)) .

By definition [zm
] N

z
n Pλ(x) is a finite sum of rational functions, so it is a rational

function. Let us fix x2 = q−µ2 t2−n, . . . , xn = q−µn t0 for some integers µ2 >
· · · > µn . The following equality of rational functions in the variable X ,

[zm
] N

z
n Pλ(X, q−µ2 t2−n, . . . , q−µn t0)
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= gm(q−λ1 t0, . . . , q−λn tn−1
; q, t)Pλ(X, q−µ2 t2−n, . . . , q−µn t0) (56)

is satisfied for any X of the form q−µ1 t1−n , where µ1 is a nonnegative integer
such that µ1 > µ2; hence (56) is true as an equality between rational functions
in the variable X . We may iterate this procedure for each variable x2, . . . , xn in
this order, and we obtain that

[zm
] N

z
n Pλ(x) = gm(q−λ1 t0, . . . , q−λn tn−1

; q, t)Pλ(x)

holds as an identity of rational functions in the variables x1, . . . , xn . Thus, we
have established (54) as a formal power series in the variable z.
Step 3: When z is such that for all i = 1, . . . n, |zq−λi t i−1

| < 1, the expansion
(55) is absolutely convergent. Alternatively, this can also be seen by expanding∏n

i=1
(q−λi t i z)∞
(q−λi t i−1z)∞

using the q-binomial theorem (12). Since we have already
established (54) as a formal power series, the identity holds as a numeric identity
for any z such that for all i = 1, . . . n, |zq−λi t i−1

| < 1.

3.4. (q, t)-Laplace transforms. In this section, we consider the half-space
Macdonald measure with specializations ρ = (a1, . . . , an) for ai ∈ (0, 1) and
ρ↙ = ρ, where ρ is a Macdonald nonnegative specialization of the form
ρ = ρ(α, β, γ ) as in Section 2.2.4. We also assume that Π

(
Ea; ρ

)
Φ(Ea) can be

expanded via the generalized Littlewood identity (30). The observable of the
half-space Macdonald measure appearing in Theorem 3.12 can be understood
as a q, t analogue of a Laplace transform formula, coming from the properties
of the Noumi operator Nz

n . Actually, in the limit t = 0, q → 1, this becomes
exactly a Laplace transform of the rescaled smallest coordinate of the half-space
Macdonald random partition (see Section 6.2).

DEFINITION 3.11. For r ∈ R, we define the contour Dr to be the vertical line
r + iR, oriented from bottom to top.

THEOREM 3.12. Let z ∈ C \ R>0. Assume the following:

(i) The parameters a1, . . . , an ∈ (0, 1) are chosen such that for all i, j ,
|tai/a j | < 1 and |qai/a j | < 1.

(ii) R ∈ (0, 1) is chosen such that 0 < q R < ai/a j for all i, j .

Then we have

Eq,t
(a1,...,an),ρ

[
n∏

i=1

(qλi tn−i+1z)∞
(qλi tn−i z)∞

]
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=

n∑
k=0

1
k!

∫
DR

ds1

2iπ
· · ·

∫
DR

dsk

2iπ

∮
dw1

2iπ
· · ·

∮
dwk

2iπ
Aq,t
Es ( Ew)

×

k∏
i=1

Γ (−si)Γ (1+ si)

k∏
i=1

Gq,t(wi)

Gq,t(qsiwi)

φ(w2
i )(−z)si

φ(qsiw2
i )(qsi − 1)wi

, (57)

where the integration contours for the variables wi enclose all the ai and no
other singularity; we have used the shorthand notations

Aq,t
Es ( Ew) :=

∏
16i< j6k

(qs jw j − qsiwi)(wi − w j)φ(qsi+s jwiw j)φ(wiw j)

(qsiwi − w j)(qs jw j − wi)φ(qsiwiw j)φ(qs jw jwi)
(58)

and

Gq,t(w) =

n∏
j=1

φ(w/a j)

φ(wa j)

1
Π(w; ρ)

. (59)

This theorem is the half-space analogue of [BCGS16, Theorem 4.8], which
deals with full-space Macdonald processes.

REMARK 3.13. We can use variables (u1, . . . , u2k) := (w−1
1 , qν1w1, . . . , w

−1
k ,

qνkwk) so that

Aq,t
ν ( Ew) =

∏
16i< j62k

u j − ui

1− ui u j

∏
16i< j6k

f (qνi+ν jwiw j) f (wiw j)

f (qνiwiw j) f (qν jw jwi)

k∏
i=1

1− qνi

qνiwi − w
−1
i

(60)

= Pf
[

u j − ui

1− ui u j

] ∏
16i< j6k

f (qνi+ν jwiw j) f (wiw j)

f (qνiwiw j) f (qν jw jwi)

k∏
i=1

1− qνi

qνiwi − w
−1
i

,

(61)

where φ(u) = (tu)∞/(u)∞ and f (u) = (tu)∞/(qu)∞ as before, and we have
used Schur’s Pfaffian identity (176). If q = t , the function f is constant, and
the whole integrand in (65) can be written as a Pfaffian. This is coherent with
the fact that the Pfaffian Schur process determines a Pfaffian point process—see
[BR05, Gho17a].

Proof of Theorem 3.12. For |z| < 1, the result follows from the combination of
Proposition 3.14, Proposition 3.15 and Lemma 3.17.

Once the result is established for |z| < 1, one can analytically continue to any
z ∈ C \ R>0 (the reason why both sides are analytic is similar to the proof of
[BC14, Theorem 3.2.11]).
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PROPOSITION 3.14. As a formal series in z, and as a numeric equality for |z| <
1, we have

Eq,t
(a1,...,an),ρ

[
n∏

i=1

(qλi tn−i+1z)∞
(qλi tn−i z)∞

]

=
Nz

nΠ(x1, . . . , xn; ρ)Φ(x1, . . . , xn)

Π(x1, . . . , xn; ρ)Φ(x1, . . . , xn)

∣∣∣∣
x1=a1,...,xn=an

, (62)

where λ is distributed according to the half-space Macdonald measure with
specializations (a1, . . . , an) and ρ, and Nz

n acts on

(x1, . . . , xn) 7→ Π(x1, . . . , xn; ρ)×Φ(x1, . . . , xn).

Proof. We have

n∏
i=1

(qλi tn−i+1z)∞
(qλi tn−i z)∞

=

+∞∑
k=0

zk gk(qλ1 tn−1, . . . , qλn ),

where we recall that gk = Q(k). Thus the formal series on the left-hand side
of (62) is by definition such that the coefficient of zk is Eq,t

[gk(qλ1 tn−1, . . . ,

qλn )]. Since gk(qλ1 tn−1, . . . , qλn ) is bounded by gk(1, . . . , 1), it is absolutely
integrable with respect to the half-space Macdonald measure. One obtains (62)
by multiplying both sides of Noumi’s eigenrelation (50) by Eλ(ρ) and summing
over λ. Moreover, the series expansion is absolutely convergent when |z| <
1.

Let us now examine the quantity on the right-hand side of (62).

PROPOSITION 3.15. Consider a formal variable z, a function H(u1, . . . , un) =∏n
i=1 h(ui) with h being a meromorphic function whose poles are away from the

ai ’s and Φ(u1, . . . , un) =
∏

i< j φ(ui u j) with φ(u) = (tu)∞/(u)∞. Then

Nz
n HΦ(x1, . . . , xn)

HΦ(x1, . . . , xn)

∣∣∣∣
x1=a1,...,xn=an

=

n∑
k=0

1
k!

∞∑
ν1,...,νk=1

∮
dw1

2iπ
· · ·

∮
dwk

2iπ

×Aq,t
ν ( Ew)

k∏
i=1

Hq,t
n (wi)

Hq,t
n (qνiwi)

φ(w2
i )z

νi

φ(qνiw2
i )(qνi − 1)wi

, (63)
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where the (positively oriented) integration contours enclose all the ai ’s and no
other singularity, and

Hq,t(w) =

n∏
j=1

φ(w/a j)

φ(wa j)

1
h(w)

.

Proof. Let us denote

Nz
n,η = z|η|

∏
i< j

qη j x j − qηi xi

x j − xi

∏
i, j

(t xi/x j)ηi

(qxi/x j)ηi

n∏
i=1

(
Tq,xi

)ηi
.

Observe that

Nz
n =

n∑
k=0

∞∑
ν1,...,νk=1

n!
(n − k)!k!

1
n!

∑
σ∈Sn

Nu
n,σ (ν), (64)

where on the right-hand side ν = (ν1, . . . , νk, 0 . . . , 0) and σ ∈ Sn acts by
permuting the coordinates of ν. Hence the proof.

LEMMA 3.16. Assume ν1, . . . , νk > 1 and νk+1 = · · · = νn = 0. Under the
hypotheses of Proposition 3.15, we have

1
(n − k)!

∑
σ∈Sn

Nz
n,σ (ν)HΦ(x1, . . . , xn)

HΦ(x1, . . . , xn)

∣∣∣∣
x1=a1,...,xn=an

=

∮
dw1

2iπ
· · ·

∮
dwk

2iπ

×

∏
16i< j6k

(qν jw j − qνiwi)(wi − w j)φ(qνi+ν jwiw j)φ(wiw j)

(qνiwi − w j)(qν jw j − wi)φ(qνiwiw j)φ(qν jw jwi)

×

k∏
i=1

(
n∏

j=1

φ(wi/a j)φ(qνiwi a j)

φ(qνiwi/a j)φ(wi a j)

)
φ(w2

i )h(q
ν1wi)zνi

φ(qνiw2
i )h(wi)(qνi − 1)wi

, (65)

where the contours are small positively oriented circles enclosing ai ’s and no
other singularity.

Proof. The proof is modeled after [BCGS16, Lemma 4.12]. We have

n∏
i=1

(
Tq,xi

)νi HΦ(Ex) =
n∏

i=1

h(qνi xi)
∏
i< j

φ(qνi+ν j xi x j).
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The left-hand side in (65) equals

1
(n − k)!

∑
σ∈Sn

z|ν|
∏
i< j

qν j aσ( j) − qνi aσ(i)
aσ( j) − aσ(i)

n∏
i, j=1

(taσ(i)/aσ( j))νi

(qaσ(i)/aσ( j))νi

×

n∏
i=1

h(qνi aσ(i))
h(aσ(i))

∏
i< j

φ(qνi+ν j aσ(i)aσ( j))

φ(aσ(i)aσ( j))

because permuting νi is equivalent to permuting ai . Since νk+1 = · · · = νn = 0,
the summand is invariant with respect to permutation of the {νi}i>k . Hence
one can absorb the factor 1/(n − k)! and sum on permutations in Sk

n :=

{σ ∈ Sn : σ(1+ k) < · · · < σ(n)}. Thus, the left-hand side in (65) equals∑
σ∈Sk

n

Subs
wi=aσ(i)
∀16i6k

{∏
i< j

qν jw j − qνiwi

w j − wi

k∏
i=1

n∏
j=k+1

aσ( j) − qνiwi

aσ( j) − wi

k∏
i=1

n∏
j=1

(twi/a j)νi

(qwi/a j)νi

×

n∏
i=1

h(qνiwi)

h(wi)

∏
16i< j6k

φ(qνi+ν jwiw j)

φ(wiw j)

×

k∏
i=1

n∏
j=1

φ(qνiwi a j)

φ(wi a j)

k∏
i=1

k∏
j=1

φ(wiw j)

φ(qνiwiw j)

}
. (66)

Note that we have

Subs
wi=aσ(i)
∀16i6k

{
k∏

i=1

n∏
j=k+1

aσ( j) − qνiwi

aσ( j) − wi

}

= Res
wi=aσ(i)
∀16i6k


k∏

i=1

n∏
j=1

qνiwi − a j

wi − a j

k∏
i, j=1

1
qνiwi − w j

∏
16i 6= j6k

(wi − w j)

 ,
where the notation Res∀16i6k

wi=xi
{·} denotes the residue of the function inside

brackets at w1 = x1, . . . , wk = xk . This implies that

(66) =
∮

dw1

2iπ
· · ·

∮
dwk

2iπ

∏
i< j

qν jw j − qνiwi

w j − wi

×

k∏
i=1

n∏
j=1

qνiwi − a j

wi − a j

k∏
i, j=1

1
qνiwi − w j

k∏
i 6= j=1

(wi − w j)

×

k∏
i=1

n∏
j=1

(twi/a j)νi

(qwi/a j)νi

n∏
i=1

h(qνiwi)

h(wi)

∏
16i< j6k

φ(qνi+ν jwiw j)

φ(wiw j)
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×

k∏
i=1

n∏
j=1

φ(qνiwi a j)

φ(wi a j)

k∏
i=1

k∏
j=1

φ(wiw j)

φ(qνiwiw j)
, (67)

where the contours enclose ai ’s and no other singularity. Indeed, the integral of
the right-hand side can be evaluated by summing all residues at (wi)16i6k =

(ap(i))16i6k , for all functions p : {1, . . . , k} → {1, . . . , n}, and it is clear that
the residue is zero when p is not injective because of the product of (wi − w j).
Hence, the integral is a sum of residues at wi = aσ(i) over all σ ∈ Sk

n . Finally,
one has

qνiwi − a j

wi − a j

(twi/a j)νi

(qwi/a j)νi

=
φ(wi/a j)

φ(qνiwi/a j)
,

so that the integrand can be arranged to match with the right-hand side of (65).

Let us finish the proof of Proposition 3.15. Recalling the notations in (58) and
(59), the application of Lemma 3.16 in each term of the sum in (64) yields the
desired result. Furthermore, if |z| < 1, all sums are absolutely convergent so that
(63) holds as a numeric equality.

The expansion on the right of (63) is not exactly as in Theorem 3.12. In order
to replace the discrete sums over νi in Proposition 3.15 by contour integrals over
vertical contours, we use the following lemma.

LEMMA 3.17. Let a ∈ (0, 1) and h be a holomorphic function on {z ∈ C :
Re[z] > a} such that there exists a constant C > 0 with

|h(z)| 6 C/|z|2,

for any z in {z ∈ C : Re[z] > a}. Then, for ζ ∈ C \ R>0, we have

∞∑
k=1

h(k)ζ k
=

∫
Da

ds
2iπ

(−ζ )sΓ (−s)Γ (1+ s)h(s),

whenever both sides are absolutely convergent (recall that Da is oriented
upwards).

Proof. It is clear by the residue theorem that

∞∑
k=1

h(k)ζ k
=

∫
ds
2iπ

(−ζ )sΓ (−s)Γ (1+ s)h(s),
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where the contour is chosen so as to enclose all the positive integers and no other
singularity, for example, the union of small positively oriented circles around
each positive integer. Using the fact that h is holomorphic, and using the decay
bound, one can deform the integration contour to be Da without changing the
value of the integral.

To conclude the proof of Theorem 3.12, we need to check that the hypotheses
of Lemma 3.17 are satisfied for its k-fold application in the kth term of (63) for
all k > 1. On the right-hand side of (57), the integrand in each of the variables
si can be represented as Γ (−si)Γ (1 + si)(−ζ )

si g(qsi ), where the function g
is an analytic function with isolated singularities. One may inspect all of these
singularities one by one and check that for a specialization ρ = ρ(α, β, γ ) with
αi ∈ (0, 1) and assuming that the variables wi are integrated along contours very
close to the ai , there are no singularities in si lying on the right of DR . Then,
since qs stays bounded for s on the right of DR , g(qs) stays bounded as well. For
z such that |z| < 1, the integrand satisfies the decay bound of Lemma 3.17. Thus,
we have established Theorem 3.12 for |z| < 1 and it can be then analytically
continued to z ∈ C \ R>0. This completes the proof of Theorem 3.12.

We now seek to prove an analogous result using the operator N
n
z instead of Nn

z .

DEFINITION 3.18. We define for z ∈ C \ R>0

E z
R(a1, . . . , an; ρ) :=

n∑
k=0

1
k!

∫
DR

ds1

2iπ
· · ·

∫
DR

dsk

2iπ

∮
dw1

2iπ
· · ·

∮
dwk

2iπ

×Bq,t
Es ( Ew)

k∏
i=1

Γ (−si)Γ (1+ si)
Gq,t

(wi)

Gq,t
(q−siwi)

φ(w2
i )(−z)si

φ(q−siw2
i )(1− qsi )wi

, (68)

where the w contours are small positively oriented circles enclosing ai and no
other singularity,

Bq,t
Es ( Ew) :=

∏
16i< j6k

(qs jwi − qsiw j)(w j − wi)φ(q−si−s jwiw j)φ(wiw j)

(qsiw j − wi)(qs jwi − w j)φ(q−siwiw j)φ(q−s jw jwi)
,

and

Gq,t
(w) =

n∏
j=1

φ(a j/w)

φ(wa j)

1
Π(w; ρ)

. (69)

REMARK 3.19. Unlike the expansion (57) occurring in Theorem 3.12, in (68)
the integrand has many poles in the variables si lying on the right of the contour
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DR . This means that the integral cannot be turned into a discrete sum using
Lemma 3.17.

THEOREM 3.20. Let z ∈ C \ R>0. Assume the following:

(i) The parameters a1, . . . , an ∈ (0, 1) are chosen such that for all i, j ,
|tai/a j | < 1, |qai/a j | < 1 and max{ai} < ai/a j .

(ii) R ∈ (0, 1) is chosen so that for all i, j , ai < q R < ai/a j .

(iii) The specialization ρ = ρ(α, β, γ ) is such that for all i, j , q R > aiα j .

Then,

Eq,t
(a1,...,an),ρ

[
n∏

i=1

(q−λi t i z)∞
(q−λi t i−1z)∞

]
= E z

R(a1, . . . , an; ρ). (70)

The expectation on the left-hand side of (70) should again be thought of as
a Laplace transform. A full-space analogue of this result could be proved by
adapting the proof that we present below to the case of the full-space Macdonald
processes. Note that in the q-Whittaker case (t = 0), a full-space analogue is
already available [BCFV15, Theorem 3.3].

REMARK 3.21. It will be useful to note that for fixed n > 1 and z ∈ C \ R>0

the observable
∏n

i=1
(q−λi t i z)∞
(q−λi t i−1z)∞

is bounded as a function of λ. Indeed, as long

as t ∈ (0, 1), the ratio (q−m t x)∞
(q−m x)∞

goes to zero as m goes to +∞ for any fixed
x ∈ C \ R>0.

REMARK 3.22. Since the left-hand side in (70) is analytic in the parameters a1,

. . . , an and the parameters of the specialization ρ, the formula can be extended
to a range of parameters forbidden by the hypotheses of Theorem 3.20, at the
expense of choosing more complicated contours for the variables si .

REMARK 3.23. The proof of Theorem 3.20 is substantially different—and more
difficult—than that of Theorem 3.12. The left-hand side of (70) is by definition

1
Π(a; ρ)Φ(a)

∑
λ

Eλ(ρ)Pλ(a)
n∏

i=1

(q−λi t i z)∞
(q−λi t i−1z)∞

.

It is tempting to replace the quantity Pλ(a)
∏n

i=1
(q−λi t i z)∞
(q−λi t i−1z)∞

above by N
z
n Pλ(a)

using Proposition 3.10, and exchange the action of the operator N
z
n with the

summation over λ, to arrive at an analogue of Proposition 3.14. But this exchange
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of summations is forbidden because Proposition 3.10 requires |zq−λi t i−1
| < 1,

which can never be true simultaneously for all λ.
A natural roundabout way would be to work with formal power series. It is

reasonable to expect both sides of (70) to be analytic in the variables a1, . . . ,

an . For a function F analytic and symmetric in the variables (a1, . . . , an) =: Ea,
let us denote by [Pλ(Ea)] {F} the coefficient of Pλ(Ea) when the quantity F is
expanded in a1, . . . , an using the basis of Macdonald polynomials Pλ. Similarly,
for a formal power series F in the variable z, we likewise denote by [zk

] {F} the
coefficient of zk .

Then, we clearly have

[zk
]

{
[Pλ(Ea)]

{
Eq,t
(a1,...,an),ρ

[
n∏

i=1

(q−λi t i z)∞
(q−λi t i−1z)∞

]}}

=
Eλ(ρ)gk(q−λ1 t0, . . . , q−λn tn−1)

Π(Ea; ρ)Φ(Ea)
.

On the other hand,

[Pλ(Ea)]
{
[zk
]

{
N

z
nΠ(Ea; ρ)Φ(Ea)

}}
= Eλ(ρ)gk(q−λ1 t0, . . . , q−λn tn−1).

Unlike the proof of Proposition 3.14, it turns out to be impossible to justify the
exchange of summations over k and λ, and we actually have that in general

Eq,t
(a1,...,an),ρ

[
n∏

i=1

(q−λi t i z)∞
(q−λi t i−1z)∞

]
6=

N
z
nΠ(Ea; ρ)Φ(Ea)
Π(Ea; ρ)Φ(Ea)

,

even for z and Ea very close to 0 (this can be checked explicitly when, for example,
n = 1 and ρ is a single variable pure alpha specialization; see also Remark 4.11).
To resolve this issue, we will construct another operator Mz

n , such that

[zk
]

{
[Pλ(Ea)]

{
Mz

nΠ(Ea; ρ)Φ(Ea)
}}
= Eλ(ρ)gk(q−λ1 t0, . . . , q−λn tn−1).

The definition of Mz
n will be suggested by the analytic continuation of (53) to

z ∈ C \ R>0.

REMARK 3.24. There is another approach to obtain formulas for the observable
appearing in (70). We thank an anonymous referee for this suggestion. Acting
on the generalized Littlewood identity with the operator Nz

n

∏n
i=1 Tu,xi instead of

Nz
n as in the proof of Theorem 3.12, we can compute the observable

E

[
n∏

i=1

uλi
(qλi tn−i+1z)∞
(qλi tn−i z)∞

]
. (71)
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Replacing (z, u) by ( q
tn z , tu), we obtain, after appropriate renormalization, the

observable

E

[
n∏

i=1

uλi
(q−λi t i z)∞
(q−λi t i−1z)∞

]
.

This approach has the advantage of avoiding analytic continuations and the
introduction of the operator Mz

n . However, the formula produced by this method
is different from the result of Theorem 3.20, and it is not clear how to show the
equivalence of both formulas. Because of the substitution (z, u)→ (

q
tn z , tu), the

formula obtained appears singular at t = 0. It would be interesting to manipulate
the formula so as to remove all the singularities at t = 0. We leave this for future
consideration.

3.5. Proof of Theorem 3.20.

DEFINITION 3.25. Let D be the open unit disk D := {z ∈ C : |z| < 1}
and ASn (Dn) be the space of analytic symmetric functions f (x1, . . . , xn) on
Dn . (Here we do not mean elements of Sym but analytic functions in n
variables that are symmetric in these variables.) Such a function f admits an
absolutely convergent expansion in Macdonald symmetric polynomials on Dn .
More precisely, for all x = (x1, . . . , xn) ∈ Dn ,

f (x1, . . . , xn) =
∑
λ

cλ( f )Pλ(x), with
∑
λ

∣∣cλ( f )Pλ(x)
∣∣ <∞.

DEFINITION 3.26. We define an operator Mz
n : ASn (Dn)→ ASn (Dn) by

Mz
n f (x1, . . . , xn) =

∫
D−ε

ds1

2iπ
· · ·

∫
D−ε

dsn

2iπ
(−z)s1+···+sn

∏
i< j

qs j xi − qsi x j

xi − x j

×

∏
i, j

(t xi/x j)∞

(qxi/x j)∞

(qs j+1xi/x j)∞

(tqs j xi/x j)∞

×

n∏
i=1

Γ (−si)Γ (1+ si) f (q−s1 x1, . . . , q−sn xn), (72)

where ε(x1, . . . , xn) is chosen small enough so that there are no poles of the
integrand with real part between −ε and 0.

It is not yet clear why Mz
n f must belong to ASn (Dn). The next proposition

can be interpreted as an analytic continuation of Proposition 3.10. It implies, in
particular, that Mz

n preserves ASn (Dn).
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PROPOSITION 3.27. For z ∈ C \ R>0 and x1, . . . , xn ∈ D such that for all i, j ,
|t xi/x j | < 1,

Mz
n Pλ(x1, . . . , xn) =

n∏
i=1

(q−λi t i z)∞
(q−λi t i−1z)∞

Pλ(x). (73)

Proof. When z is such that for all i = 1, . . . n, |zq−λi t i−1
| < 1 and x1, . . . ,

xn ∈ D, (73) is a reformulation of Proposition 3.10 using Mellin–Barnes integrals
via Lemma 3.17. (The condition |t xi/x j | < 1 ensures that there are no unwanted
singularities to the right of the contour D−ε.)

Both sides of (73) are analytic in z so that one can analytically extend the
identity to any z ∈ C \ R>0. Analyticity is clear for the right-hand side. For the
left-hand side, it follows from the exponential decay of Γ (−si)Γ (1+ si) on the
contour D−ε so that all integrals are absolutely convergent.

PROPOSITION 3.28. Let f ∈ ASn (Dn) with f (x1, . . . , xn) =
∑

λ cλ( f )Pλ(x).
Then for x1, . . . , xn ∈ (0, 1) such that for all i, j , |t xi/x j | < 1, we have

Mz
n f (x1, . . . , xn) =

∑
λ

cλ( f )Pλ(x)
n∏

i=1

(q−λi t i z)∞
(q−λi t i−1z)∞

.

Proof. The operator Mz
n is linear on ASn (Dn) so that

Mz
n f (x1, . . . , xn) =

∑
λ

cλ( f )Mz
n Pλ(x),

and one can apply Proposition 3.27 on each summand. When applying the
operator Mz

n , one has to choose the parameter ε involved in the integration
contour in (73) in such a way that for all i , |q−εxi | < 1.

COROLLARY 3.29. For x1, . . . , xn ∈ (0, 1) such that for all i, j , |t xi/x j | < 1,

Mz
n (Π(x, ρ)Φ(x))
Π(x, ρ)Φ(x)

= Eq,t
(a1,...,an),ρ

[
n∏

i=1

(q−λi t i z)∞
(q−λi t i−1z)∞

]
. (74)

Proof. This is a direct application of Proposition 3.28 with f (x) = Π(x,
ρ)Φ(x).

To conclude the proof of Theorem 3.20, we need to compute the left-hand side
in (74).
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PROPOSITION 3.30. Under the hypotheses of Theorem 3.20,

Mz
n (Π(x, ρ)Φ(x))
Π(x, ρ)Φ(x)

= E z
R(a1, . . . , an; ρ).

Proof. By definition,

Mz
n (Π(x, ρ)Φ(x)) =

∫
D−ε

ds1

2iπ
· · ·

∫
D−ε

dsn

2iπ
(−z)s1+···+sn

×

∏
i< j

qs j xi − qsi x j

xi − x j

∏
i, j

(t xi/x j)∞

(qxi/x j)∞

(qs j+1xi/x j)∞

(tqs j xi/x j)∞

×

n∏
i=1

Γ (−si)Γ (1+ si)Π(q−s1 x1, . . . , q−sn xn, ρ)Φ(q−s1 x1, . . . , q−sn xn). (75)

The first step is to transform this n-fold integral into a sum of k-fold integrals for
k = 1, . . . , n by taking the residues when some of the si are zero. Let us denote
the integrand in (75) by I z

Es , where Es = (s1, . . . , sn). Deforming the contours D−ε
to Dε yields

Mz
n (Π(x, ρ)Φ(x)) =

n∑
k=0

∫
Dε

ds1

2iπ
· · ·

∫
Dε

dsk

2iπ
n!

(n − k)!k!
1
n!

∑
σ∈Sn

I z
σ(Es), (76)

where in the kth summand, Es = (s1, . . . , sk, 0, . . . , 0) and σ acts by permuting
the coordinates of Es. The only singularity that we cross from D−ε to Dε is at
s = 0 (it comes from the factor Γ (−s)).

We further deform the integration contour from Dε to DR . The next lemma
ensures that when xi ’s satisfy the same hypotheses as ai in the statement of
Theorem 3.20, we do not cross any singularity.

LEMMA 3.31. Under assumptions (i), (ii) and (iii) of Theorem 3.20, the poles in
variables s1, . . . , sn in∏

i, j

(qs j+1ai/a j)∞

(tqs j ai/a j)∞
Π(q−s1a1, . . . , q−sn an, ρ)Φ(q−s1a1, . . . , q−sn an) (77)

do not lie between D0 and DR .

Proof. When ρ is of the form ρ = ρ(α, β, γ ) as in Section 2.2.4, the poles of
Π(q−s j a j ; ρ) in the variable s j are the same as those of∏

i

1
(αi q−s j a j)∞

.

https://doi.org/10.1017/fmp.2020.3 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.3


G. Barraquand, A. Borodin and I. Corwin 60

Hence, the poles in (77) correspond to the following cases:

(1) qsi+s j = qkai a j for some integer k > 0 and 1 6 i 6= j 6 n.

(2) qs j = q−ka j t−1a−1
i for some integer k > 0 and 1 6 i, j 6 n.

(3) qs j = αi a j qk for some integer k > 0, 1 6 j 6 n and any i .

Since q R > ai for all 1 6 j 6 n, the poles in case (1) all lie to the right of DR .
Since |tai/a j | < 1, we have 1 < |a j t−1a−1

i | < t−2 and the poles in case (2) all
have negative real part. Since q R > a jαi for 1 6 j 6 n and any i , the poles in
case (3) all lie to the right of DR .

We have arrived at

Mz
n (Π(x, ρ)Φ(x))
Π(x, ρ)Φ(x)

=

n∑
k=0

∫
DR

ds1

2iπ
· · ·

∫
DR

dsk

2iπ
1
k!

1
(n − k)!

∑
σ∈Sn

I z
σ(Es)

Π(x, ρ)Φ(x)
,

(78)
where again Es = (s1, . . . , sk, 0, . . . , 0).

The last step is to rewrite the sum over permutations in the right-hand side of
(78) as some contour integral.

LEMMA 3.32. Assume Re[s1], . . . ,Re[sk] > 0 and sk+1 = · · · = sn = 0. Then

1
(n − k)!

∑
σ∈Sn

I z
σ(Es)

Π(x, ρ)Φ(x)

=

∮
dw1

2iπ
· · ·

∮
dwk

2iπ

×Bq,t
Es ( Ew)

k∏
i=1

Gq,t
n (wi)

Gq,t
n (q−siwi)

φ(w2
i )Π(q

−siwi ; ρ)(−z)si dwi

φ(q−siw2
i )Π(wi ; ρ)(1− qsi )wi

, (79)

where the contours are small positively oriented circles enclosing xi and no other
singularity.

Proof. We adapt Lemma 3.16. The left-hand side in (79) equals

1
(n − k)!

∑
σ∈Sn

zs1+···+sk
∏
i< j

qs j xσ(i) − qsi xσ( j)

xσ(i) − xσ( j)

×

n∏
i, j=1

(t xσ( j)/xσ(i))∞
(qxσ( j)/xσ(i))∞

(qsi+1xσ( j)/xσ(i))∞
(tqsi xσ( j)/xσ(i))∞
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×

n∏
i=1

Π(q−si xσ(i); ρ)
Π(xσ(i); ρ)

∏
i< j

φ(q−si−s j xσ(i)xσ( j))

φ(xσ(i)xσ( j))
. (80)

Since sk+1 = · · · = sn = 0, the summand is invariant with respect to permutation
of {si}i>k . Hence one can absorb the factor 1/(n−k)! and sum over permutations
in

Sk
n := {σ ∈ Sn : σ(1+ k) < · · · < σ(n)} .

Thus, the left-hand side in (79) equals

∑
σ∈Sk

n

Subs
wi=xσ(i)
∀16i6k

{
zs1+···+sk

∏
i< j

qs jwi − qsiw j

wi − w j

k∏
i=1

n∏
j=k+1

wi − qsi xσ( j)

wi − xσ( j)

×

k∏
i=1

n∏
j=1

(t xσ( j)/wi)∞

(qxσ( j)/wi)∞

(qsi+1xσ( j)/wi)∞

(tqsi xσ( j)/wi)∞

×

k∏
i=1

Π(q−siwi ; ρ)

Π(wi ; ρ)

∏
16i< j6k

φ(q−si−s jwiw j)

φ(wiw j)

×

k∏
i=1

n∏
j=1

φ(q−siwi x j)

φ(wi x j)

k∏
i=1

k∏
j=1

φ(wiw j)

φ(q−siwiw j)

}
. (81)

Note that we have

Subs
wi=xσ(i)
∀16i6k

{
k∏

i=1

n∏
j=k+1

wi − qsi xσ( j)

wi − xσ( j)

}

= Res
wi=xσ(i)
∀16i6k

{
k∏

i=1

n∏
j=1

wi − qsi x j

wi − x j

k∏
i, j=1

1
wi − qsiw j

k∏
i 6= j=1

(wi − w j)

}
.

It implies that

(81) =
∮

dw1

2iπ
· · ·

∮
dwk

2iπ

∏
i< j

qs jwi − qsiw j

wi − w j

k∏
i=1

n∏
j=1

wi − qsi x j

wi − x j

×

k∏
i, j=1

1
wi − qsiw j

k∏
i 6= j=1

(wi − w j)

k∏
i=1

n∏
j=1

(t x j/wi)∞

(qx j/wi)∞

(qsi+1x j/wi)∞

(tqsi x j/wi)∞

×

k∏
i=1

Π(q−siwi ; ρ)

Π(wi ; ρ)

∏
16i< j6k

φ(q−si−s jwiw j)

φ(wiw j)
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×

k∏
i=1

n∏
j=1

φ(q−siwi x j)

φ(wi x j)

k∏
i=1

k∏
j=1

φ(wiw j)

φ(q−siwiw j)
, (82)

where the contours enclose xi and no other singularity. The assumption (cf.
assumption (ii) in Theorem 3.20) that the real part of the variables si is such
that |qsi | < x j/xi for all i, j ensures that one can choose these contours as small
circles enclosing xi . Finally, using the fact that φ(u) = (tu)∞/(u)∞, one has

wi − qsi x j

wi − x j

(t x j/wi)∞

(qx j/wi)∞

(qsi+1x j/wi)∞

(tqsi x j/wi)∞
=

φ(x j/wi)

φ(qsi x j/wi)
,

so that the integrand can be arranged to match with the right-hand side of (79).

The application of Lemma 3.32 to each term of the sum in (78) yields the
desired formula, which concludes the proof of Proposition 3.30 and Theorem
3.20.

4. Half-space q-Whittaker processes

We assume now that t = 0 and q ∈ (0, 1). We will, however, use the same
notations P, Q, E as before. These (P and Q) are now called q-Whittaker
functions [GLO09]. We define the half-space q-Whittaker measure Pq

ρ,ρ↙
as the

measure on partitions λ ∈ Y such that

Pq
ρ,ρ↙

(λ) =
Pλ(ρ)Eλ(ρ↙)
Π(ρ; ρ↙)Φ(ρ)

,

and denote by Pq
ω,ρ , for a sequence of specializations ρ, the half-space q-

Whittaker process, that is, the t = 0 degeneration of the half-space Macdonald
process Pq,t

ω,ρ .

4.1. Observables and integral formulas. Consider a q-Whittaker measure
where ρ = (a1, . . . , an) ∈ (0, 1)n , and ρ↙ = ρ(α, β, γ ) as defined in Section
2.2.4. We will now degenerate the results from Sections 3.2 and 3.4 to the q-
Whittaker case. We further assume that the beta component of the specialization
ρ↙ is trivial (that is, βi ≡ 0), and all the parameters αi are such that
max{ai}max{α j } < 1, since this is the case that matters in our applications.

It is convenient to define functions

Gq(w) = e−γw
n∏

j=1

(wa j)∞

(w/a j)∞

`∏
j=1

(wα j)∞ and
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Gq
(w) = e−γw

n∏
j=1

(wa j)∞

(a j/w)∞

`∏
j=1

(wα j)∞.

4.1.1. Moment formulas. Let us write explicitly the q-Whittaker degeneration
of moment formulas from Section 3.2. The moments appearing in Corollary 4.1
can also be written in a different form as in Corollary 4.9 and Corollary 4.4.
While both statements could in principle be deduced from Corollary 4.1, it is
much simpler to deduce them from the q-Laplace transform formulas; hence
they will appear in the next section.

COROLLARY 4.1. Under the q-Whittaker measure Pq
(a1,...,an),((α1,...,α`),γ )

, the two
following moment formulas hold. For any k ∈ Z>0,

Eq
[qkλN ] = (−1)k

∮
dw1

2iπ
· · ·

∮
dwk

2iπ

∏
16a<b6k

wa − wb

q−1wa − wb

1− qwawb

1− wawb

×

k∏
m=1

1
1− w2

m

Gq(wm)

Gq(qwm)

1
wm
, (83)

where the positively oriented contours are such that for all 1 6 c 6 k, the
contour for wc encloses {a j }16 j6n and q{wc+1, . . . , wk}, and excludes the poles
of the integrand at 1 and 0.

For all k ∈ Z>0 such that qk >
(

max{a j }
)2

and qk > max{α j }max{a j },

Eq
[q−kλ1] = (−1)k

∮
dw1

2iπ
· · ·

∮
dwk

2iπ

∏
16a<b6k

wa − wb

q−1wa − wb

q−1
− wawb

q−2 − wawb

×

k∏
m=1

qw2
m − 1

qw2
m

Gq
(w−1

m )

Gq
(q−1w−1

m )

1
wm
, (84)

where the positively oriented contours are such that for all 1 6 c 6 k, the
contour for wc encloses {1/a j }16 j6n and q{wc+1, . . . , wk}, and excludes the
poles of the integrand at 0, αi/q (for 1 6 i 6 `) and a j/q (for 1 6 j 6 n).

Proof. This is the t = 0 degeneration of Proposition 3.5. Note that

Gq(w)

Gq(qw)
= exp

(
(q − 1)γw

) n∏
j=1

(
1− wa j

1− w/a j

) `∏
i=1

(1− αiw)
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and

Gq
(w−1)

Gq
(q−1w−1)

= exp
(
(q−1
− 1)γw−1) n∏

j=1

(
qw

(1− wa j)(qw − a j)

)

×

`∏
i=1

(
qw

qw − αi

)
.

COROLLARY 4.2. Under the q-Whittaker measure Pq
(a1,...,an),((α1,...,α`),γ )

, the two
following formulas hold. For r > 1,

Eq
[qλN+···+λN−r+1] =

(−1)
r(r+1)

2

r !

∮
dz1

2iπ
· · ·

∮
dzr

2iπ

r∏
j=1

(
1

(z j)r

1
1− z2

j

Gq(z j)

Gq(qz j)

)

×

∏
16i< j6r

(
(zi − z j)

2 1− qzi z j

1− zi z j

)
,

where the positively oriented contours encircle {a1, . . . , aN } and no other
singularity of the integrand.

For r > 1, and assuming that qr >
(

max{a j }
)2

and qr > max{α j }max{a j },

Eq
[
q−λ1− ... −λr

]
=
(−1)

r(r+1)
2

r !

∮
dw1

2iπ
· · ·

∮
dwr

2iπ

×

r∏
j=1

(
1

(wi)r

qw2
j − 1

qw2
j

Gq
(w−1

j )

Gq
(q−1w−1

j )

)

×

∏
16i< j6r

(
(wi − w j)

2 q2wiw j − q
q2wiw j − 1

)
,

where the positively oriented contours encircle {1/a1, . . . , 1/aN } and no other
singularity.

Proof. This is the t = 0 degeneration of Proposition 3.7.

4.1.2. q-Laplace transform formulas. We consider first the q-Laplace
transform of qλn .

COROLLARY 4.3. Let z ∈ C\R>0. Assume that the parameters a1, . . . , an ∈ (0,
1) are chosen so that for all i, j , |qai/a j | < 1, and let 0 < R < 1 be such that
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0 < q R < ai/a j for all i, j . Under the q-Whittaker measure Pq
(a1,...,an),((α1,...,α`),γ )

,
we have

Eq

[
1

(qλn z)∞

]
=

n∑
k=0

1
k!

∫
DR

ds1

2iπ
· · ·

∫
DR

dsk

2iπ

∮
dw1

2iπ
· · ·

∮
dwk

2iπ

×

∏
16i< j6k

(qs jw j − qsiwi)(wi − w j)(qsiwiw j)∞(qs jw jwi)∞

(qsiwi − w j)(qs jw j − wi)(qsi+s jwiw j)∞(wiw j)∞

×

k∏
i=1

[
Γ (−si)Γ (1+ si)

Gq(wi)

Gq(qsiwi)

(qsiw2
i )∞(−z)si

(w2
i )∞(qsi − 1)wi

]
, (85)

where the positively oriented integration contours for the variables wi enclose
all ai and no other singularity.

Proof. This is the t = 0 degeneration of Theorem 3.12.

It is possible to extract the coefficient of zk in the above formula, which yields
the following alternative moment formula.

COROLLARY 4.4. For any r ∈ Z>0, under the q-Whittaker measure
Pq
(a1,...,an),((α1,...,α`),γ )

,

Eq
[qrλn ]

= (q; q)r
∑
µ ` r

µ = 1m1 2m2 . . .

1
m1!m2! . . .

×

∮
dw1

2iπ
· · ·

∮
dw`(µ)

2iπ
det

[
1

wi qµi − w j

]`(µ)
i, j=1

×

∏
16a<b6`(µ)

(qµawawb)∞(qµbwawb)∞

(wawb)∞(qµa+µbwawb)∞

`(µ)∏
j=1

(qµmw2
j )∞

(w2
j )∞

Gq(w j)

Gq(qµ jw j)
dw j ,

where the positively oriented contours enclose a j and no other singularity.

Proof 1. To extract the coefficient of zr in (85), we use the q-binomial theorem
(12) on the left-hand side. On the right-hand side, we may transform the
integration over si into a discrete sum using Lemma 3.17 and collect the terms
of degree k in z. We obtain

1
(q; q)r

Eq
[qrλn ] =

∞∑
k=0

1
k!

∑
ν1,...,νk>1
ν1+···+νk=r

∮
dw1

2iπ
· · ·

∮
dwk

2iπ
det

[
1

wi qνi − w j

]k

i, j=1

https://doi.org/10.1017/fmp.2020.3 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.3


G. Barraquand, A. Borodin and I. Corwin 66

×

∏
16a<b6k

(qνawawb)∞(qνbwawb)∞

(wawb)∞(qνa+νbwawb)∞

k∏
j=1

(qνmw2
j )∞

(w2
j )∞

Gq(w j)

Gq(qν jw j)
dw j .

We may relabel w j ’s since they are integrated on the same contour, or
equivalently we may relabel ν j ’s. Hence, the sum over compositions ν can
be rewritten as a sum over partitions µ (the factor k!/(m1!m2! . . . ) corresponds
to the number of compositions corresponding to the same partition).

Proof 2. We present a second proof deriving Corollary 4.4 directly from
Corollary 4.1. Although this proof is longer, it is useful to compare our present
results with [BC14] and [BBC16], and a similar approach will be useful in
Section 5. We first recall a useful result in the theory of Macdonald processes.
It was first stated in [BC14] as Proposition 3.2.1, but we use a slightly more
general version from [BCPS15b].

PROPOSITION 4.5 [BCPS15b, Proposition 7.4]. Let γ1, . . . , γk be positively
oriented closed contours and a function F(z1, . . . , zk) be such that we have the
following:

• The contour γk is a small circle around 1, small enough so as to not contain
q.

• For all A < B, γA enclose qγB .

• For all 1 6 j 6 k, one can deform γ j to γk in such a way that the function

F(z1, . . . , zk)

z1 . . . zk

∏
i< j

(zi − z j)

is analytic in z j (when all variables lie on their respective contours) in a
neighborhood of the area swept by the deformation.

Then we have ∮
dz1

2iπ
· · ·

∮
dzk

2iπ

∏
A<B

z A − zB

z A − qzB

F(z1, . . . , zk)

z1 . . . zk

=

∑
λ`k

∮
dw1

2iπ
· · ·

∮
dw`(λ)

2iπ
dµλ( Ew)Eq( Ew ◦ λ), (86)

where

Ew ◦ λ = (w1, qw1, . . . , qλ1−1w1, w2, . . . , qλ2−1w2, . . . , qλ`(λ)−1w`(λ)), (87)
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Eq(Ez) =
∑
σ∈Sk

σ

(∏
A<B

z A − qzB

z A − zB
F(z1, . . . , zk)

)
and

dµλ( Ew) =
(q − 1)kq−

k(k−1)
2

m1!m2! . . .
det

[
1

wi qλi − w j

]`(λ)
i, j=1

`(λ)∏
j=1

dw j .

We may apply Proposition 4.5 to (83) with the benign modification that the
contour γk is around ai instead of around 1. Note that the factor

∏
16a<b6k

1− qzazb

1− zazb

k∏
i=1

1
1− z2

i

is symmetric and can be taken outside of the sum over permutations in Eq . The
evaluation into Ew ◦ λ is given by the following.

LEMMA 4.6. For a partition λ ` k with m = `(λ), if Ez = Ew ◦ λ (the notation
was introduced in (87)) then we have

∏
16a<b6k

1− qzazb

1− zazb

k∏
i=1

1
1− z2

i

=

∏
16a<b6m

(qλawawb)∞(qλbwawb)∞

(wawb)∞(qλa+λbwawb)∞

m∏
j=1

(qλ jw2
j )∞

(w2
j )∞

. (88)

Proof. For Ez = Ew ◦ λ, the left-hand side of (88) equals

(88) =
∏

16i< j6m

λi−1∏
r=0

λ j−1∏
s=0

1− q1+r+swiw j

1− qr+swiw j

×

m∏
i=1

∏
06r<s6λi−1

1− q1+r+sw2
i

1− qr+sw2
i

λi−1∏
t=0

1
1− q2tw2

i

=

∏
16i< j6m

λi−1∏
r=0

1− qr+λ jwiw j

1− qrwiw j

m∏
i=1

λi−1∏
r=0

1− qr+λiw2
i

1− q2r+1w2
i

1
1− q2rw2

i

=

∏
16i< j6m

(qλ jwiw j)∞/(qλi+λ jwiw j)∞

(wiw j)∞/(qλiwiw j)∞

m∏
i=1

λi−1∏
r=0

1
1− qrw2

i

= R.H.S. (88).
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Eq can then be computed using the symmetrization identity [Mac95, VII,
(1.4)] ∑

σ∈Sk

σ

 ∏
16i< j6k

ui − qu j

ui − u j

 = (q; q)k
(1− q)k

. (89)

Thus, Proposition 4.5 applied to Corollary 4.1 using Lemma 4.6 yields Corollary
4.4.

Now we provide formulas characterizing the distribution of q−λ1 .

COROLLARY 4.7. Let z ∈ C \ R>0. Assume the following:

(i) The parameters a1, . . . , an ∈ (0, 1) are chosen such that for all i, j ,
max{ai} < ai/a j and qai/a j < 1.

(ii) R ∈ (0, 1), q R > max{ai}, and for all i, j q R < ai/a j .

(iii) The αi ’s are chosen so that q R > max{ai}max{α j }.

Then, under the q-Whittaker measure Pq
(a1,...,an),((α1,...,α`),γ )

, we have

Eq

[
1

(zq−λ1)∞

]
=

n∑
k=0

1
k!

∫
DR

ds1

2iπ
· · ·

∫
DR

dsk

2iπ

∮
dw1

2iπ
· · ·

∮
dwk

2iπ

×

∏
16i< j6k

(qs jwi − qsiw j)(w j − wi)(q−siwiw j)∞(q−s jwiw j)∞

(qs jwi − w j)(qsiw j − wi)(q−si−s jwiw j)∞(wiw j)∞

×

k∏
i=1

[
Γ (−si)Γ (1+ si)

Gq
(wi)

Gq
(q−siwi)

(q−siw2
i )∞(−z)si

(w2
i )∞(1− qsi )wi

]
, (90)

where the w contours are small positively oriented circles enclosing ai and no
other singularity, and DR = R + iR oriented upwards, as before.

Proof. This is the t = 0 degeneration of Theorem 3.20.

REMARK 4.8. Note that in light of similarities with q-Laplace transform
formulas for the full-space q-Whittaker process—see in particular [BCFV15,
Theorem 3.3]—it is conceivable that (90) holds as well if the contours for the
wi variables contain not only the singularities ai but also q j ai for all 1 6 j 6 k
for an arbitrary integer k. (In [BCFV15, Theorem 3.3], the contour encloses
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all the singularities 1/(q j ai), but the formula would be valid as well if the
contour would contain only the singularities 1/(q j ai) for 1 6 j 6 k, where
k is an arbitrary positive integer.) Transforming the contours in such a way may
be convenient for later asymptotic analysis of the formula, so as to work with
infinite contours in Section 6. Presently, it is not clear how to justify such a
contour deformation.

Both sides of (90) are analytic in z ∈ C \ R>0 but not analytic at z = 0, so
one cannot extract coefficients as in the proof of Corollary 4.4. Nevertheless, we
have the following:

COROLLARY 4.9. For all r ∈ Z>0 such that qr >
(

max{a j }
)2

and qr >

max{α j }max{a j }, under the q-Whittaker measure Pq
(a1,...,an),((α1,...,α`),γ )

,

Eq
[q−rλ1]

= (q; q)r
∑
µ ` r

µ = 1m1 2m2 . . .

1
m1!m2! . . .

∮
dw1

2iπ
· · ·

∮
dw`(µ)

2iπ

× det

[
1

qµiw−1
i − w

−1
j

]`(µ)
i, j=1

∏
16a<b6`(µ)

(q−µawawb)∞(q−µbwawb)∞

(wawb)∞(q−µa−µbwawb)∞

×

`(µ)∏
j=1

(q−µ jw2
j )∞

(w2
j )∞

Gq
(w j)

Gq
(q−µ jw j)

dw j

w2
j

, (91)

where the positively oriented contours enclose a j and no other singularity.

Proof. Let Dq be the q-derivative operator defined by

Dq f (z) =
f (qz)− f (z)

qz − z
.

We have

Dq

(
1

(zq−λ1)∞

)
=

q−λ1

(1− q)(zq−λ1)∞
.

For z ∈ C \ R>0, we can apply Dq to the left-hand side of (90), and the
q derivative clearly commutes with the expectation, so that if we iterate the
procedure, we get

(Dq)
rEq

[
1

(zq−λ1)∞

]
= Eq

[
q−rλ1

(1− q)r (zq−λ1)∞

]
. (92)
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If Eq
[q−rλ1] is finite, we may let z tend to 0 in (92) to obtain

Eq
[q−rλ1] = (1− q)r lim

z→0

{
(Dq)

r Eq

[
1

(zq−λ1)∞

]}
.

Now we can apply Dq to the right-hand side of (90). If qr >
(

max{a j }
)2

and qr > max{α j }max{a j }, we may shift the contour DR to DR+r and we
will encounter only the poles at s = 1, . . . , r during the contour deformation.
The sum of the residues is a polynomial in the variable z. We may rewrite the
application of (Dq)

r to (90) as the sum of (Dq)
r applied to this polynomial and

(Dq)
r applied to the integral remainder. We have Dq(−z)s = 1−qs

1−q (−z)s−1, so
after applying (Dq)

r to the integrand in (90), it gets multiplied by

1− qs1+···+sk

1− q
1− qs1+···+sk−1

1− q
. . .

1− qs1+···+sk−r+1

1− q
(−z)−r .

Hence, after shifting the contours and applying (Dq)
r , the integral term goes to

zero as z → 0 because the factor z−r ∏k
i=1(−z)si with Re[si ] = R + r goes to

zero. For a polynomial P(X) =
∑N

i=1 ci X i ,

lim
z→0

{
(Dq)

r P(z)
}
= cr

r∏
i=1

1− q i

1− q
.

In our context, cr corresponds to the contribution of residues at s1 = µ1, . . . ,

sk = µk for some µ1, . . . , µk ∈ Z>0 such that µ1+ · · ·+µk = r . These residues
are easy to compute and they can be written as in (91).

REMARK 4.10. Corollary 4.9 could also be proved from (84) by shrinking the
nested contours to a small contour around ai (that is, applying Proposition 4.5)
as in the proof of Corollary 4.4.

REMARK 4.11. Regarding the distribution of qλn , the moment formula in
Corollary 4.4 and the Laplace transform formula from Corollary 4.3 are
essentially equivalent (for sufficiently small parameters a1, . . . , an). Indeed, we
have deduced the moment formulas from the Laplace transform but one can go
backwards summing the q-moment generating series.

However, turning to the distribution of q−λ1 , the moment formula from
Corollary 4.9 can be deduced from the Laplace transform formula from
Corollary 4.7, but one cannot go backwards (otherwise, this would have been
a much easier route to prove Corollary 4.7). Let us see why. Denoting the
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left-hand side in (90) by L(z) and the right-hand side by R(z), Corollary 4.9
implies that for all n > 0,

lim
z→0

(Dq)
n R(z) = lim

z→0
(Dq)

n L(z).

This is not sufficient to deduce Corollary 4.7. Indeed, as for the usual differential
operator, a function f (z) is in general not determined in a neighborhood around
0 by the knowledge of limz→0 (Dq)

n f (z) for all n ∈ Z>0, unless it is analytic at
0. As a counterexample, one may consider

f (z) =
∞∑

k=0

θ k(θ)∞

(zq−k)∞(q; q)k
and g(z) =

∞∑
k=0

zk(z)∞
(θq−k)∞(q; q)k

,

and check that

lim
z→0
(Dq)

n f (z) =
1

(θq−n)∞(1− q)n
= lim

z→0
(Dq)

ng(z).

In the above counterexample, f (z) should be thought of as the correct expression
for the Laplace transform while g(z) is the wrong expression that one would
obtain by summing moment formulas (or applying the operator N

z
instead of

Mz). (We have that f (z) = Eq
[

1
(zq−λ1 )∞

], where λ1 is distributed according to the
half-space q-Whittaker measure with specializations ρ = (a1) and ρ↙ = (α1)

with a1α1 = θ .)

4.2. Matveev–Petrov RSK-type dynamics. Section 2.4 introduced a
general scheme through which one can grow half-space Macdonald processes
using two types of operators Ux and U 6 . The main condition required of these
operators was that they satisfied the defining relations (36) and (37). Matveev–
Petrov [MP17] provide four different choices for the bulk operator Ux that
solve (36), provided the partitions satisfy certain interlacing conditions and the
specializations are chosen appropriately. The description of these operators is
quite involved and overall unnecessary for our purposes. Instead, we will recall
the relevant properties of these operators one by one.

We will use only two of the bulk Ux operators introduced in [MP17], and
denote them as Ux

row[α] and Ux
col[α], where α is a generic positive real number.

These transition operators correspond, in the Schur process degeneration, to
dynamics on Gelfand–Tsetlin patterns induced by the row or column RSK
insertion, respectively (see [Knu70] or [MP17, Section 4.3] and references
therein).
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REMARK 4.12. It would be tempting to consider the two other possibilities
Ux

row[β̂],Ux
col[β̂], which are dual analogues. However, this is not presently

accessible due to our choice of U 6 , which enforces the use of the same set of
specializations on horizontal and vertical edges.

Ux
row[α] and Ux

col[α] act from the subspace of κ ⊗ µ ⊗ ν ∈ Yk ⊗ Yk ⊗ Yk+1

such that µ ≺ ν and µ ≺ κ to the subspace of κ ⊗ π ⊗ ν ∈ Yk ⊗ Yk+1 ⊗ Yk+1

such that κ ≺ π and ν ≺ π . For such partitions κ, µ, ν, π , we will use the
notation Ux(π |κ, µ, ν) as in Section 2.4. For a partition λ ∈ Yk and 1 6 j 6 k,
let
−−→
Proj j(λ) = (λ1, . . . , λ j) be the projection of λ onto its first j parts (now

a partition in Y j ). (The orientation of arrows in
−−→
Proj and

←−−
Proj is chosen to be

consistent with Figure 4 and interlacing arrays in Section 6.4.) Similarly, let
←−−
Proj j(λ) = (λk− j+1, . . . , λk) be the projection of λ onto its last j parts. The main
fact we use from [MP17] is that Ux

row[α] and Ux
col[α] satisfy the defining relation

(36), and their projections under
−−→
Proj j and

←−−
Proj j are marginally Markov.

We will continue to use the boundary transition operator U 6 of push–block
type defined in Section 2.4.2, although other choices might be interesting to study
and could lead to different dynamics. Recall that in the setting of Section 2.4, the
operators Ux and U 6 depend on specializations ρ◦ and ρi for i > 1.

4.2.1. Boundary transition operator. We recall that for k > 0 and partitions
µ ∈ Yk , κ, π ∈ Yk+1,

U 6k,k(π |κ, µ) = U 6k,k(π |κ) =
Pπ/κ(ρk+1)Eπ (ρ◦)

Eκ(ρk+1, ρ◦)Π(ρk+1, ρ◦)Φ(ρk+1)
.

The right-hand side above can be computed more explicitly when the
specializations are simply the evaluation into single variables.

LEMMA 4.13. For a, b ∈ C, we have

Eµ(a)Pµ/λ(b) = a
∑

i µ2i−1−µ2i b
∑

i µi−λi

`(µ)∏
i=1

(qµi−λi+1
; q)∞(qλi−µi+1+1

; q)∞
(q; q)2

∞

. (93)

Proof. Using the combinatorial formula (20), Qµ/η(u) = u|µ|−|η|ϕµ/η1η≺µ, where

ϕµ/η =

`(µ)∏
i=1

(qµi−ηi+1
; q)∞(qηi−µi+1+1

; q)∞
(q; q)∞(qηi−ηi+1+1; q)∞

.

We would like to evaluate Eµ(u). Since u is a single usual specialization,
Qµ/η(u) is only nonzero when µ/η is a horizontal strip. Among those η, there is
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only one that has η′ even, and it is given by η∗ = (µ2, µ2, µ4, µ4, . . .). For that
η∗,

ϕµ/η∗ =

`(µ)∏
i=1

(qµi−µi+1+1
; q)∞

(q; q)∞

b`(µ)/2c∏
j=1

(q; q)∞
(qµ2 j−µ2 j+2+1; q)∞

.

We also readily see that for η∗, the only boxes for which bη∗(�) does not equal 1
are those that have leg length 0 (otherwise, the factor of t leg in the denominator
is zero). Thus, we find

bel
η∗ =

b`(µ)/2c∏
j=1

(qµ2 j−µ2 j+2+1
; q)∞

(q; q)∞

so that

Eµ(u) = bel
η∗u

∑
i µ2i−1−µ2iϕµ/η∗ = u

∑
i µ2i−1−µ2i

`(µ)∏
i=1

(qµi−µi+1+1
; q)∞

(q; q)∞
.

By the combinatorial formula (19),

Pµ/λ(u) = u|µ|−|λ|ψµ/λ,

where

ψµ/λ =

`(λ)∏
i=1

(qµi−λi+1
; q)∞(qλi−µi+1+1

; q)∞
(q; q)∞(qµi−µi+1+1; q)∞

.

Putting this all together and noting that `(λ)+1 = `(µ), we arrive at (93).

DEFINITION 4.14. A q-geometric random variable with parameter θ ∈ (0, 1),
denoted by qGeom(θ), has distribution

P(X = k) =
θ k

(q; q)k
(θ; q)∞, k ∈ Z>0.

LEMMA 4.15. Assume that ρ◦ and ρi are specializations into single variables a◦
and ai , respectively, for all i > 1.

(1) For any partitions µ ≺ κ ∈ Yk , the probability kernel U 6k,k(π |κ, µ) is
supported on π ∈ Yk+1. Moreover, for any j 6 k, the push-forward
of U 6k,k(π |κ, µ) with respect to

−−→
Proj j (the marginal distribution of π

corresponding to its first j parts) depends only on
−−→
Proj j(κ).
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(2) The projection of the dynamics U 6k,k(π |κ, µ) to the first part is given by

π1 = κ1 + qGeom(a◦ak+1).

Proof. For fixed µ ≺ κ ∈ Yk , U 6 (π |κ, µ) is proportional to

Pπ/κ(ak+1)Eπ (a◦) = a
∑

i π2i−1−π2i
◦

a
∑

i πi−κi
k+1

`(π)∏
i=1

1
(q; q)πi−κi (q; q)κi−πi+1

1κ≺π ,

as follows from Lemma 4.13. By summing over π j+1, π j+2, . . . , we see that the
distribution of

−−→
Proj j(π) depends only on

−−→
Proj j(κ). In particular, summing over

π2, . . . , πk+1, we find that the weight of π1 is proportional to(
a◦ak+1

)π1

(q; q)π1−κ1

1π1>κ1,

which shows that π1 − κ1 has the qGeom(a◦ak+1) distribution.

DEFINITION 4.16. We introduce the q-inverse Gaussian distribution (see
Lemma 6.28 for a justification of the name) with parameters m ∈ Z>0 ∪ {+∞}

and θ ∈ (0, 1). A q-inverse Gaussian random variable X is such that

P(X = k) = θ k (q; q)m
(q; q)k(q; q)m−k

1
Zm(θ)

, k ∈ {0, . . . ,m},

where Zm(θ) is the mth Rogers–Szegő polynomial

Zm(θ) =

m∑
k=0

θ k (q; q)m
(q; q)k(q; q)m−k

. (94)

When m = ∞, the q-inverse Gaussian distribution degenerates to the q-
geometric one.

LEMMA 4.17. Assume that ρ◦ and ρi are specializations into single variables a◦
and ai , respectively, for all i > 1.

(1) For any j 6 k, and partitions µ ≺ κ ∈ Yk , the push-forward of U 6k,k(π |κ,
µ) with respect to

←−−
Proj j (last j parts of the partitions) depends only on

←−−
Proj j(κ).

(2) The projection of the dynamics U 6k,k(π |κ, µ) on the last part is such that
πk+1 is a q-inverse Gaussian random variable with parameters κk and
a(−1)k
◦

ak+1.
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Figure 9. Action of the transition operators Ux
row(π |κ, µ, ν) and Ux

col(π |κ, µ, ν)

on a corner formed by partitions κ, µ, ν at positions (i, j − 1), (i − 1, j − 1),
(i − 1, j). The dashed part of the path has no influence on the distribution of π .

Proof. One proves (1) similarly to Lemma 4.15. Summing over π1, . . . , πk for a
fixed κ ∈ Yk , the distribution of πk+1 is proportional to

a(−1)kπk+1
◦

aπk+1
k+1

(q; q)πk+1(q; q)κk−πk+1

,

which proves (2).

4.2.2. Bulk dynamics based on RSK row insertion. For j > 1, consider four
partitions κ, µ ∈ Y j−1 and π, ν ∈ Y j such that

µ κ

ν π

≺

≺

≺ ≺

3

3

Y j−1

Y j

Assume that these partitions appear on a section of a path ω as in Figure 9 so that
a specialization ρi lies on the horizontal edge and ρ j lies on the vertical edge.
Assume that ρi and ρ j are specializations into single variables ai and a j . Then,
[MP17] defines an operator that we will call Ux

row(π |κ, µ, ν), which satisfies
the relation in (36). We collect the following properties of Ux

row from [MP17],
wherein Ux

row(π |κ, µ, ν) is denoted by U j(ν → π |µ → κ) when the sequence(
U j
)

defines the multivariate dynamics Qq
row[α]; cf. [MP17, Section 6.2].

PROPOSITION 4.18. With the above notation, we have the following:

(1) Ux
row(π |κ, µ, ν) is supported on π such that ν ≺ π and κ ≺ π [MP17,

Lemma 6.2].
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(2) Ux
row(π |κ, µ, ν) preserves the q-Whittaker process structure, in the sense

of (36) [MP17, Theorem 6.4].

(3) The projection of the dynamics on the first j parts of each partition is
marginally Markov [MP17, Section 6.3].

DEFINITION 4.19. For parameters q, ξ, η ∈ R>0, y ∈ {0, 1, . . .} ∪ {+∞} and
s ∈ {0, . . . , y}, define the q-beta-binomial distribution, denoted as qBetaBin(q,
ξ, η, y), by the weights

ϕq,ξ,η(s|y) = ξ
s (η/ξ ; q)s(ξ ; q)y−s

(η; q)y

(q; q)y

(q; q)s(q; q)y−s
.

These weights were introduced in [GO09, Pov13]. There are several ranges
of parameters for which the weights ϕq,ξ,η(s|y) define a probability distribution
on {0, . . . , y}. The simplest choice is 0 6 q < 1 and 0 6 η < ξ < 1, and
the corresponding distribution is a natural q-analogue of the beta-binomial
distribution [GO09]. Another possibility, considered in [MP17], is to use the
weights ϕq−1,qa ,qa+b(s|y), where a, b are nonnegative integers such that y 6 a+b.
We may consider also the degeneration when b goes to infinity and denote the
corresponding weights ϕq−1,qa ,0(s|y). Note that ϕq,ξ,η(s|y) degenerates to the q-
geometric distribution when η = 0 and y = +∞.

The law of the first part marginals under the dynamics Ux
row can be described

explicitly as follows.

LEMMA 4.20 [MP17, Section 6.3]. Under the transition operator Ux
row(π |κ, µ,

ν),
π1 = ν1 + V +W,

where V is distributed as a q-geometric random variable with parameter ai a j

and W is distributed according to

P(W = k) = ϕq−1,qν1−µ1 ,0(k|κ1 − µ1);

V and W are independent.

4.2.3. Bulk dynamics based on RSK column insertion. We will also use another
type of dynamics that we will denote Ux

col(π |κ, µ, ν), introduced in [MP17]
wherein it is denoted by U j(ν → π |µ → κ), when the sequence

(
U j
)

defines
the multivariate dynamics Qq

col[α]; cf. [MP17, Section 6.4]. As for the dynamics
Ux

row, we will not provide the complete definition of Ux
col since we do not need it,

but only list the following properties proved in [MP17].
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PROPOSITION 4.21. Under the same assumptions as in Section 4.2.2, we have
the following:

(1) Ux
col(π |κ, µ, ν) is supported on π such that ν ≺ π and κ ≺ π [MP17,

Lemma 6.6].

(2) Ux
col(π |κ, µ, ν) satisfies (36) [MP17, Theorem 6.10].

(3) The projection of the dynamics on the last j parts of each partition is
marginally Markov [MP17, Section 6.6].

The dynamics on the last part of each partition under Ux
col(π |κ, µ, ν) are

explicit.

LEMMA 4.22 [MP17, Section 6.6]. Under the transition operator Ux
col(π |κ, µ,

ν),
πk+1 = νk+1 +W,

where
P(W = j) = ϕq,ai a j ,0( j |µk − νk+1).

The distribution ϕq,θ,0(·|m) can be seen as a truncation of the q-geometric
distribution. It is a different truncation than the q-inverse Gaussian distribution
(see Definition 4.16).

4.3. New exactly solvable particle systems. The dynamics studied in
Section 4.2 suggest the definition of new exactly solvable particle systems,
which are ‘half-space’ variants of the Geometric q-PushTASEP (introduced
in [MP17]) and the discrete Geometric q-TASEP (introduced in [BC15]). For
both particle systems, we can use the moment formulas from Corollaries 4.1,
4.9 and 4.4 and the Laplace transform formulas from Corollaries 4.7 and 4.3.
This provides moment and Laplace transform formulas for the random variable
q±xn(t), where xn(t) will denote the position of an arbitrary particle at any time t
in the models that we define now.

We start with the particle system corresponding to the row insertion dynamics
(Section 4.2.2).

DEFINITION 4.23. The Geometric q-PushTASEP with particle creation is a
discrete-time Markov process on configurations of particles

0 = x0(t) < x1(t) < x2(t) < · · · < xt(t) <∞.
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Figure 10. Configuration of particles in the Geometric q-PushTASEP with
particle creation at time t = 5. We illustrate possible jumps of the particles sitting
at x2(t) and x3(t). Note that the particle sitting at x4(t) will necessarily jump to a
position on the right of x3(t + 1) (by the construction of W4(t)). A new particle
will be created at xt+1(t + 1) (= 17 on the figure).

At time 0, there is only one particle at x0(0) = 0. From time t to t + 1, particles’
positions xn(t) for n = 1 to t are sequentially updated so that the particle at xn(t)
jumps to its new location xn(t + 1) = xn(t) + Vn(t) + Wn(t), where Vn(t) and
Wn(t) are independent, Vn(t) is a q-geometric random variable with parameter
anat (see Definition 4.14) and Wn(t) is distributed according to

P(Wn(t) = k) = ϕq−1,qgapn (t),0(k|xn−1(t + 1)− xn−1(t)).

where gapn(t) = xn(t) − xn−1(t) − 1. Additionally, a new particle is created at
location xt+1(t + 1) = xt(t + 1)+ Vt+1(t)+ 1, where Vt+1(t) is an independent
q-geometric random variable with parameter a◦at (see Figure 10). Note that the
strict ordering of particle locations is preserved by the dynamics.

PROPOSITION 4.24. Let
(
xn(t)

)
16n6t denote the positions of particles in

the Geometric q-PushTASEP with particle creation (Definition 4.23). Let(
λ(t,n)

)
16n6t be a sequence of random partitions distributed according to

the Markovian growth procedure described in Section 2.4, using transition
operators Ux

row and U 6 , and specializations ρ◦ and ρi into single variables a◦
and ai , respectively, for all i > 1. In particular, λ(t,n) is distributed according
to the half-space q-Whittaker measure Pq

(a1,...,an),(a◦,an+1,...,at )
. Then, for any

admissible path ω ∈ Ω , we have(
xn(t)

)
(t,n)∈ω

(d)
=
(
λ
(t,n)
1 + n

)
(t,n)∈ω.

Proof. The two families have the same dynamics, according to Lemmas 4.15
and 4.20.
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REMARK 4.25. The moments of q−xn(t) are given by (84) in Corollary 4.1. By
definition of the dynamics, xn(t) can be bounded by a sum of q-Geometric
random variables with parameters a◦at ′ and an′at ′ over some range of t ′, n′.
However, for X ∼ qGeom(θ), E[q−k X

] is finite as long as qk > θ . This explains
why the moments of q−λ1 in Corollary 4.1 can exist only when qk > max{a j }

2

and qk > max{α j }max{a j }. It turns out that these conditions are sufficient for
the existence of moments.

We introduce now the particle system corresponding to the column insertion
dynamics (Section 4.2.3).

DEFINITION 4.26. The Geometric q-TASEP with activation is a discrete-time
Markov process on infinite configurations of particles

· · · < xn(t) < · · · < x1(t) < x0(t) ≡ +∞.

At time 0, xn(0) = −n for all n > 1. From time t to time t+1, the first t particles
at locations x1(t), . . . , xt(t) are updated in parallel so that the nth particle jumps
to xn(t + 1) = xn(t)+ Vn(t), where Vn(t) is distributed according to

P(Vn(t) = j) = ϕq,anat ,0

(
j |xn−1(t)− xn(t)− 1

)
.

Additionally, the (t + 1)th particle jumps to the location xt+1(t + 1) = −t − 1+
W (t), where W (t) is distributed according to the q-inverse Gaussian distribution
with parameters m = xt(t + 1)+ t and θ equals at a◦ or at/a◦ depending on the
parity of t :

P(W (t) = k) =
(
a(−1)t−1

◦
at
)k (q; q)m
(q; q)k(q; q)m−k

1

Zm
(
a(−1)t−1

◦ at
) .

All participating random variables are independent. The particle system is
depicted in Figure 11.

PROPOSITION 4.27. Let
(
xn(t)

)
16n6t denote the positions of particles in the

Geometric q-TASEP with activation (Definition 4.26). Let
(
λ(t,n)

)
16n6t be a

sequence of random partitions distributed according to the Markovian growth
procedure described in Section 2.4, using transition operators Ux

row and U 6 , and
specializations ρ◦ and ρi into single variables a◦ and ai , respectively, for all
i > 1. In particular, λ(t,n) is distributed according to the half-space q-Whittaker
measure Pq

(a1,...,an),(a◦,an+1,...,at )
. Then, for any admissible path ω ∈ Ω , we have(

xn(t)
)
(t,n)∈ω

(d)
=
(
λ(t,n)n − n

)
(t,n)∈ω.
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Figure 11. Configuration of particles in the Geometric q-TASEP with activation
at time t = 5. We illustrate a possible jump of the particle sitting at x3(t) and the
activation of the sixth particle.

Proof. The two families have the same dynamics, according to Lemmas 4.15
and 4.22.

5. Half-space Hall–Littlewood process

We assume now that q = 0 and t ∈ (0, 1). We use again the same notations P,
Q, E as before. These (P and Q) are now called the Hall–Littlewood symmetric
functions. We define the half-space Hall–Littlewood measure Pt

ρ,ρ↙
as the

measure on partitions λ ∈ Y such that

Pt
ρ,ρ↙(λ) =

Pλ(ρ)Eλ(ρ↙)
Π(ρ; ρ↙)Φ(ρ)

,

and denote by Pt
ω,ρ , for a sequence of specializations ρ, the half-space Hall–

Littlewood process, that is, the q = 0 degeneration of the half-space Macdonald
process Pq,t

ω,ρ .

5.1. Observables and integral formulas. Consider a Hall–Littlewood
measure where ρ = (a1, . . . , an) ∈ (0, 1)n , and ρ↙ = ρ(α, β, γ ) as defined
in Section 2.2.4. We further assume that all the parameters αi are such that
max{ai}max{α j } < 1 so that the measure is well defined. We will be mostly
interested in the distribution of the length of a Hall–Littlewood random partition
λ, denoted by `(λ) in the following.

COROLLARY 5.1. Let r be a positive integer. We have

Et
(a1,...,an),ρ

[
er (tn−`(λ)−1, tn−`(λ)−2, . . . , t0)

]
=

1
r !

∮
dz1

2iπ
· · ·

∮
dzr

2iπ
det

[
1

t zk − zl

]r

k,l=1

∏
16i< j6r

1− t zi z j

1− zi z j

r∏
i=1

1− t z2
i

1− z2
i
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×

r∏
j=1

(
1

Π(z j ; ρ)

n∏
i=1

(
t z j − ai

z j − ai

1− z j ai

1− t z j ai

))
, (95)

where the positively oriented contours encircle {a1, . . . , an} and no other
singularity of the integrand.

Proof. This is the q = 0 degeneration of Proposition 3.7. Indeed, when q = 0,

er
(
qλ1 tn−1, qλ2 tn−2, . . . , qλn

)
= er (tn−`(λ)−1, . . . , t0).

Note that

n∑
r=0

ur er (tn−`−1, . . . , t0) =

n−`−1∏
i=0

(1+ ut i) =
(−u; t)∞

(−utn−`; t)∞
.

The coefficient of ur can be extracted from the right-hand side using the q-
binomial theorem (12):

er (tn−`−1, . . . , t0) = (−1)r (tn−`)r
(t`−n
; t)r

(t; t)r
.

REMARK 5.2. We may take a generating series of (95) and obtain a formula
for Et

[
(u;t)∞

(utn−`(λ);t)∞

]
. However, this is not a convenient observable to study the

distribution of `(λ) in asymptotic regimes where n − `(λ) tends to +∞, since
it would require to scale u to +∞, and the prefactor (u; t)∞ would diverge. A
similar issue was encountered in [TW09] wherein the formula in Equation (2)
was not directly amenable for asymptotic analysis (see also [BCS14, Theorem
5.5]). In [BBCW18], we show that in the special case where ρ is trivial, it is
possible to compute Et

[
1

(utn−`(λ);t2)∞

]
as a multiplicative functional of the Pfaffian

Schur process, which can be written explicitly as contour integrals and the
resulting formulas are amenable to asymptotic analysis.

We need to slightly change contours so as to obtain an integral formula for
a better observable, following similar lines to [BCS14, BP18, Dim18]. For
simplicity, we will focus on the case where the specialization ρ is a pure
alpha specialization (otherwise, we would need restrictive assumptions on the
parameters βi ) of the form (α1, . . . , αr ). Define the function

G t(w) =

r∏
i=1

(1− αiw)

n∏
i=1

1− wai

1− w/ai
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Figure 12. Possible choice of nested contours C1,C2,C3 for Proposition 5.3 in a
case where a1 = a2 = a3 = a. Each contour Ci is the union of a circle around 0
and a circle around a. The dotted contours are the images of Ci ’s under z 7→ t z.

so that (cf. (95))

G t(w)

G t(tw)
=

1
Π(w; ρ)

n∏
i=1

tw − ai

w − ai

1− wai

1− twai
.

PROPOSITION 5.3. For any m > 1,

Et
(a1,...,an),ρ

[(
tn−`(λ)

)m]
= t

m(m−1)
2

∮
C1

dz1

2iπ
· · ·

∮
Cm

dzm

2iπ

∏
16i< j6m

zi − z j

zi − t z j

1− t zi z j

1− zi z j

×

m∏
j=1

1
z j

1− t z2
j

1− z2
j

G t(z j)

G t(t z j)
, (96)

where the positively oriented contours C1, . . . ,Cm all enclose 0 and ai and are
contained in the open disk of radius 1 around zero, and the contours are nested
in such a way that for i < j the contour Ci does not include any part of tC j (see
Figure 12 for a possible choice of such contours).

Proof. Let Er = Et
[
(−1)r (tn−`(λ))r (t

`(λ)−n
;t)r

(t;t)r

]
. As a formal power series in u, we
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have that

Et

[
1

(utn−`(λ); t)∞

]
=

∞∑
k=0

uk

(t; t)k
Et

[
(u; t)∞

(utn−`(λ); t)∞

]

=

n∑
r=0

∞∑
k=0

ur+k (−1)r Er

(t; t)k
=

∞∑
m=0

um
m∑

k=0

(−1)k Ek

(t; t)m−k
.

Using the Cauchy determinant evaluation in Corollary 5.1, we may write that for
all k,

(t; t)k Ek =
t k(k−1)/2(t; t)k(−1)k

k!(1− t)k

∮
dz1

2iπ
· · ·

∮
dzk

2iπ

∏
i 6= j

zi − z j

t zi − z j

Fk(z1, . . . , zk)

z1 . . . zk
,

where Fk is a symmetric meromorphic function in k variables such that Fk has
no pole in any variable in some disk around zero and for all n < m, Fm(z1, . . . ,

zn, 0, . . . , 0) = Fn(z1, . . . , zn), and the contours are as in the statement of the
corollary. Using the symmetrization identity (89) to desymmetrize the integrand,
we have

(t; t)k Ek = (−1)k t
k(k−1)

2

∮
dz1

2iπ
· · ·

∮
dzk

2iπ

∏
i< j

zi − z j

t zi − z j

Fk(z1, . . . , zk)

z1 . . . zk

so that we can write

Et

[
1

(utn−`(λ); t)∞

]
=

∞∑
m=0

um tm(m−1)/2

(t; t)m

m∑
k=0

(
m
k

)
t

t k(k−1)/2

tm(m−1)/2

×

∮
C

dz1

2iπ
· · ·

∮
C

dzk

2iπ

∏
i< j

zi − z j

zi − t z j

Fk(z1, . . . , zk)

z1 . . . zk
, (97)

where the contour C encloses {a1, . . . , an} and no other singularity.

LEMMA 5.4. For any k > 0, let Fk be a symmetric meromorphic function in k
variables such that Fk has no pole in any variable in some disk around zero, and
for all n < m, Fm(z1, . . . , zn, 0, . . . , 0) = Fn(z1, . . . , zn). Then we have∮

C1

dz1

2iπ
· · ·

∮
Cm

dzm

2iπ

∏
i< j

zi − z j

zi − t z j

Fm(z1, . . . , zm)

z1 . . . zm
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=

m∑
k=0

(
m
k

)
t

t k(k−1)/2−m(m−1)/2
∮

C

dz1

2iπ
· · ·

∮
C

dzk

2iπ

×

∏
i< j

zi − z j

zi − t z j

Fk(z1, . . . , zk)

z1 . . . zk
,

where C is an arbitrary contour not encircling 0, and the contours C1, . . . ,Cm

are defined as follows: Let C0 be a small positively oriented circle around 0, and
let r > t−1 be such that tC does not intersect rmC0 and rmC0 does not encircle
poles of Fm . Then C j is defined as the union of r j C0 and C.

Proof. The statement is the same as [BCS14, Lemma 4.21] except that the
function F was of the form Fk(z1, . . . , zk) =

∏k
i=1 f (zi). The proof extends

to our case without any modification.

Hence, extracting the coefficient of um in (97) and using Lemma 5.4, we obtain

Et
[(

tn−`(λ)
)m]
= t

m(m−1)
2

∮
C1

dz1

2iπ
· · ·

∮
Cm

dzm

2iπ

∏
i< j

zi − z j

zi − t z j

Fm(z1, . . . , zm)

z1 . . . zm
,

which concludes the proof of Proposition 5.3.

PROPOSITION 5.5. For any k > 1,

Et
(a1,...,an),ρ

[(
tn−`(λ)

)k
]

= (t; t)k
∑
µ`k

1
m1!m2! . . .

∮
C

dw1

2iπ
· · ·

∮
C

dw`(µ)
2iπ

× det
(

1
w j − wi tµi

) ∏
16a<b6`(µ)

(tµawawb)∞(tµbwawb)∞

(wawb)∞(tµa+µbwawb)∞

×

`(µ)∏
j=1

(tµ jw2
j )∞

(w2
j )∞

(tw2
i ; t

2)∞

(w2
i t2µi+1; t2)∞

G t(w j)

G t(tw j)
,

where the positively oriented contour C contains 0, ai ’s and its image by
multiplication by t, and is contained in the open disk of radius 1 around zero.

Proof. For

(z1, . . . , zk) = (w1, tw1, . . . , tλ1−1w1, w2, . . . , tλ2−1w2, . . . , tλm−1wm),
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an adaptation of Lemma 4.6 shows that

∏
16a<b6k

1− t zazb

1− zazb

k∏
i=1

1− t z2
i

1− z2
i

=

∏
16a<b6m

(tλawawb; t)∞(tλbwawb; t)∞
(wawb; t)∞(tλa+λbwawb; t)∞

m∏
j=1

(tλ jw2
j ; t)∞

(w2
j ; t)∞

(tw2
i ; t

2)∞

(w2
i t2λi+1; t2)∞

, (98)

and the left-hand side is symmetric in zi . Then the formulas follow by expanding
the nested contours to C0,a , using (a slight variant of) Proposition 4.5 to collect
the residues—see also [BCS14, Proposition 5.2]).

REMARK 5.6. Unlike the q-Whittaker case, it is not clear how to take a
generating series of the above moment formulas. This is because the term

∏
16a<b6k

(tλawawb)∞(tλbwawb)∞

(wawb)∞(tλa+λbwawb)∞

is typically of size eck2 as k grows. In the q-Whittaker case, a similar factor is
present as well (cf. (85)), but one could argue that only finitely many integral
terms are nonzero when taking the moment generating series. This would not be
the case here.

5.2. Half-space stochastic six-vertex model. Recall the definition of the
half-space stochastic six-vertex model (Definition 1.2). The height function in
the half-space stochastic six-vertex model is related to length of partitions in the
half-space Hall–Littlewood processes in the following way.

THEOREM 5.7 [BBCW18, Corollary 4.5]. Let n > 1 and ωn ∈ Ω be the path in
Ω , which travels from (+∞, 0) to (n, 0), goes vertically to (n, n) and diagonally
to (0, 0) (see Figure 13). Let ρn be a sequence of specializations such that edges
(n, i − 1) → (n, i) are labeled by the single variable specialization into ai

and the diagonal specialization is empty. Consider a sequence of partitions λ
distributed according to the half-space Hall–Littlewood process Pt

ωn ,ρn
. Then we

have (
`(λv)

)
v∈ωn

(d)
=
(
h(v)

)
v∈ω̃n

,

where ω̃n the path in Z2 obtained by reflecting ω with respect to the quadrant
diagonal.
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Figure 13. The path ωn for n = 4.

In particular, for any 1 6 x 6 y, h(x, y) has the same distribution as `(λ),
where λ is distributed according to the half-space Hall–Littlewood measure
Pt
(a1,...,ax ),(ax+1,...,ay )

.

Note that we need to perform a reflection of the path ωn simply because,
in order to be consistent with earlier literature, we have defined our half-
space stochastic six-vertex model in the upper half-quadrant while half-space
Macdonald processes are indexed by paths in the lower half-quadrant. Moreover,
we expect the result should hold for any admissible path in Ω—see [BBCW18,
Remark 4.6].

COROLLARY 5.8. For integers 1 6 x 6 y and k > 1,

Et
[
t−kh(x,y)

]
= t

k(k−1)
2

∮
C1

dz1

2iπ
· · ·

∮
Ck

dzk

2iπ

∏
16i< j6k

zi − z j

zi − t z j

1− t zi z j

1− zi z j

×

k∏
j=1

(
1
z j

1− t z2
j

1− z2
j

y∏
i=1

1− ai z j

1− tai z j

x∏
i=1

z j − ai/t
z j − ai

)
, (99)

where the positively oriented contours C1, . . . ,Cm all enclose 0 and ai ’s, and are
contained in the open disk of radius 1 around zero, and the contours are nested
in such a way that for i < j the contour Ci does not include any part of tC j .

Proof. This is a direct consequence of Proposition 5.3 and Theorem 5.7.
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Figure 14. Jump rates in the half-line ASEP.

5.3. Scaling limit to half-line ASEP.

DEFINITION 5.9. The half-line ASEP is an interacting particle system on Z>0,
where each site is occupied by at most one particle. It is a continuous-time
Markov process on the space of particle configurations, such that each particle
jumps by one to the right at rate p and to the left at rate q, with q < p, provided
the target site is empty. At the origin, a reservoir of particles injects a particle
at site 1 (whenever it is empty) at rate α and removes a particle from site 1
(whenever it is occupied) at rate γ . We will further assume that initially all sites
are empty and the parameters are chosen as p= 1,q= t , α = 1/2, γ = t/2—see
Figure 14 for an illustration. We refer the reader to [BBCW18] for the reasons
behind this specific choice of parameters. We define the current at site x by

Nx(τ ) =

∞∑
i=x

ηi(τ ),

where ηi(τ ) ∈ {0, 1} is the occupation variable at site i and time τ .

The stochastic six-vertex model in a half-quadrant is a discretization of half-
line ASEP in the following sense. Consider the six-vertex model in a half-
quadrant where ax ≡ a, and scale a as

a = 1−
(1− t)ε

2
, ε −→

ε>0
0

so that to first order in ε,

P
( )

≈ ε, P
( )

≈ 1− ε, P
( )

≈ tε, P
( )

≈ 1− tε.
(100)

Moreover, we rescale n as n = τε−1 with finite τ > 0.

PROPOSITION 5.10 [BBCW18, Proposition 5.2]. Under the scalings above and
the boundary and initial conditions as in Definition 5.9, for any x ∈ {1, 2, . . . },

n − x − h(n − x, n) HH⇒
ε→0

Nx(τ ),

where h is defined in Definition 1.2 and Nx(τ ) is defined in Definition 5.9.
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It would be interesting to take a limit of the moment formula from Corollary
5.8 in order to deduce formulas for the current in half-line ASEP. However, the
choice of contours above—including ai but excluding 1—does not allow us to
take this limit directly. One would need to expand the contours in (99) to become
a circle with radius larger than 1. During this deformation of contours, one would
encounter the same poles for zi = t z j when i < j as in the proof of Proposition
5.5, but also additional poles when zi = ±1 and when zi = 1/z j . It is not clear
how to rearrange the contribution of all the corresponding residues and we do
not know an analogue of Proposition 4.5 in that setting. It is worth mentioning
that in the limit when t goes to 1, an analogue of Proposition 4.5 was proposed
in [BBC16] as Conjecture 5.2 with Pfaffians replacing the determinants.

In the attempt to prove [BBC16, Conjecture 5.2] proposed in [BBC16, Section
7.3], an essential step is to make use of symmetrization identities over the
hyperoctahedral group BCk instead of the symmetric group Sk as in the proof
of Proposition 4.5 (see [BBC16, Section 7] for details). The following identity
was proved in [Ven15, Eq. (5)],

∑
σ∈BCk

σ

 ∏
16i< j6k

1− t z j

zi

1− z j

zi

1− t 1
zi z j

1− 1
zi z j

k∏
j=1

(
1− a 1

z j

)(
1− b 1

z j

)
1− 1

z2
j


=

k∏
j=1

(1− t j)(1− abt j−1)

1− t
, (101)

where σ is a signed permutation acting by permutation and inversion of variables
zi . Its degeneration as t goes to 1 was an important tool to arrive at [BBC16,
Conjecture 5.2].

Taking a = −b =
√

t , and inverting variables in (101), we obtain

∑
σ∈BCk

σ

 ∏
16i< j6k

z j − t zi

z j − zi

1− t zi z j

1− zi z j

k∏
j=1

1− t z2
j

1− z2
j

 = (t2, t2)k

(1− t)k
.

We expect that this BC-type symmetrization identity should play a role when
moving all contours in (96) to a circle with radius larger than 1. This further
suggests that the appropriate moment generating series to consider is

+∞∑
k=0

ukEt
[t k(n−`(λ))

]

(t2, t2)k
= Et

[
1

(utn−`(λ); t2)∞

]
.

It was confirmed in [BBCW18, Proposition 3.3] that this quantity indeed
admits a Fredholm Pfaffian representation at least in the special case where the
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specializations of the half-space Hall–Littlewood measure are ρ = (a1, . . . , ax)

and ρ↙ = ∅. Allowing a more general ρ↙ would allow us to study h(x, y) for
y > x , but we cannot presently generalize the results of [BBCW18].

6. Half-space Whittaker processes

6.1. Whittaker functions. Define the class-one gln(R)-Whittaker functions
via their integral representations [Giv97]

ψλ(x) =
∫
R

n(n−1)
2

n−1∏
k=1

k∏
i=1

dxk,i exp (Fλ(X)) ,

where λ = (λ1, . . . , λn) ∈ Cn , x = (x1, . . . , xn), X = (xk,i : 1 6 i 6 k 6 n),
xn,i = xi and

Fλ(X) = i
n∑

k=1

λk

(
k∑

i=1

xk,i −

k−1∑
i=1

xk−1,i

)
−

n−1∑
k=1

k∑
i=1

(
exk,i−xk+1,i + exk+1,i+1−xk,i

)
.

Note that unlike previous sections, λ does not denote a partition but a vector
in Cn . Furthermore, we will see that Whittaker functions play a role similar to
q-Whittaker and Macdonald functions in previous sections, but in order to be
consistent with notations commonly used in the literature, the role of the index
λ and the variable x are switched (for instance, in Proposition 6.5 the index λ in
ψλ(x) corresponds to the variable x in Pλ(x) and vice versa). Whittaker functions
satisfy the following two integral identities.

PROPOSITION 6.1 ([Sta01], [OSZ14, Corollaries 3.6 and 3.7]). Suppose u > 0
and λ, ν ∈ Cn with Re[λi + ν j ] > 0 for all 1 6 i, j 6 n. Then∫

Rn
dx e−ue−xn

ψiλ(x)ψiν(x) = u−
∑n

j=1(λ j+ν j )
∏

16i, j6n

Γ (λi + ν j) (102)

and ∫
Rn

dx e−uex1
ψ−iλ(x)ψ−iν(x) = u−

∑n
j=1(λ j+ν j )

∏
16i, j6n

Γ (λi + ν j). (103)

Define the Sklyanin measure mn(ξ) as

mn(ξ) =
1

(2π)nn!

n∏
i, j=1
i 6= j

1
Γ (iξi − iξ j)

. (104)
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We have the following orthogonality relations, to be understood in a weak sense
(see [GLO08, Theorem 2.1], [STS93]). For all λ,µ, x, y ∈ Rn ,∫

Rn
ψλ(x)ψµ(x) dx =

1
n!mn(λ)

∑
σ∈Sn

δ
(
λ− σ(µ)

)
(105)

and ∫
Rn
ψλ(x)ψλ(y)mn(λ) dλ = δ(x − y). (106)

Then, Proposition 6.1 yields the following. Let H denote the complex upper half-
plane H = {z ∈ C : Im[z] > 0}.

PROPOSITION 6.2. For u > 0 and w ∈ Cn , wi ∈ H, 1 6 i 6 n,

e−ue−xn
ψw(x) =

∫
Rn

dξ mn(ξ)ui
∑n

k=1(wi+ξi )
∏

16i, j6n

Γ (−iξi − iw j)ψ−ξ (x) (107)

and

e−uex1
ψ−w(x) =

∫
Rn

dξ mn(ξ)ui
∑n

k=1(wi+ξi )
∏

16i, j6n

Γ (−iξi − iw j)ψξ (x). (108)

Define an operator Bu
n acting on functions Hn

→ C by

Bu
n f (w) =

∫
Rn

dξ mn(ξ)ui
∑n

k=1(wi+ξi )
∏

16i, j6n

Γ (−iξi − iw j) f (−ξ). (109)

Define as well a very similar operator B
u
n acting on functions (−H)n → C by

B
u
n f (w) =

∫
Rn

dξ mn(ξ)ui
∑n

k=1(−wi+ξi )
∏

16i, j6n

Γ (−iξi + iw j) f (ξ), (110)

that is, B
u
n is a composition of Bu

n and w 7→ −w. We may rewrite Equations
(107) and (108) as e−ue−xn

ψw(x) = Buψw(x) and e−uex1ψw(x) = B
u
ψw(x)

(dropping the index n). The operator B
u

is referred to as dual Baxter operator in
[GLO08]. It was shown in [BCR15] that the eigenrelation (107) for Bu arises as
a t = 0, q → 1 limit of the eigenrelation (50) for Noumi’s q-integral operator
Nz . We expect that eigenrelation (108) for B

u
similarly arises as the limit of the

eigenrelation for Mz from Proposition 3.27.
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Figure 15. The path ω considered in Section 6.2.

6.2. Half-space Whittaker process with Plancherel specialization. In this
section, we are interested in the limit of the half-space q-Whittaker process when
q goes to 1. For applications, it would be natural to focus on the case when
specializations are all pure alpha, that is the setting of Section 4.2. However,
we know from the study of the full-space Whittaker process that some technical
difficulties arise with this choice of specializations (see [BC14, Section 4.2]).
More precisely, some tail estimates about integrals involving Whittaker functions
are necessary to justify the convergence of the q-Whittaker process, and these
seem difficult to establish. However, all these estimates are much easier to prove
when one includes a Plancherel specialization (see [BC14, Section 4.1]). Thus,
following an idea already present in [BCFV15], we will consider a half-space
q-Whittaker process, where we add to the specialization (a◦, an+1, . . . , at) of Eλ
some Plancherel component γ .

Consider a half-space q-Whittaker process indexed by a path ω as in Figure
15, with the following choice of specializations. Fix 1 6 n 6 t . For all i 6 t
and any j , assume that edges (i − 1, j)← (i, j) are labeled by single variable
specialization ai , for any i, j , edges (i, j − 1) → (i, j) are labeled by single
variable specialization a j , the diagonal edge is labeled by specialization a◦ and—
unlike in Section 4.2—edges (t, j) ← (t + 1, j) are labeled by the Plancherel
specialization γ .

Let us denote for 1 6 m 6 n, λ(m) := λ(t+1,m). The probability of the sequence
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λ(1) ≺ · · · ≺ λ(n) is

Pq
ω,ρ(λ

(1), . . . , λ(n)) =
Eλ(n)

(
(a◦, an+1, . . . , at), γ

)
Pλ(n)/λ(n−1)(an) . . . Pλ(1)(a1)

Π
(
a1, . . . , an; (a◦, an+1, . . . , at), γ

)
Φ(a1, . . . , an)

.

In particular, λ(n) is distributed according to the half-space q-Whittaker measure,

Pq
(a1,...,an),((a◦,an+1,...,at ),γ )

(λ(n))

=
Pλ(n)(a1, . . . , an)Eλ(n)

(
(a◦, an+1, . . . , at), γ

)
Π
(
a1, . . . , an; (a◦, an+1, . . . , at), γ

)
Φ(a1, . . . , aN )

.

To go from q-Whittaker to Whittaker processes, we use the following scalings:

q = e−ε, a j = e−εα j , a◦ = e−εα◦, γ = τε−2 (111)

λ
(m)
j = τε

−2
+ (t + m + 1− 2 j)ε−1 log ε−1

+ ε−1T (m)
j , ∀ 1 6 m 6 n. (112)

REMARK 6.3. Based on the analogy between half-space Macdonald processes
and usual Macdonald processes, our random variable T (m)

j corresponds to the
random variable denoted by Tm, j in the context of the α-Whittaker process
[BC14, Section 4.2].

Let us recall some convergence results from [BC14].

LEMMA 6.4 [BC14, Proposition 4.1.9]. For any M ∈ R,

log
[
(q; q)ε−1 log ε−1+ε−1 y

]
= A(ε)+ e−y

+ o(1), (113)

where A(ε) = −ε−1 π2

6 −
1
2 log ε

2π , and for k > 1,

log
[
(q; q)kε−1 log ε−1+ε−1 y

]
= A(ε)+ o(1), (114)

where the error o(1) in (113) and (114) goes to 0 uniformly for y > M as ε→ 0.
Moreover, for any y ∈ R and k > 1, we have the inequality

log(q; q)kε−1 log(ε−1)+ε−1 y > A(ε)+ ε−1e−y+k log(ε)
− c(ε), (115)

where c(ε)→ 0 uniformly in y.

We recall that (with t = 0)

Π(a1, . . . , an; b1, . . . , bk) =

n∏
i=1

k∏
j=1

1
(ai b j ; q)∞

, Φ(a1, . . . , an)
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=

∏
16i< j6n

1
(ai a j ; q)∞

.

Noting that by the convergence of the q-Gamma function to the Gamma function
(see (14)),

(e−εx̃
; e−ε)∞ = ε1−x̃ 1

Γ (x̃)
eA(ε)+o(1)

so that (see [BCFV15, Lemma 4.9]) with the scalings ai = qαi , bi = qβi ,

Π
(
a1, . . . , an; (b1, . . . , bk), γ

)
=

(
eτ tε−2

e−ε
−1τ

∑n
j=1 α j

k∏
i=1

n∏
j=1

1
eA(ε)ε1−βi−α j

)

× eτ
∑n

j=1 α
2
j /2

k∏
i=1

n∏
j=1

Γ (βi + α j)eo(1), (116)

where the o(1) error goes to zero as ε → 0. Similarly, we have

Φ(a1, . . . , an) =
∏

16i< j6n

εαi+α j−1e−A(ε)Γ (αi + α j)eo(1)

= ε(n−1)
∑
αi ε−

n(n−1)
2 e−

n(n−1)
2 A(ε)

∏
16i< j6n

Γ (αi + α j)eo(1). (117)

PROPOSITION 6.5 [BC14, Theorem 4.1.7]. Fix 1 6 n 6 t , the scalings q = e−ε,
λ j = τε

−2
+ (t + n + 1− 2 j)ε−1 log ε−1

+ ε−1xk and z j = eiεν j for 1 6 j 6 n,
and let

ψ ε
ν (x) = ε

n(n−1)
2 εt

∑n
k=1 iνk eτε

−1 ∑n
k=1 iνk e

n(n−1)
2 A(ε)Pλ(z).

Then, for all ν ∈ Cn , as ε → 0, ψ ε
ν (x) converges to ψν(x) uniformly for x in a

compact set.

Proof. The scalings above are slightly different from the setting of [BC14,
Theorem 4.1.7], but the result is obtained using the same arguments as in Step 2
of the proof of [BC14, Lemma 4.1.25].

LEMMA 6.6 [BCFV15, Lemma 4.8]. Fix any compact subset D ⊂ Rn(n+1)/2.
Then, under scalings (111) and (112),

Pλ(n)/λ(n−1)(an)Pλ(n−1)/λ(n−2)(an−1) . . . Pλ(1)(a1)

= e−
n(n−1)

2 A(ε)εt
∑n

k=1 αk e−ε
−1τ

∑n
j=1 α j eFiα1,...,iαn (T )eo(1),

where the error o(1) goes to zero as ε to 0 uniformly with respect to
(T m

j )16 j6m6n ∈ D.

https://doi.org/10.1017/fmp.2020.3 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.3


G. Barraquand, A. Borodin and I. Corwin 94

Proposition 6.5 and Lemma 6.6 correct a mistake in the exponent in front of A
present in [BC14], as pointed out in [BCR15].

We define now the Whittaker analogue of the symmetric function Eλ.

DEFINITION 6.7. We define for τ > 0, α ∈ Rk and x ∈ Rn ,

T τ
α (x) =

∫
(R+ia)n

ψ−ν(x)e−τ
∑n

j=1 ν
2
j /2

k∏
i=1

n∏
j=1

Γ (αi − iν j)

×

∏
16i< j6n

Γ (−i(νi + ν j))mn(ν) dν, (118)

where a > 0 and αi + a > 0 for all 1 6 i 6 k.

PROPOSITION 6.8. Let τ > 0, n, k ∈ Z>0, and fix a compact subset K ⊂ Rn .
Then, under the scalings q = e−ε, λ j = τε

−2
+(2n+k−2 j)ε−1 log(ε−1)+ε−1x j

for 1 6 j 6 n, ai = qαi for 1 6 i 6 k and γ = τε−2,

Eλ
(
(a1, . . . , ak), γ

)
= εneτnε−2

(
k∏

i=1

1
eA(ε)ε1−αi

)n

T τ
α (x)e

o(1),

where Eλ is specialized into the union of the pure alpha specialization (a1, . . . ,

ak) and a Plancherel specialization with parameter γ , and the o(1) error goes
to zero uniformly as ε→ 0 for x ∈ K.

Proof. We adapt the proof of [BCFV15, Lemma 4.10]. Recall that using the
torus scalar product 〈〈·, ·〉〉 from Section 2.2.5, we may write for ε > 0 and a > 0,

Eλ(x) =
1

〈〈Pλ, Pλ〉〉

∫
(e−εaT)n

Pλ(z−1)Π(z, x)Φ(z)mq,t
n (z)

n∏
i=1

dzi

zi
.

Under the scalings we consider, we have 〈〈Pλ, Pλ〉〉 = 〈Pλ, Pλ〉′ = eo(1) as in
[BC14, Lemma 4.1.25]. In the following, we will use the change of variables
z j = exp(iεν j). Fix a compact subset V ⊂ RN . Then,

Π
(
z1, . . . , zn; (a1, . . . , ak), γ

)
= EΠ

k∏
i=1

n∏
j=1

Γ (αi − iν j)e−τ
∑n

j=1 ν
2
j /2eo(1),

where EΠ :=
∏k

i=1

∏n
j=1 e−A(ε)ε−1+αi−iν j ,

Φ(z1, . . . , zn) = EΦ

∏
16i< j6n

Γ (−iνi − iν j)eo(1),
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where EΦ := ε
−i(n−1)

∑n
j=1 ν j ε−

n(n−1)
2 e−

n(n−1)
2 A(ε), and from Proposition 6.5,

Pλ(1/z1, . . . , 1/zn) = EPΨ−ν1,...,−νn (x1, . . . , xn)eo(1),

where EP = ε
−

n(n−1)
2 εi(k+n−1)

∑n
j=1 ν j e−

n(n−1)
2 A(ε). In all the above asymptotics, the

o(1) errors go to zero uniformly for x ∈ K and ν ∈ V . Further, we have

mq,0
n (z)

n∏
i=1

dzi

zi
= Emmn(ν)

n∏
i=1

dνi eo(1), Em = ε
n2

en(n−1)A(ε),

where the error goes to zero uniformly for ν ∈ V . The above asymptotics
altogether suggest that uniformly for x ∈ K,

〈〈Π(z; a, γ ), Pλ(z)〉〉 = EΠ EΦEP EmT τ
α (x)e

o(1), (119)

since integrands on both sides of (119) match when ε → 0. However, the
convergences above are valid for compact subsets of the integrand variable ν. In
order to justify that the integrand converges, one needs some tail decay estimate
as |ν| → ∞, uniform with respect to x ∈ K. For instance, it would be sufficient
to prove that for

VM = {z ∈ Tn
: zk = e−εaeiενk and |νk | > M},

then

lim
M→∞

lim
ε→0

∫
z∈VM

Π(z; a, γ )Φ(z)Pλ(z−1)mq
n(z)

EΠ EΦEP Em

n∏
i=1

dzi

zi
= 0 (120)

uniformly for x ∈ K. A similar estimate had already been proved in Step 4 of
[BC14, Lemma 4.1.25]. One can estimate each of the quantities∣∣∣∣Π(z; a, τ )EΠ

∣∣∣∣, ∣∣∣∣Φ(z)EΦ

∣∣∣∣, ∣∣∣∣ Pλ(z−1)

EP

∣∣∣∣ and
∣∣∣∣mq

n(z)
Em

∣∣∣∣.
While

∣∣∣∣Π(z;a,τ )EΠ

∣∣∣∣ has a Gaussian decay in ν, all other quantities have at most

exponential growth (this is the reason why it is essential for us to keep a positive
Plancherel specialization). Therefore, the integrand in (120) is bounded by a
constant times e−c

∑n
i=1 ν

2
i , uniformly in ε for T ∈ D. Thus, (120) is established.

Finally, it is easy to check that EΠ EΦEP Em matches the prefactor of T τ
α (x) in

the statement of Proposition 6.8.
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DEFINITION 6.9. For α◦ and α1, . . . , αt ∈ R>0, τ > 0 and 1 6 n 6 t , we
define the (ascending) half-space Whittaker process as a probability measure on
T := (T (m)

j )16 j6m6n ∈ R n(n+1)
2 with density function given by

P(dT )

=
exp

(
Fiα1,...,iαn (T )

)
T τ
α◦,αn+1,...,αt

(T (n)
1 , . . . , T (n)

n )

eτ
∑n

i=1 α
2
i /2

∏n
i=1 Γ (α◦ + αi)

∏t
j=n+1 Γ (α j + αi)

∏
16i< j6n Γ (α j + αi)

dT .

Integrating the half-space Whittaker process over variables T (m)
j for m < n

defines the half-space Whittaker measure P(α1,...,αn);(α◦,αn+1,...,αt ),τ on
(
T j
)

16 j6n ∈

Rn with density

P(α1,...,αn);(α◦,αn+1,...,αt ),τ (dT )

=
ψiα1,...,iαn (T1, . . . , Tn) T τ

α◦,αn+1,...,αt
(T1, . . . , Tn)

eτ
∑n

i=1 α
2
i /2
∏n

i=1 Γ (α◦ + αi)
∏t

j=n+1 Γ (α j + αi)
∏

16i< j6n Γ (α j + αi)
dT .

The fact that these densities above define bona fide probability measures is
not obvious. For α◦ ∈ R and α1, . . . , αt ∈ R>0 with α◦ + αi > 0, it follows from
the limits of Propositions 6.5 and 6.8 that the density is nonnegative. The next
proposition shows that the density integrates to 1.

PROPOSITION 6.10. Let τ > 0, n 6 t and α1, . . . , αt > 0 such that αi + α◦ > 0
for all 1 6 i 6 n. Then,∫

Rn
dx ψiα1,...,iαn (x)T τ

α◦,αn+1,...,αt
(x)

= eτ
∑n

i=1 α
2
i /2

n∏
i=1

Γ (α◦ + αi)

t∏
j=n+1

Γ (α j + αi)
∏

16i< j6n

Γ (αi + α j). (121)

This is formally the limit of generalized Littlewood summation identity (28)
via Propositions 6.5 and 6.8, though this does not constitute a proof because
these limits hold only for x in a compact set. However, we will see that the result
can be deduced from the orthogonality of Whittaker functions along with certain
bounds on the tails of the half-space Whittaker measure. We will first state these
bounds and then prove Proposition 6.10.

We start with a general bound on the growth of Whittaker functions.

LEMMA 6.11. For any fixed y > 0, there exists a constant C > 0 such that

|ψν(x)| 6 Cey
∑n

i=1 |xi | for all ν ∈ Cn such that |Im[ν j ]| 6 y, for all 1 6 j 6 n.
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In particular, if α ∈ Cn is such that c1 < Re[αi ] < c2 for all 1 6 i 6 n,

|ψiα(x)| 6 Ce−c2
∑n

i=1 xi+(c2−c1)
∑n

i=1 |xi |.

Proof. As [BC14, Lemma 4.1.19], the first statement follows by recurrence on
n using the recursive structure in Givental’s integral representation (see [BC14,
(4.2), (4.3)]). The second part of the statement comes from the shift property of
Whittaker functions Ψν(x) = Ψν1−ic,...,νn−ic(x)e−c

∑n
i=1 xi . Using the first part, we

may write

|ψiα(x)| 6 |ψiα1−ic2,...,iαn−ic2(x)e
−c2

∑n
i=1 xi | 6 Ce−c2

∑n
i=1 xi+(c2−c1)

∑n
i=1 |xi |.

REMARK 6.12. In the Weyl chamber Wn := {x ∈ Rn
: x1 > x2 > · · · > xn},

one can refine the estimate from Lemma 6.11 (see for example [BO11, Corollary
2.3]). For any n > 1, there exists a constant C > 0 such that for x ∈Wn we have

|ψν(x)e−i
∑n

i=1 νi xi | 6 C.

When the index of Whittaker functions belongs to Rn , Whittaker functions
have doubly exponential decay away from the Weyl chamber.

PROPOSITION 6.13 [BC14, Proposition 4.1.3]. For x ∈ Rn , define σ(x) = {i :
xi − xi+1 6 0}. For each σ ⊂ {1, . . . , n}, there exists a polynomial Aσ such that
for all ν ∈ Rn and for all x ∈ Rn with σ(x) = σ , we have

|ψν(x)| 6 Aσ (x)
∏
i∈σ

exp
(
−e−

xi−xi+1
2

)
.

This implies a similar bound for T τ (x).

PROPOSITION 6.14. Fix n > 1, k > 0, τ > 0 and α1, . . . , αk ∈ R. Let a > 0 be
such that a + αi > 0 for all 1 6 i 6 k. Then, there exists a polynomial A such
that for all x ∈ Rn

∣∣T τ
α1,...,αk

(x)
∣∣ 6 A(x)ea

∑n
i=1 xi

n−1∏
i=1

exp
(
−e−

xi−xi+1
2

)
.

Proof. We may use the change of variables ν = ν̃ + ia in (118) so that the
integration is over Rn and use Proposition 6.13 to bound the Whittaker function
inside the integral.
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PROPOSITION 6.15. Fix n > 1, k > 0, τ > 0 and α1, . . . , αk ∈ R. Let R > 0 be
such that R+ αi > 0 for all 1 6 i 6 k. Then, there exists a constant C > 0 such
that for all x ∈ Rn ,

|T τ
α1,...,αk

(x)| 6 CeR
∑n

i=1 xi .

Moreover, the function x 7→ e−R
∑n

i=1 xiT τ
α1,...,αk

(x) is in L2(Rn).

Proof. Recall that in the definition of T τ
α1,...,αk

(x) in (118), the parameter a > 0
can be taken arbitrarily as long as a + αi > 0. Using the shift property
of Whittaker functions ψν1+ia,...,νn+ia = e−a

∑n
i=1 xiψν1,...,νn (x) and the change of

variables νi = ν̃i + ia for all 1 6 i 6 n, we obtain

|T τ
α1,...,αk

(x)| 6 Cea
∑n

i=1 xi

∫
Rn
ψ−ν̃(x)e−τ

∑n
j=1 ν̃

2
j /2

×

∣∣∣∣∣∣
k∏

i=1

n∏
j=1

Γ (αi − iν̃ j + a)
∏

16i< j6n

Γ (−i(ν̃i + ν̃ j)+ 2a)mn(ν)

∣∣∣∣∣∣ d ν̃. (122)

Using Lemma 6.11, the integral can be bounded by a constant (depending on
a but not x), which yields the first part of the statement of Proposition 6.15 by
choosing a = R. The fact that the integral above, seen as a function of x , is
bounded in L2(Rn) follows from the orthogonality of Whittaker functions (105)
and the Gaussian decay of the integrand.

The estimate from Proposition 6.15 will be useful in Section 6.7, but it is not
sufficiently sharp for the proof of Proposition 6.10. The next proposition is a
refinement.

PROPOSITION 6.16. Fix n > 2, k > 0, τ > 0, α1, . . . , αk ∈ R. Let a > 0 be
such that a+ αi > 0 for all 1 6 i 6 k. For any R > a, there exists a polynomial
C(x) such that for x ∈ Rn ,

|T τ
α1,...,αk

(x)| 6 C(x)
∏

i :xi<0

eRxi
∏

i :xi>0

eaxi .

Proof. In the proof of Proposition 6.15, we have seen that the ability to freely
shift the integration contours can be translated into a decay bound. In order to
obtain a sharper bound, we need to shift each contour separately by a distance
depending on the sign of xi . Since we may not use the shift property of Whittaker
functions anymore, it would be very convenient to decompose the Whittaker
function ψν(x) as linear combinations of

∏
i eiνi xi . Such a decomposition exists,

in terms of the fundamental Whittaker functions introduced in [Has82]. We will
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be using notations from [O’C14, Section 8]. Using [O’C14, Proposition 3] (see
also [O’C14, Corollary 3]), we may write

T τ
α (x) =

∫
(R+ia)n

m−iν(x)e−τ
∑n

j=1 ν
2
j /2 Z(α, ν)

∏
i< j

(iνi − iν j) dν, (123)

where we have used the shorthand notation

Z(α, ν) =
k∏

i=1

n∏
j=1

Γ (αi − iν j)
∏

16i< j6n

Γ (−i(νi + ν j)),

and m−iν(x) are fundamental Whittaker functions defined as follows. For n >
2 and m ∈ (Z>0)

n−1, we define analytic coefficients an,m(ν) by the recurrence
[IS07, Theorem 15]

a2,m(ν) =
1

m!Γ (ν1 − ν2 + m + 1)
,

and for n > 2,

an,m(ν) =
∑

k∈(Z>0)
n−2

an−1,k(µ)

n−1∏
i=1

1
(m i − ki)!

1
Γ (νi − νn + m i − ki−1)

, (124)

where the sum runs over k ∈ (Z>0)
n−2 such that ki 6 m i , we adopt the convention

that k0 = kn−1 = 0, and µ = (ν1+ νn/(n− 1), . . . , νn−1+ νn/(n− 1), νn). Then,
fundamental Whittaker functions are defined by the series

mν(x) =
∑

m∈(Z>0)
n−1

an,m(ν) exp

(
−

n−1∑
i=1

m i(xi − xi+1)+

n∑
i=1

νi xi

)
,

which is absolutely convergent [Has82, Lemma 4.6]. We will need the following
estimate.

LEMMA 6.17. Fix a, R > 0 and n > 2. Let us define

AN = max
m∈(Z>0)

n−1∑n−1
i=1 mi=N

{∣∣an,m(iν)
∣∣}.

There exist positive constants C, c, c′ such that for ν ∈ Cn where for all i , νi ∈

(R+ ia)n or νi ∈ (R+ i(a + R))n , we have

AN 6 cec′
∑n

i=1 |Re[νi ]|
C N

(N !)2
. (125)
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Proof. We adapt the proof of [Has82, Lemma 4.5], which concerns the case
where ν is restricted to a compact set. The coefficients an,m(ν) satisfy another
recurrence [IS07, Theorem 15]:(

n−1∑
i=1

m2
i −

n−2∑
i=1

m i m i+1 +

n−1∑
i=1

(νi − νi+1)m i

)
an,m(ν) =

n−1∑
i=1

an,m−ei (ν), (126)

where m− ei = (m1, . . . ,m i − 1, . . . ,mn−1), with an,m = 0 if m 6∈ (Z>0)
n−1 and

an,0(ν) =
∏
i< j

1
Γ (νi − ν j + 1)

.

We have

n−1∑
i=1

m2
i−

n−2∑
i=1

m i m i+1+

n−1∑
i=1

(iνi−iνi+1)m i =

n−1∑
i=0

1
2
(m i−m i+1)

2
+

n−1∑
i=1

(iνi−iνi+1)m i ,

with the convention that m0 = mn = 0. Note that if N = m1 + · · · + mn−1, we
may write N =

∑n−1
i=0 (m i − m i+1)(i + 1) so that using the Cauchy–Schwartz

inequality,

N 2 6
n−1∑
i=0

(m i − m i+1)
2

n∑
i=1

i2 6 n3
n−1∑
i=0

(m i − m i+1)
2.

Then, using |z| > |Re[z]|, we can write∣∣∣∣∣
n−1∑
i=1

m2
i −

n−2∑
i=1

m i m i+1 +

n−1∑
i=1

(iνi − iνi+1)m i

∣∣∣∣∣ > 1
2n3

N 2
− N R,

where N = m1 + · · · + mn−1. For N > 4Rn3, we have N 2
− N R > N 2/(4n3).

In (126), we may bound each term in the sum on the right-hand side by AN−1 so
that for N > 4Rn3,

AN 6
4n4

N 2
AN−1.

Thus, if (125) is true for N 6 4Rn3, then it is true for all N , by choosing
C in (125) larger than 4n4. Since R and n are fixed, we may bound AN for all
N 6 4Rn by cec′

∑n
i=1 Re[νi ] for some constants c, c′. Indeed, using the recurrence

formula (124), coefficients an,m are finite sums of finite products of Gamma
factors, which can be bounded by cec′

∑n
i=1 |Re[νi ]|.
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Going back to the proof of Proposition 6.15, we can rewrite (123) as

T τ
α (x) =

∑
m∈(Z>0)

n−1

∫
(R+ia)n

an,m(iν) exp

(
−

n−1∑
i=1

m i(xi − xi+1)−

n∑
i=1

iνi xi)

)

× e−τ
∑n

j=1 ν
2
j /2 Z(α, ν)

∏
i< j

(iνi − iν j) dν. (127)

For all i , if xi < 0, we shift the contour by i(R − a) (that is, from R + ia to
R+ iR) and subsequently use the change of variables νi = ν̃i+ iR so that ν̃i ∈ R.
If xi > 0, we use the change of variables νi = ν̃i + ia so that ν̃i ∈ R. The
factor exp

(
−
∑n

i=1 iν̃i xi
)

can be simply bounded by 1. We obtain that T τ
α (x) is

bounded by the product of three terms:

•
∏

i :xi<0 eRxi
∏

i :xi>0 eaxi ;

• an absolutely convergent integral over ν̃ ∈ R, which does not depend on x ;
and

• the series

∑
m∈(Z>0)

n−1

Cm1+···+mn−1 exp
(
−
∑n−1

i=1 m i(xi − xi+1)
)

((m1 + . . .mn−1)!)2
,

where C is the constant in Lemma 6.17.

Using that (m1+ · · ·+mn−1)! > m1! . . .mn−1! and the inequality
∑
∞

k=0
xk

(k!)2 6

exp(2
√

x) for positive x , we may bound the series as

∑
m∈(Z>0)

n−1

Cm1+···+mn−1 exp
(
−
∑n−1

i=1 m i(xi − xi+1)
)

((m1 + . . .mn−1)!)2
6

n−1∏
i=1

e2Ce
−(xi−xi+1)

2
.

Thus we have arrived at

|T τ
α1,...,αk

(x)| 6 C ′
∏

i :xi<0

eRxi
∏

i :xi>0

eaxi

n−1∏
i=1

e2Ce
−(xi−xi+1)

2
. (128)

Now we may combine this result with the bound of Proposition 6.14. Let us write

|T τ
α1,...,αk

(x)|2C+1
= |T τ

α1,...,αk
(x)|2C

|T τ
α1,...,αk

(x)|,

where C is the same constant as above. We bound the first factor with Proposition
6.14 and the second factor with (128). The doubly exponential factors cancel, and
this concludes the proof of the proposition.
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Proof of Proposition 6.10. Let

f (α1, . . . , αn) =

∫
Rn

dx ψiα1,...,iαn (x)T τ
α◦,αn+1,...,αt

(x).

Recall the definition of the function T τ in (118). Using orthogonality of
Whittaker functions, we deduce that when α1, . . . , αn belong to iR+ a (where a
is the real part of the contour in (118)),

f (α1, . . . , αn) = eτ
∑n

i=1 α
2
i /2

n∏
i=1

Γ (α◦ + αi)

t∏
j=n+1

Γ (α j + αi)
∏

16i< j6n

Γ (αi + α j).

Recall that Whittaker functions are analytic functions in their index. We wish
to analytically continue the above identity for all α such that Re[αi ] > a, for
some a > 0 such that a > −α◦. As in the proof of [BC14, Proposition 4.1.18],
we prove that f (α1, . . . , αn) is analytic by showing that for any compact region
A ⊂ {z ∈ Cn

: Re[zi ] > a} and any ε > 0, there exists a compact subset K ⊂ Rn

such that for all α ∈ A,∫
Rn\K

dx
∣∣ψiα1,...,iαn (x)T τ

α◦,αn+1,...,αt
(x)
∣∣ < ε. (129)

Consider a compact set A ⊂ Cn such that for all z ∈ A, Re[zi ] > a. Let a > 0
be such that max{0,−α◦} < a < a and let ā be such that Re[zi ] < ā for α ∈ A.
On the one hand, Proposition 6.16 shows that for any R > 0, there exists a
polynomial C(x) such that∣∣T τ

α◦,αn+1,...,αt
(x)
∣∣ 6 C(x)ea

∑n
i=1 xi

∏
i :xi<0

eRxi .

On the other hand, Lemma 6.11 shows that if a < Re[αi ] < ā,

|ψiα(x)| 6 Ce−ā
∑n

i=1 xi+(ā−a)
∑n

i=1 |xi |.

Combining these two bounds and using the fact that for x < 0, 2x = x − |x |, we
obtain that for any R > 0,∣∣ψiα(x)T τ

α◦,αn+1,...,αt
(x)
∣∣ 6 C(x)e−(a−a)

∑n
i=1 xi e(ā−a)

∑n
i=1 |xi |−xi

∏
i :xi<0

eRxi ,

6 C(x)e−(a−a)
∑n

i=1 xi e(ā−a−R/2)
∑n

i=1 |xi |−xi . (130)

Let A(S)
= {x ∈ Rn

:
∑n

i=1 xi 6 S}. We have shown that there exist positive
constants C, c such that when x 6∈ (R>−M)

n
∩ A(S),∣∣ψiα(x)T τ

α◦,αn+1,...,αt
(x)
∣∣ 6 Ce−cS

+ Ce−cM .
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Thus for any ε > 0, taking the compact set K on the left-hand side of (129) as
K = (R>−M)

n
∩ A(S) for M, S large enough, (129) holds. This concludes the

proof of Proposition 6.10.

PROPOSITION 6.18. Consider scalings (111) and (112). Assume that τ > 0 and
α1, . . . , αt > 0 are such that αi + α◦ > 0 for all 1 6 i 6 n. Then the half-space
q-Whittaker measure Pq

(a1,...,an),(a◦,an+1,...,at ),γ
weakly converges to the half-space

Whittaker measure P(α1,...,αn),(α◦,αn+1,...,αt ),τ .

Proof. Limits (116) and (117) and Propositions 6.5 and 6.8 show that the density
of the half-space q-Whittaker measure converges to the density of the half-space
Whittaker measure for x in a compact subset of Rn . Proposition 6.10 shows that
the half-space Whittaker measure is a probability measure. This is sufficient to
deduce the weak convergence.

REMARK 6.19. More generally, the half-space q-Whittaker process also
converges to the half-space Whittaker process.

6.3. Observables and integral formulas. Define the functions

G(v) = e−τv
2/2

Γ (α◦ + v)

∏n
j=1 Γ (v − α j)∏t
j=1 Γ (α j + v)

and

G(v) = e−τv
2/2

Γ (α◦ + v)

∏n
j=1 Γ (α j − v)∏t
j=1 Γ (α j + v)

.

6.3.1. Laplace transforms

COROLLARY 6.20. Let t > n > 1, and τ > 0. Assume the following:

(i) The parameters α1, . . . , αt > 0, α◦ ∈ R are chosen so that for all 1 6 i,
j 6 n, αi − α j < min16i6n{αi}, αi − α j < 1 and αi + α◦ > 0.

(ii) R ∈ (0, 1) is chosen so that R < min16i6n{αi , α◦ + αi} and R >

max16i, j6n{αi − α j }.

Then, under the Whittaker measure P(α1,...,αn),(α◦,αn+1,...,αt ,τ ),

E[eueT1
] =

n∑
k=0

1
k!

∫
DR

ds1

2iπ
· · ·

∫
DR

dsk

2iπ

∮
dv1

2iπ
· · ·

∮
dvk

2iπ
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×

∏
16i< j6k

(si + v j − s j − vi)(vi − v j)Γ (vi + v j)Γ (vi + v j − si − s j)

(v j − s j − vi)(vi − si − v j)Γ (vi + v j − si)Γ (vi + v j − s j)

×

k∏
i=1

[
Γ (−si)Γ (1+ si)

G(vi)

G(vi − si)

Γ (2vi)

Γ (2vi − si)

(−u)si

si

]
, (131)

where the contours for each variable vi are positively oriented circles enclosing
the poles {α j }16 j6n , and no other singularity of the integrand, and DR = R+ iR
oriented upwards as before.

It should be noted that the assumption that the Plancherel component τ is
positive is essential here. The right-hand side of (131) would simply diverge for
τ = 0.

Proof. This is the q → 1 limit of Corollary 4.7. Consider scalings (111) and
(112). Recall the q-Gamma and the q-exponential functions from Section 2.1.
Setting z = u(1 − q)t+n exp(−ε−1τ) in Corollary 4.7 and using the change of
variables wi = qvi yields

E
[
eq
(
ueT1(q)

)]
=

n∑
k=0

1
k!

∫
DR

ds1

2iπ
· · ·

∫
DR

dsk

2iπ

∮
dv1

2iπ
· · ·

∮
dvk

2iπ

×

∏
16i< j6k

(si + v j − s j − vi)(vi − v j)Γq(vi + v j)Γq(vi + v j − si − s j)

(v j − s j − vi)(vi − si − v j)Γq(vi + v j − si)Γq(vi + v j − s j)

×

k∏
i=1

[
Γ (−si)Γ (1+ si)

n∏
j=1

(
Γq(α j − vi)Γq(α j + vi − si)

Γq(α j + vi)Γq(α j + si − vi)

)
Γq(2vi)

Γq(2vi − si)

×
Γq(α◦ + vi − si)

Γq(α◦ + vi)

t∏
j=n+1

(
Γq(α j + vi − si)

Γq(α j + vi)

)
(−u)si e−τε

−1seγ qv− (q−si−1)

(1− qsi )qvi

]
.

(132)

Indeed, consider first the limit of the left-hand side. Using Proposition 6.18 and
the convergence of the q-exponential function to the exponential on compact
sets, E[eq(ueT1(q))] converges to the left-hand side of (131). Now we consider
the right-hand side. Note that for any x ∈ C \ R<0, Γq(x) −−→

q→1
Γ (x), and with

γ = τε−2 and w = qv, we have

e−τε
−1seγ (q

−sw−w)
−−→
ε→0

e−τvs+τ s2/2
= eτ(v−s)2/2−τv2/2.

This shows that the integrand on the right-hand side in (132) converges pointwise
to the integrand on the right-hand side of (131). To conclude using dominated
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convergence, we need to show that the integrands are uniformly (with respect
to q) integrable. We may first evaluate the integrals over vi . The residues occur
when zi = αp(i) for some choice of p : {1, . . . , k} → {1, . . . , n}. Hence,

E
[
eq
(
ueT1(q)

)]
=

n∑
k=0

1
k!

∫
DR

ds1

2iπ
· · ·

∫
DR

dsk

2iπ

×

∑
p:{1,...,k}→{1,...,n}

∏
16i< j6k

(
(si + αp( j) − s j − αp(i))(αp(i) − αp( j))

(αp( j) − s j − αp(i))(αp(i) − si − αp( j))

)
×

∏
16i< j6k

(
Γq(αp(i) + αp( j))Γq(αp(i) + αp( j) − si − s j)

Γq(αp(i) + αp( j) − si)Γq(αp(i) + αp( j) − s j)

)

×

k∏
i=1

[
Γ (−si)Γ (1+ si)

n∏
j=1

( Res
z=0
{Γq(z)}Γq(α j + αp(i) − si)

Γq(α j + αp(i))Γq(α j + si − αp(i))

)

×
Γq(2αp(i))

Γq(2αp(i) − si)

Γq(α◦ + αp(i) − si)

Γq(α◦ + αp(i))

×

t∏
j=n+1

(
Γq(α j + αp(i) − si)

Γq(α j + αp(i))

)
(−u)si e−τε

−1seγ q−s (qαp(i)−1)

(1− qsi )qαp(i)

]
. (133)

For any fixed a, b > 0, there exists a constant C1 > 0 such that for any y ∈ R
and q ∈ ( 1

2 , 1), we have (see [BC17, Lemma 2.7])∣∣∣∣Γq(a + iy)
Γq(b + iy)

∣∣∣∣ 6 C1

(∣∣y∣∣|b−a|+1
+ 1

)
. (134)

Moreover (see Lemma 5.11 in [BCFV15]), there exist constants C2,C3 such that
for x ∈ (a, b) and y ∈ R,∣∣Γq(x + iy)

∣∣ < C2,

∣∣∣∣ 1
Γq(x + iy)

∣∣∣∣ < eC3|y|.

By a Taylor approximation in ε, for ε small enough, there exists a constant C4

such that
|e−τε

−1seγ qαi (q−s
−1)
| < e−C4|s|2, s ∈ DR.

Using these estimates, each integrand in (133) can be bounded uniformly in q ∈
(1/2, 1) by

k∏
i=1

C5eC6|si |−C7|si |
2
,
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for some constants C5,C6,C7 > 0, which is integrable over Es ∈ (DR)
k . Finally,

the sum over k is finite so that dominated convergence can be applied.

COROLLARY 6.21. Let t > n > 1, α1, . . . , αt > 0, α◦ ∈ R such that αi +α◦ > 0
and τ > 0. Assume that the parameters α1, . . . , αn are chosen such that for all
1 6 i, j 6 n, αi − α j < 1, and let R ∈ (0, 1) be such that R > αi − α j for all
1 6 i, j 6 n. Under the Whittaker measure P(α1,...,αn),(α◦,αn+1,...,αt ,τ ),

E
[
eue−Tn

]
=

n∑
k=0

1
k!

∫
DR

ds1

2iπ
· · ·

∫
DR

dsk

2iπ

∮
dv1

2iπ
· · ·

∮
dvk

2iπ

×

∏
16i< j6k

(s j + v j − si − vi)(vi − v j)Γ (vi + v j)Γ (si + s j + vi + v j)

(si + vi − v j)(s j + v j − vi)Γ (si + vi + v j)Γ (s j + vi + v j)

×

k∏
i=1

[
Γ (−si)Γ (1+ si)

G(vi)

G(vi + si)

Γ (2vi)

Γ (si + 2vi)

(−u)si

−si

]
, (135)

where the contours for each variable vi are positively oriented circles enclosing
the poles {α j }16 j6n , and no other singularity of the integrand.

Proof. The formula can be obtained from Corollary 4.3 similarly to the proof of
Corollary 6.20.

6.3.2. Moment formulas

PROPOSITION 6.22. Let t > n > 1, α1, . . . , αt > 0 and α◦ > 0 so that αi+α◦ >

0 for all 1 6 i 6 n. Under the Whittaker measure P(α1,...,αn),(α◦,αn+1,...,αt ,τ ), we have
the following moment formulas. For any k ∈ Z>0,

E[e−kTn ] = ekτ/2
∮

dw1

2iπ
· · ·

∮
dwk

2iπ

∏
16a<b6k

wa − wb

wa − wb − 1
1+ wa + wb

wa + wb

×

k∏
m=1

G(wm)

G(wm + 1)
1

2wm
, (136)

where the positively oriented contours are such that for all 1 6 c 6 k, the
contour for wc encloses {α j }16 j6n and {wc+1 + 1, . . . , wk + 1}, and excludes
the pole of the integrand at 0.

For all k ∈ Z>0 such that k < 2 min{αi} and k < α◦ +min{αi},

E[ekT1] =
kτ/2

∮
dw1

2iπ
· · ·

∮
dwk

2iπ

∏
16a<b6k

wa − wb

wa − wb − 1
1+ wa + wb

2+ wa + wb
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×

k∏
m=1

G(−w)
G(−w − 1)

(1+ 2wm), (137)

where the contours are such that for all 1 6 c 6 k, the contour for wc encloses
{−α j }16 j6n and {wc+1+ 1, . . . , wk + 1}, and excludes the poles of the integrand
at α◦ − 1 and α j − 1 (for 1 6 j 6 t).

REMARK 6.23. Proposition 6.22 corresponds to the q → 1 limit of analogous
formulas in the q-Whittaker case stated as Corollary 4.1. However, since weak
convergence does not imply convergence of moments in general, Proposition
6.22 cannot be deduced from Corollary 4.1.

Proof. Observe that

G(w)
G(w + 1)

= eτw(w + α◦)
t∏

i=1

(w + αi)

n∏
j=1

(
1

w − α j

)
and

G(−w)
G(−w − 1)

=
eτw

1+ w − α◦

t∏
i=1

(
1

αi − w − 1

) n∏
j=1

(
1

w + α j

)
.

We use a similar approach to the proof of Proposition 3.5 using operators
diagonalized by Whittaker functions. The eigenrelation (43) for Macdonald
difference operator D1

n becomes the following in the Whittaker limit (see [BC14,
Lemma 4.1.36]).

n∑
i=1

∏
j 6=i

1
αi − α j

Tiψiα1,...,iαn (x) = e−xnψiα1,...,iαn (x), (138)

where Ti acts on functions in the variables α1, . . . , αn by shifting the i th
coordinate by 1. Using ψw(x1, . . . , xn) = ψ−w(−xn, . . . ,−x1), we obtain that

n∑
i=1

∏
j 6=i

1
α j − αi

T−1
i ψiα1,...,iαn (x) = ex1ψiα1,...,iαn (x), (139)

where T−1
i acts on functions in the variables α1, . . . , αn by shifting the i th

coordinate by −1.
Let us iterate relation (138) k times and use Proposition 6.10. We obtain

E[e−kTn ] =
1

Z(α1, . . . , αn)

n∑
i1,...,ik=1

k∏
`=1

(∏
j 6=i`

1
αi` − α j

)
Ti` Z(α1, . . . , αn),

(140)
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where

Z(α1, . . . , αn) = eτ
∑n

i=1 α
2
i /2

n∏
i=1

Γ (α◦ + αi)

t∏
j=n+1

Γ (α j + αi)
∏

16i< j6n

Γ (αi + α j).

Similarly, if αi > 2k and αi+α◦ > k for all 1 6 i 6 n, we may iterate relation
(139) k times and use Proposition 6.10. We obtain,

E[ekT1] =
1

Z(α1, . . . , αn)

n∑
i1,...,ik=1

k∏
`=1

(∏
j 6=i`

1
α j − αi`

)
T−1

i` Z(α1, . . . , αn). (141)

The assumptions on αi ’s ensure that one can apply Proposition 6.10 in the
summand after applying (139) k times. To conclude the proof of the proposition,
we need to rewrite (140) and (141) as contour integrals, which can be done very
similarly to Proposition 3.5.

6.4. Limits of q-Whittaker dynamics. We may represent the ascending half-
space Whittaker process T from Definition 6.9 as an array

T (1)
1

T (2)
2 T (2)

1

. . . . .
.

T (n−1)
n−1 T (n−1)

n−2
. . . T (n−1)

2 T (n−1)
1

T (n)
n T (n)

n−1
. . . T (n)

2 T (n)
1

This triangular array is the (scaling) limit of the sequence of random q-Whittaker
partitions λ(t,1) ≺ · · · ≺ λ(t,n). From Sections 4.2.2 and 4.2.3, there exist
(multivariate) Markov dynamics, which map λ(t,1) ≺ · · · ≺ λ(t,n) to λ(t+1,1)

≺

· · · ≺ λ(t+1,n). In the q → 1 limit, the triangular array is not interlacing
anymore, but there should exist multivariate Markov dynamics transporting
T ∈ Rn(n+1)/2 distributed as an ascending half-space Whittaker process to
T ′ ∈ Rn(n+1)/2 distributed as an ascending half-space Whittaker process with
updated specializations, in such a way that the left edge and the right edge of the
triangular array are both marginally Markov and correspond respectively to the
limit of the dynamics from Sections 4.2.2 and 4.2.3.
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Figure 16. The path ω ∈ Ω considered in Section 6.4.

In this section, we describe these limiting marginal dynamics. Connecting
rigorously the resulting model to the law of T (n)

1 and T (n)
n under the half-space

Whittaker measure presents some technicalities (related to the fact that we must
keep a positive Plancherel component when we work with half-space Whittaker
measures) that we discuss in more detail in Section 6.6.

Throughout this section, we use the same scalings of parameters as in Section
6.2. We will often use the letter θ to denote the parameter of q-deformed
probability distributions, and we will always scale this parameter as θ = e−εθ̃ .
Consider a half-space q-Whittaker process indexed by a path ω as in Figure
16, where the sequence of specializations ρ is chosen as in Section 4.2 (that is,
edges (i−1, j)← (i, j) are labeled by single variable specialization ai , edges (i,
j −1)→ (i, j) are labeled by single variable specialization a j , and the diagonal
edge is labeled by specialization a◦).

6.4.1. Right-edge dynamics. We are interested here in the scaling (as in [BC14,
Theorem 4.2.4] and [MP17, Definition 8.4])

λ
(t,n)
j = (t + n + 1− 2 j)ε−1 log ε−1

+ ε−1 log(Rε
j (t, n)), (142)

where λ(t,n) is distributed according to the half-space q-Whittaker measure
Pq
(a1,...,an),(a◦,an+1,...,at )

. We will show that under the scaling of parameters (111),
the random variable

(
Rε

j (t, n)
)

16 j6n weakly converges to some random variable(
R j(t, n)

)
16 j6n .

DEFINITION 6.24. The Gamma distribution with (shape) parameter θ̃ (and scale
parameter 1), denoted by Gamma(θ̃), is the continuous probability distribution
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on R>0 with density
1

Γ (θ̃)
x θ̃−1e−x .

Thus, if X ∼ Gamma(θ̃) then X−1 has the inverse-Gamma distribution, denoted
by Gamma−1(θ̃), and density

1

Γ (θ̃)
x−θ̃−1e−1/x .

Assume that we have sampled partitions λ(v) for v belonging to or sitting below
the path ω of Figure 16, according to the rules of Section 4.2 and using operators
U 6 and Ux

row. For 1 6 m 6 s 6 t and m 6 n, we have set λ(s,m)j = (s + m +
1−2 j)ε−1 log ε−1

+ε−1 log(Rε
j (s,m)). Theorem 8.7 in [MP17] shows that in the

situation of the q-Whittaker process in the full-space case, the array Rε converges
to some explicit limit R. In the course of proving this result, [MP17] shows that
the dynamics Ux

row have a limit in the following sense.

LEMMA 6.25 [MP17]. Assume that λ(s−1,m)
j , λ

(s−1,m−1)
j , λ

(s,m−1)
j are such that

there exist real random variables R j(s − 1,m), R j(s − 1,m − 1) and R j(s,
m − 1) so that we have the weak convergences

Rε
j (s − 1,m − 1) HH⇒

ε→0
R j(s − 1,m − 1),

Rε
j (s − 1,m) HH⇒

ε→0
R j(s − 1,m),

Rε
j (s,m − 1) HH⇒

ε→0
R j(s,m − 1).

If λ(s,m) is sampled according to the dynamics Ux
row(λ

(s,m)
|λ(s,m−1), λ(s−1,m−1),

λ(s−1,m)), then the sequence Rε
j (s,m) (1 6 j 6 m) converges weakly as ε

goes to zero to some sequence
(
R j(s,m)

)
16 j6m whose distribution is explicit.

In particular, R1(s,m) depends only on R1(s − 1,m), R1(s − 1,m − 1), R1(s,
m − 1), and we have

R1(s,m) = dsm
(
R1(s,m − 1)+ R1(s − 1,m)

)
, where dsm is a Gamma−1(αm + αs) random variable, the random variables(
dsm
)

s,m are independent, and we adopt the convention that R1(0, j) = R1(t,
0) = 0.

In order to have a recurrence characterizing the law of R(t, j) completely, we
examine the degeneration of the boundary operator U 6 as ε → 0. We will only
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focus on the projection to the first coordinate λ1 (that is, R1 in the limit), which
is marginally Markov (by Lemma 4.15).

LEMMA 6.26 [MP17, Lemma 8.15]. Let Xε be a Z>0-family of random
variables with qGeom(θ) distribution and set

Xε = ε
−1 log(Γε)+ ε−1 log(ε−1).

Then, if θ = e−εθ̃ , Γε weakly converges to a Gamma−1(θ̃) random variable.

Lemma 6.26 applied to the result of Lemma 4.15 implies that in the ε → 0
limit, for t > 2

R1(t, t) = dt t R1(t, t − 1),

where dt t is a Gamma−1(α◦ + αt) random variable, and R(1, 1) = d11.

PROPOSITION 6.27. For any path ω ∈ Ω , the sequence
(
Rε

1(t, n)
)
(t,n)∈ω defined

by (142) converges in distribution as ε goes to zero to a sequence (R(t, n))(t,n)∈ω
such that

(Z(t, n))(t,n)∈ω
(d)
= (R(t, n))(t,n)∈ω ,

where Z(t, n) is the partition function of the half-space log-gamma directed
polymer (Definition 1.1). In particular, under the notations above,

(1− q)t+n−1q−λ
(t,n)
1 HH⇒

q→1
Z(t, n).

Proof. The convergence in distribution is proved by Lemmas 6.25 and 6.26.
Moreover, Z(n,m) and R(n,m) satisfy the same recurrence relation in law, and
hence have the same distribution.

6.4.2. Left-edge dynamics. We consider now the scaling

λ(t, j)
t = (t − j + 1)ε−1 log ε−1

− ε−1 log(Lε(t, j)),

where λ(t, j) is distributed according to the half-space q-Whittaker measure
Pq
(a1,...,a j ),(a◦,a j+1,...,at )

. We can show in a way similar to the right-edge case that
Lε(t, j)weakly converges to some L(t, j), where the family of random variables
{L(t, j)}16 j6t has an explicit recursive description. In a way similar to the right-
edge dynamics, the proof of Theorem 8.8 in [MP17] implies that when t > j ,

L(t, j) = L(t − 1, j − 1)+ gt, j L(t − 1, j),

where gt, j is a Gamma(αt + α j) random variable and the family
(
gt, j
)

consists
of independent members.

The limit of the boundary dynamics U 6 is more complicated.
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LEMMA 6.28. Let Xε be a q-inverse Gaussian random variable with parameters
m and θ (see Definition 4.16). Assume that θ = e−εθ̃ and m = 2ε−1 log(ε−1) −

ε−1 log(L). Then, letting Xε = ε
−1 log(ε−1) − ε−1 log(Yε), the random variable

Yε weakly converges to the continuous random variable on R>0 with density

1

2L θ̃/2 Kθ (2
√

L)
x θ̃−1e−x−L/x ,

where Kθ is the modified Bessel function of the second kind, which is a particular
case of the generalized inverse Gaussian distribution. (Sometimes Kθ are called
Macdonald functions, although they are completely different from Macdonald
symmetric functions.)

Proof. By definition, for y such that ε−1 log(ε−1)− ε−1 y ∈ {0, 1, . . . ,m},

P
(

log(Yε) = y
)
= P

(
Xε = ε

−1 log(ε−1)− ε−1 y
)

=
1

Zm(θ)
θ ε
−1 log(ε−1)−ε−1 y (q; q)2ε−1 log(ε−1)−ε−1 log(L)

(q; q)ε−1 log(ε−1)−ε−1 y(q; q)ε−1 log(ε−1)−ε−1(log(L)−y)

=
εθ̃

Zm(θ)
exp

(
yθ̃ − ey

− L/ey
−A(ε)+ o(1)

)
,

where we have used estimates (113) and (114) from Lemma 6.4 in the last
equality (the error goes to zero uniformly for y in a compact set). In order to
conclude that log(Yε) converges to the random variable with density proportional
to exp

(
yθ̃ − ey

− L/ey
)
, we need to prove some tail decay estimate when

|y| → ∞, uniformly in ε, showing that the sequence log(Yε) is tight. Using
inequality (115) in Lemma 6.4, we have that for any y ∈ R and any fixed L > 0,

P
(

log(Yε) = y
)
6

εθ̃

Zm(θ)
exp

(
yθ̃ − ey

− L/ey
−A(ε)+ o(1)

)
,

where the error o(1) now goes to zero as ε→ 0 uniformly for any y ∈ R. Thus,
log(Yε) weakly converges to the distribution on R with density

1
C

eyθ̃e−ey
−L/ey

,

where C is a normalizing constant so that the density integrates to 1. By the
change of variables x = ey , it implies that Yε converges to the continuous random
variable on R with density

1
C

x θ̃−1e−x−L/x .
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This distribution is known as a particular case of the generalized inverse
Gaussian distribution, and it is well known that the normalizing constant C
equals 2L θ̃/2 Kθ (2

√
L) [Jor82].

Lemma 6.28 applied to the result of Lemma 4.17 implies that in the ε → 0
limit, for t > 2, L(t, t) has the generalized inverse Gaussian distribution with
parameters L(t, t − 1) and (−1)t+1α◦ + αt as defined in Lemma 6.28.

REMARK 6.29. One could define, as in Section 6.4.1, a sort of directed polymer
model such that its partition function satisfies the recurrence{

L(t, j) = L(t − 1, j − 1)+ gt, j L(t − 1, j) for t > j,
L(t, t) = ht

(
L(t, t − 1), (−1)t−1α◦ + αt

)
for t > 2,

where {gi, j }i> j is a family of independent Gamma(αi + α j) distributed
random variables, and ht(L , α) denotes an inverse Gaussian random variable
(independent for each t) with parameters L and α as defined in Lemma 6.28.

We may also deduce the following asymptotics for Rogers–Szegő polynomials
defined in (94).

COROLLARY 6.30. Consider the mth Rogers–Szegő polynomial Zm(θ) under
the scalings θ = q θ̃ and qm

= L(1 − q)2 for some fixed L > 0. Then, we have
that

Zm(θ)
(q; q)∞
(1− q)θ̃−1

−−→
q→1

2L θ̃/2 K θ̃ (2
√

L),

where Kθ is the modified Bessel function of the second kind.

Proof. The result is obtained by matching the normalizing constants in the proof
of Lemma 6.28.

6.5. Whittaker measure and geometric RSK. Let us examine in more
detail the limit of the half-space q-Whittaker measure as q → 1, when Eλ is
specialized into a single variable and the Plancherel component is set to γ = 0.
In that case, we can define the τ = 0 analogue of T τ

α◦
, which we will naturally

denote by T 0
α◦

.
Assuming for simplicity that n is even,

Eλ1,...,λn (a◦) = a
∑
λ2i−1−λ2i

◦

n∏
i=1

1
(q; q)λi−λi+1
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= εnαe−α◦
∑n/2

i=1 T2i−1−T2i

n∏
i=1

1
(q; q)λi−λi+1

.

Thus, we have

Eλ(a◦) = εnα◦e−α◦
∑n/2

i=1 T2i−1−T2i e−nA(ε)e−e−Tn
.

Taking into account a Jacobian of ε−n , we arrive at

T 0
α◦
(T ) = e−α◦

∑n/2
i=1 T2i−1−T2i e−e−Tn

,

and the half-space Whittaker measure can be extended to τ = 0 with

P(dT ) = dT
ψiα1,...,iαn (T )e

−α◦
∑n/2

i=1 T2i−1−T2i e−e−Tn∏n
i=1 Γ (αi + α◦)

∏
16i< j6n Γ (αi + α j)

.

REMARK 6.31. Using the identity

Eλ(a) =
1

Φ(a)

∑
µ

Eµ(0)Pµ/λ(a),

it should be possible to make sense of T τ
α for τ = 0 and arbitrary α1, . . . , αk > 0.

The following result from [OSZ14] shows that P is a well-defined probability
measure.

THEOREM 6.32 [OSZ14, Corollary 5.4]. For Re(α◦+αi) > 0 and Re(αi+α j) >

0 for all i, j , and n even∫
Rn
ψiα1,...,iαn (T )e

−α◦
∑n/2

i=1 T2i−1−T2i e−e−Tn dT =
n∏

i=1

Γ (αi + α◦)
∏

16i< j6n

Γ (αi + α j).

Using [OSZ14] (in particular Equation (2.2) and Corollary 5.3 therein), the
measure P corresponds (modulo a shift of variables by log(2)) to the push-
forward via the geometric RSK algorithm of a symmetric matrix of weights
{w̃i, j }16i, j6n having the following distribution: For 1 6 i < j 6 n, w̃i, j is
distributed as an inverse-Gamma random variable with shape parameter αi + α j

and scale parameter 1, w̃i,i is distributed as an inverse-Gamma random variable
with shape parameter αi + α◦ and scale parameter 1/2, and w̃i, j are independent
modulo the symmetry constraint that for all i, j we have w̃i, j = w̃ j,i . (We use the
convention that if X is an inverse-Gamma random variable with scale parameter
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1, k X is an inverse-Gamma random variable with scale parameter k and the same
shape parameter.)

Using properties of the geometric RSK algorithm, [OSZ14] shows that tn,n

(one of the components of the image of w̃ by the geometric RSK algorithm) has
the law of the partition function Z̃(n, n) of a polymer model with symmetrized
weights {wi, j }16i, j6n as above. The change of scale parameter on the diagonal
compensates the fact that there are more paths in the symmetric model than in the
half-space models. Counting the paths carefully, we arrive at 2Z̃(n, n) = Z(n,
n), where Z(n, n) is the partition function of the log-gamma polymer in a half-
quadrant (Definition 1.1). This also shows that

T1
(d)
= log Z(n, n),

The relation between our half-space Whittaker measure and the Whittaker
measure from [OSZ14] holds not only for the marginal T1. Indeed, under the
Whittaker measure,

E[ f (T )] =
∫
Rn f (eT1, . . . , eTn )ψiα(T )e−α◦

∑n/2
i=1 T2i−1−T2i e−e−Tn dT∏n

i=1 Γ (αi + α◦)
∏

16i< j6n Γ (αi + α j)
.

Making the change of variables Ti = T̃i + log(2) for all i , we obtain that

E[ f (T )] =
∫
Rn f (2eT1, . . . , 2eTn )ψiα(T )e−α◦

∑n/2
i=1 T2i−1−T2i e−

1
2 e−Tn dT

2
∑

i αi
∏n

i=1 Γ (αi + α◦)
∏

16i< j6n Γ (αi + α j)

=

∫
f (2t1n, . . . , 2tnn)ν̃α,ζ (dw),

where the measure ν̃α,ζ (dw) is defined in [OSZ14, (5.10)].
We will see in the next section another way to relate the Whittaker measure

with the distribution of directed polymers.

6.6. Half-space directed polymers and Whittaker measure. In Section 6.4,
we have studied the limit of q-Whittaker dynamics in the scaling in which the
q-Whittaker measure becomes the Whittaker measure. In particular, we found
that the limiting dynamics of q−λ1 are the same as that of the partition function
of the log-gamma polymer. Hence, it is natural to expect that the marginal T1, for
T distributed according to some Whittaker measure has the same distribution as
log(Z(t, n)), where Z(t, n) is the log-gamma partition function (Definition 1.1).
However, we have proved the convergence of the q-Whittaker measure to the
Whittaker measure only when the Plancherel component of the specialization is
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positive (Proposition 6.18). Further, we have not defined the Whittaker measure
corresponding to Z(t, n) when τ = 0 (outside of the special case of Section 6.5)
and it is not clear how to take a limit of (118) as τ → 0.

There are two cases where it is possible to relate rigorously the Whittaker
measure with the limit of q-Whittaker Markov dynamics as q goes to 1.

6.6.1. Partition function on the boundary. When n = t , we consider the half-
space q-Whittaker measure Pq

(a1,...,an),(a◦) and the Whittaker measure P(α1,...,αn),(α◦),
which takes a simple form as in Section 6.5. In that particular case, we know from
Theorem 6.32 that the Whittaker measure is a well-defined probability measure,
and since the density of the q-Whittaker measure converges to the density of the
Whittaker measure, we have the convergence

Pq
(a1,...,an),(a◦) HH⇒q→1

P(α1,...,αn),(α◦).

Hence, using Proposition 6.27, we recover that for T distributed according to
P(α1,...,αn),(α◦), we have that T1

(d)
= log Z(n, n), where Z(n, n) is the partition

function of the log-gamma polymer at point (n, n).

6.6.2. Limits of q-Whittaker dynamics with additional Plancherel
specialization. Another approach is to extend the results of Section 6.4 to
q-Whittaker processes including a Plancherel component. More precisely, we
consider a half-space q-Whittaker process indexed by a path ω as in Figure 15.
For all i 6 t and any j , edges (i − 1, j)← (i, j) are labeled by single variable
specialization ai , for any i, j , edges (i, j − 1) → (i, j) are labeled by single
variable specialization a j , the diagonal edge is labeled by specialization a◦ and
now, edges (t, j) ← (t + 1, j) are labeled by the Plancherel specialization τ .
We consider only the right-edge dynamics (the last parts of partitions).

DEFINITION 6.33. Let (wi, j)16i6 j be a family of inverse-Gamma random
variables as in Definition 1.1. Let (B i(s))i>1,s>0 be a family of independent
standard Brownian motions with drift bi .

Let t > n > 1. We define the hybrid half-space log-gamma/semidiscrete
directed polymer as a measure on the concatenation of two paths π, φ (see
Figure 17). The path π progresses from (1, 1) by unit up-right steps in the half-
quadrant until a certain point (t, n0). The path φ, depending on a parameter
τ > 0, is a semidiscrete path encoded by a set t = τ0 < τ1 < · · · < τn−n0 <

τn−n0+1 = t + τ . The path progresses horizontally from (t, n0) to (τ1, n0), jumps
to (τ1, n0 + 1) and then progresses to (τ2, n0 + 1) and so on until it reaches
(τ + t, n).
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Figure 17. An admissible path in the hybrid half-space log-gamma/semidiscrete
directed polymer.

The probability density of such a hybrid path π, φ is given by

1
Z(t, n, τ )

∏
(i, j)∈π

wi, j exp
(∫ τ

0
d Bφ(t+s)(s)

)
,

where the partition function Z(t, n, τ ) is defined by

Z(t, n, τ ) =
n∑

n0=1

∑
π :(1,1)→(t,n0)

∏
(i, j)∈π

wi, j

×

∫
t<τ1<···<τn−n0−1<t+τ

exp
(∫ τ

0
d Bφ(t+s)(s)

)
dτ1 . . . dτn−n0−1. (143)

Note that Z(t, n, τ ) can be constructed in a recursive way by constructing first
Z(t,m, 0) for all 1 6 m 6 n as in Section 6.4.1. Then [O’C12] showed that the
vector of free energies (log(Z(t,m, τ )))16m6n is the solution to the following
system of stochastic differential equations (SDEs) with time parameter τ and
initial data (log(Z(t,m, 0)))16m6n:{

dT (1)
1 = d B1

τ

dT (m)
1 = d Bm

τ + eT (m−1)
1 −T (m)1 dτ for all 2 6 m 6 n.

(144)

The degeneration of the RSK dynamics Ux
row from Section 2.4 where the

horizontal specialization becomes a Plancherel specialization was studied in
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[BP16]. Some of the arguments presented in [BP16, Section 8.4] are only
heuristics, and the convergence of q-Whittaker dynamics to SDE is not proved
for the whole triangular array. However, the convergence is shown in [BP16,
Section 8.4.4] for the first coordinate marginal T (k)

1 . More precisely, for any fixed
n, under the Whittaker dynamics, which correspond to the q → 1 limit of Ux

row,(
T (k)

1

)
16k6n

satisfies SDE (144) with the Brownian motion drifts bi chosen as

−αi . Thus, we arrive at the following.

PROPOSITION 6.34. Let T be distributed according to P(α1,...,αn),(α◦,αn+1,...,αt ,τ )

with τ > 0. Let Z(t, n, τ ) be the partition function of the hybrid half-space
log-gamma/semidiscrete directed polymer as in Definition 6.33, where the drifts
in the hybrid log-gamma/semidiscrete model are chosen as bi = −αi . Then, we
have the distributional equality

T (n)
1

(d)
= log Z(t, n, τ ). (145)

REMARK 6.35. We expect that (145) should hold as well when τ = 0 in some
sense (see Remark 6.31 about the case τ = 0). While it is clear from the
definition of the polymer partition function that Z(t, n, τ ) converges to Z(t,
n, 0), additional arguments are necessary to control the tails of the half-space
Whittaker measure as τ → 0.

COROLLARY 6.36. Let t > n > 1, α1, . . . , αt > 0 and α◦ > 0. For all k ∈ Z>0

such that k < min{2αi , α◦ + αi},

E[Z(t, n)k] =
∮

dw1

2iπ
· · ·

∮
dwk

2iπ

∏
16a<b6k

wa − wb

wa − wb − 1
1+ wa + wb

2+ wa + wb

×

k∏
m=1

1+ 2wm

1+ wm − α◦

t∏
i=1

(
1

αi − wm − 1

) n∏
j=1

(
1

wm + α j

)
, (146)

where the positively oriented contours are such that for all 1 6 c 6 k, the
contour for wc encloses {−α j }16 j6n and {wc+1 + 1, . . . , wk + 1}, and excludes
the poles of the integrand at α◦ − 1 and α j − 1 (for 1 6 j 6 t).

Proof. Combining the moment formula for eT1 from Proposition 6.22 with
Proposition 6.34 yields a formula for E[Z(t, n, τ )k]. Then, we may take the limit
when τ goes to zero in the formulas, but we need to prove that the moments
converge as well as τ → 0. The hybrid partition function Z(t, n, τ ) converges
almost surely as τ goes to zero to the partition function of the half-space log-
gamma polymer Z(t, n) = Z(t, n, 0) (if Z(t, n, τ ) and Z(t, n) are defined with
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the same variables wi, j ). Let τ ∗ > 0 be an arbitrary positive real number. Using
the system of SDEs (144), we obtain that for 0 6 τ < τ ∗,

log(Z(t, n, τ ∗))− log(Z(t, n, τ )) = B(n)
τ∗ −B(n)

τ +

∫ τ∗

τ

Z(t, n − 1, s)
Z(t, n, s)

ds. (147)

Hence, since Z(t,n−1,s)
Z(t,n,s) > 0, we have that for τ ∗ > 0 fixed and any 0 6 τ < τ ∗,

0 6 Z(t, n, τ ) 6 Z(t, n, τ ∗) exp
(

sup
06s6τ∗

{B(n)
s } − B(n)

τ∗

)
. (148)

For k <min{2αi , α◦+αi}, we know from Proposition 6.22 that E[Z(t, n, τ ∗)]k <
∞. The random variable exp

(
sup06s6τ∗{B

(n)
s } − B(n)

τ∗

)
has finite moments of

all orders, since sup06s6τ∗{B
(n)
s } − B(n)

τ∗ is distributed as the absolute value of a
Gaussian ([RY13, Ch. III, Ex. 3.14]). Thus, the right-hand side of (148) does not
depend on τ and has finite moment of order k as long as k < min{2αi , α◦ + αi}.
Dominated convergence implies that

E[Z(t, n, τ )k] −−→
τ→0

E[Z(t, n, 0)k],

which concludes the proof.

REMARK 6.37. The moment formula (146) is reminiscent of nested contour
integral solutions of the delta Bose gas in a half-space; see for instance [BBC16,
Lemma 4.2] and Proposition 7.1 in the present paper. We believe that the formula
above could as well be obtained by solving the system of difference equations
satisfied by the function

(n1, . . . , nk) 7→ E[Z(t, n1) . . . Z(t, nk)].

6.7. Alternative derivation of Laplace transform integral formulas. We
can also use our Whittaker eigenrelations for B and B (defined in (109) and
(110)) to directly compute Laplace transforms. The principle is to act with B and
B on both sides of the Whittaker analogue of the generalized Littlewood identity
from Proposition 6.10, We will need to justify that one can exchange the action
of the operators with the integrations so that we may use our eigenrelations (107)
and (108). For the latter, it is essential to keep a positive Plancherel specialization
(we could not adapt the same approach using the identity from Theorem 6.32,
which would correspond to the τ = 0 case).
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THEOREM 6.38. Fix n 6 t , τ > 0 and α1, . . . , αt > 0 and α◦ ∈ R such that
α◦ + αi > 0 for 1 6 i 6 n. Under the Whittaker measure P(α1,...,αn),(α◦,αn+1,...,αt ,τ ),
we have

E[e−ueT1
] =

∫
(D−r )n

dz
(2iπ)n

mn(iz)(2π)n
n∏

i, j=1

Γ (−zi − α j)
∏

16i< j6n

Γ (−zi − z j)

Γ (αi + α j)

×

n∏
i=1

(
uαi+zi eτ(z

2
i −α

2
i )/2

Γ (α◦ − zi)

Γ (α◦ + αi)

t∏
j=n+1

Γ (α j − zi)

Γ (α j + αi)

)
, (149)

where mn is defined in (104), and r > 0 is such that r + α◦ > 0 and r > αi for
all 1 6 i 6 n.

We also have

E[e−ue−Tn
] =

∫
(Dr )n

dz
(2iπ)n

mn(iz)(2π)n
n∏

i, j=1

Γ (−zi + α j)
∏

16i< j6n

Γ (zi + z j)

Γ (αi + α j)

×

n∏
i=1

(
u− ai−zi eτ(z

2
i −α

2
i )/2

Γ (zi + α◦)

Γ (αi + α◦)

t∏
j=n+1

Γ (zi + α j)

Γ (αi + α j)

)
, (150)

where r > 0 is such that r + α◦ > 0 and r < αi for all 1 6 i 6 n.

Proof. Recall the statement of Proposition 6.10: for w ∈ Hn ,∫
Rn

dx ψw(x)T τ
α◦,αn+1,...,αt

(x)

= e−τ
∑n

i=1 w
2
i /2

n∏
i=1

Γ (α◦ − iwi)

t∏
j=n+1

Γ (α j − iwi)
∏

16i< j6n

Γ (−i(wi + w j)).

We may substitute wi + ir in place of wi above, for r > 0. The identity
remains true as long as wi + ir ∈ H for all i and Re[α◦ − iwi + r ] > 0,
but w does not necessarily belong to Hn anymore. Using the shift property
ψw+ir (x) = ψw(x)e−r

∑
xi , we get∫

Rn
dx ψw(x)e−r

∑
xiT τ

α◦,αn+1,...,αt
(x)

= e−τ
∑n

i=1(wi+ir)2/2

×

n∏
i=1

(
Γ (α◦ − iwi + r)

t∏
j=n+1

Γ (α j − iwi + r)

)
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×

∏
16i< j6n

Γ (−i(wi + w j)+ 2r). (151)

When w ∈ (−H)n , we may act on both sides of (151) with B
u
n . Acting on the

right-hand side yields∫
Rn

dξmn(ξ)ui
∑n

i=1 −wi+ξi
∏
i, j

Γ (−iξi + iw j)e−τ
∑n

i=1(ξi+ir)2/2

×

n∏
i=1

(
Γ (α◦ − iξi + r)

t∏
j=n+1

Γ (α j − iξi + r)

)
×

∏
16i< j6n

Γ (−i(ξi + ξ j)+ 2r).

Acting on the left-hand side with B
u
n yields∫

Rn
dxe−uex1

ψw(x)e−r
∑

xiT τ
α◦,αn+1,...,αt

(x).

We have exchanged the action of B
u
n and the integration above using

the Fubini theorem. It can be applied here because both e−uex1ψw(x)
and e−r

∑
xiT τ

α◦,αn+1,...,αt
(x) are bounded in L2(Rn), which has been proved

respectively in [OSZ14, Corollary 3.8] and Proposition 6.15 of the present
paper. We may substitute wi − ir in place of wi , and after a change of variables
zi = iξi − r , we obtain that∫

Rn
dxe−uex1

ψw(x)T τ
α◦,αn+1,...,αt

(x)

=

∫
(D−r )n

−dizmn(iz)u
∑n

i=1 −iwi+
∑n

i=1 zi

× eτ
∑n

i=1 z2
i

n∏
i, j=1

Γ (−zi + iw j)

n∏
i=1

(
Γ (α◦ − zi)

t∏
j=n+1

Γ (α j − zi)

)
×

∏
16i< j6n

Γ (−zi − z j). (152)

The expectation E[e−ueT1
] under the Whittaker measure P(α1,...,αn),(α◦,αn+1,...,αt ,τ )

corresponds to the left-hand side of (152) for w = (iα1, . . . , iαn), divided by
the normalization constant, so that we have established (149). For this choice of
w, we need that r > αi so that wi + ir ∈ H for all i , hence the hypothesis in the
statement of Theorem 6.32.
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We turn now to the proof of (150). Again we start from (151) where now
w ∈Hn . Acting on both sides with Bu

n (the interchange of integration with respect
to x and action of Bu

n can be justified as in the previous case) yields for allw ∈Hn∫
Rn

dxe−ue−xn
ψw(x)e−r

∑
xiT τ

α◦,αn+1,...,αt
(x)

=

∫
Rn

dξmn(ξ)ui
∑n

i=1 wi+ξi
∏
i, j

Γ (−iξi − iw j)× e−τ
∑n

i=1(−ξi+ir)2/2

×

n∏
i=1

(
Γ (α◦ + iξi + r)

t∏
j=n+1

Γ (α j + iξi + r)

)
×

∏
16i< j6n

Γ (i(ξi + ξ j)+ 2r).

Now we may substitute back wi by wi − ir (with r not too large so that wi − ir ∈
H), evaluate for w = (iα1, . . . , iαn), and after a change of variables zi = iξi + r ,
we obtain∫

Rn
dxe−ue−xn

ψiα1,...,iαn (x)T τ
α◦,αn+1,...,αt

(x)

=

∫
(Dr )n

dz
mn(iz)

i
u
∑n

i=1 αi+
∑n

i=1 zi

× eτ
∑n

i=1 z2
i

n∏
i, j=1

Γ (−zi + α j)

n∏
i=1

(
Γ (α◦ + zi)

t∏
j=n+1

Γ (α j + zi)

)
×

∏
16i< j6n

Γ (zi + z j).

We obtain (150) after dividing by the normalization constant.

REMARK 6.39. We expect that one could deduce Theorem 6.38 from Corollaries
6.20 and 6.21. The correspondence between the two types of formulas should
follow the same lines as in [BCR13, Section 3], where the equivalence
between an n-fold contour integral such as (149) and series expansions as
in Corollary 6.20 is explained in the context of the full-space log-gamma
polymer. Alternatively, we may prove n-fold contour integral formulas for the
(q, t)-Laplace transform of general Macdonald measures by keeping the contour
as D−ε in the proof of Proposition 3.30. Such formulas would degenerate to
Theorem 6.38 in the Whittaker limit.

Note that in the n-fold Laplace transform formulas (149) and (150), we may
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let τ go to zero without encountering any singularity. As a consequence, we can
prove a Laplace transform formula for the partition function of the half-space
log-gamma polymer (without Plancherel specialization).

COROLLARY 6.40. Fix n 6 t , α1, . . . , αt > 0 and α◦ ∈ R such that α◦+ αi > 0
for 1 6 i 6 n. Let r > 0 such that for all 1 6 i 6 n, r > αi > 0. The partition
function Z(t, n) of the log-gamma polymer in a half-quadrant (Definition 1.1) is
characterized by the following. For any u > 0,

E[e−u Z(t,n)
]

=
1
n!

∫
Dr

dz1

2iπ
· · ·

∫
Dr

dzn

2iπ

∏
i 6= j

1
Γ (zi − z j)

∏
16i< j6n

Γ (zi + z j)

Γ (αi + α j)

×

n∏
i, j=1

Γ (zi − α j)

n∏
i=1

(
uαi−zi

Γ (α◦ + zi)

Γ (α◦ + αi)

t∏
j=n+1

Γ (α j + zi)

Γ (α j + αi)

)
. (153)

Proof. We can compute E[e−u Z(t,n,τ )
], where Z(t, n, τ ) is the hybrid partition

function from Definition 6.33, using the Laplace transform formula from
Theorem 6.38 and the identity in law from Proposition 6.34. Then, using the
weak convergence Z(t, n, τ )⇒ Z(t, n) as τ → 0, we obtain

E[e−u Z(t,n)
]

= in
∫
(D−r )n

mn(iz)
i

dz u
∑n

i=1 αi+
∑n

i=1 zi

n∏
i, j=1

Γ (−zi − α j)

×

n∏
i=1

(
Γ (α◦ − zi)

Γ (α◦ + αi)

t∏
j=n+1

Γ (α j − zi)

Γ (α j + αi)

) ∏
16i< j6n

Γ (−zi − z j)

Γ (αi + α j)
,(154)

which can be written equivalently as in the statement of the Proposition.

6.8. Plancherel theory and comparison with O’Connell–Seppäläinen–
Zygouras’s results. In this section, we shall compare our results, in particular
Corollary 6.40, with formal computations in [OSZ14]. The integral transform

f̂ (ξ) =
∫
Rn

f (x)ψξ (x) dx

defines an isometry from L2(Rn, dx) to L2(Rn,mn(ξ) dξ) restricted to
symmetric functions. The associated Plancherel theorem [STS93, Theorem
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51] allows us to compute the Laplace transform of observables of the Whittaker
measure [OSZ14]. Indeed, we are interested in computing

E[e−u Z(n,n)
] =

1
C

∫
Rn

e−ueT1
ψiα1,...,iαn (T )e

−α◦
∑n/2

i=1 T2i−1−T2i e−e−Tn dT, (155)

where C is the normalizing constant and we assume that n is even for simplicity.
Suppose that the integrand above can be written as f (T )g(T ), where f and g
are two functions in L2(Rn, dx) such that we are able to compute the integral
transforms f̂ , ĝ. Then the Plancherel theorem yields

E[e−u Z(n,n)
] =

1
C

∫
Rn

f̂ (ξ)ĝ(ξ)mn(ξ) dξ.

However, it is not clear how to find such a decomposition of the integrand
in (155). In [OSZ14, Section 5], in a remark titled ‘A formal computation’,
the authors propose to apply formally this scheme to functions that are not
square integrable, in order to derive explicit integral formulas for E[e−u Z(n,n)

].
There may be several ways to decompose the integrand in (155) into a product
of functions whose integral transforms can be computed. We examine below
two possibilities: the first one yields our formula from Corollary 6.40, while
the second one yields [OSZ14, (5.15)]. Although the argument is formal, both
approaches lead to the correct answer (though the form of the answer is different
and we match them in Corollary 6.41).

6.8.1. Case 1: equivalent to using the operator B
u
n . Let us choose f and g as

f (T ) = e−ueT1
ψiα1,...,iαn (T ), g(T ) = e−α◦

∑n/2
i=1 T2i−1−T2i e−e−Tn

.

Then, using (103),

f̂ (ξ) = u
∑n

j=1 α j−iξ j
∏

16i, j6n

Γ (iξ j − αi), Re[iξi ] > α j for all 1 6 i, j 6 n,

and using Theorem 6.32 (that is [OSZ14, Corollary 5.4]),

ĝ(ξ) =
n∏

j=1

Γ (α◦ − iξ j)
∏

16i< j6n

Γ (−iξi − iξ j),

where Re[−iξi ] > min{0,−α◦} for all 1 6 i 6 n. Thus a formal application of
the Plancherel theorem suggests that

E[e−u Z(n,n)
] =

∫
u
∑n

j=1 α j−iξ j
∏

16i, j6n

Γ (iξ j − αi)

n∏
j=1

Γ (α◦ + iξ j)

Γ α◦ + α j
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×

∏
16i< j6n

Γ (iξi + iξ j)

Γ (αi + α j)
mn(ξ) dξ, (156)

where the integration contour is R − ir with r > αi for all 1 6 i 6 n. This
formula is, in fact, correct as we have proved it in Corollary 6.40 (in the special
case t = n), itself coming from Theorem 6.38. The choice of contours can be
justified more precisely by shifting variables as in the proof of Theorem 6.38.
However, the derivation above is not rigorous due to the fact that the functions
f and g do not belong to L2(Rn, dx). This is why the presence of the Plancherel
component in the proof of Theorem 6.38 is crucial.

6.8.2. Case 2: O’Connell–Seppäläinen–Zygouras’s approach. Let us now
choose f and g as

f (T ) = e−e−Tn
ψiα1,...,iαn (T ), g(T ) = e−α◦

∑n/2
i=1 T2i−1−T2i e−ueT1

.

Then, using (102),

f̂ (ξ) =
∏

16i, j6n

Γ (iξ j − αi), Re[iξ j ] > αi for all 1 6 i, j 6 n.

Using ψz(T1, . . . , Tn) = ψ−z(−Tn, . . . ,−T1) we have that for n even,

ĝ(ξ) =
∫
Rn

e−α◦
∑n/2

i=1 T2i−1−T2i e−ue−Tn
ψ−ξ (T ) dT

so that using [OSZ14, Corollary 5.4]),

ĝ(ξ) =
n∏

j=1

Γ (α◦ + iξ j)
∏

16i< j6n

Γ (iξi + iξ j)u−
∑n

j=1 iξ j ,

where Re[iξ j ] > min{0,−α◦} for all 1 6 j 6 n. Thus the Plancherel theorem
suggests that

E[e−u Z(n,n)
] =

∫
Rn

u−
∑n

j=1 iξ j
∏

16i, j6n

Γ (iξ j + αi)

n∏
j=1

Γ (α◦ + iξ j)

Γ (α◦ + α j)

×

∏
16i< j6n

Γ (iξi + iξ j)

Γ (αi + α j)
mn(ξ) dξ, (157)

where the contour is R− ir with r > min{0,−α◦}. Again, the choice of contour
could be justified more precisely by shifting variables, but the derivation above
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is not rigorous because the function g does not belong to L2(Rn, dx). Since
our partition function Z(n, n) has the same distribution as the random variable
2tnn under the measure ν̃α,ζ (dw) as defined in [OSZ14, (5.10)], expression (157)
is exactly equivalent to [OSZ14, (5.15)] (after making a change of variables
zi = iξi and indentifying u = r/2). A similar argument can be adapted in the
case where n is odd.

Note that (156) and (157) seem to be quite different. There is an additional
factor u

∑n
j=1 α j in (156), and the factor

∏
16i, j6n Γ (iξ j − αi) in (156) becomes∏

16i, j6n Γ (iξ j + αi) in (157). The next corollary shows that (157) (or
equivalently (158) below after a change of variables) can be proved as well
from Corollary 6.40.

COROLLARY 6.41. Fix α1, . . . , αn > 0 and α◦ ∈ R such that α◦ + αi > 0 for
1 6 i 6 n. Then, when n is even, for any u > 0,

E[e−u Z(n,n)
]

=
1
n!

∫
Dr

dz1

2iπ
· · ·

∫
Dr

dzn

2iπ

∏
i 6= j

1
Γ (zi − z j)

×

∏
16i< j6n

Γ (zi + z j)

Γ (αi + α j)

n∏
i, j=1

Γ (zi + α j)

n∏
i=1

u−zi
Γ (α◦ + zi)

Γ (α◦ + αi)
, (158)

where r > 0 is such that r + α◦ > 0.
When n is odd, for any u > 0,

E[e−u Z(n,n)
] =

uα◦

n!

∫
Dr

dz1

2iπ
· · ·

∫
Dr

dzn

2iπ

∏
i 6= j

1
Γ (zi − z j)

×

∏
16i< j6n

Γ (zi + z j)

n∏
i, j=1

Γ (zi + α j)

n∏
i=1

u−ziΓ (zi − α◦), (159)

where r > 0 is such that r − α◦ > 0.

REMARK 6.42. Equation (158) corresponds exactly to [OSZ14, (5.15)] given
that 2tnn in [OSZ14, (5.15)] has the same distribution as our partition function
Z(n, n). In the case where n is odd, our formula (159) is slightly different from
[OSZ14, (5.16)]; we find an extra factor uα◦ . We believe that this is due to a typo
in [OSZ14, (5.16)] (otherwise, the case n = 1 would be in contradiction with
[OSZ14, Corollary 3.9]).
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Proof. Consider the functions

fα◦(α1, . . . , αn) =

∫
Rn

e−ueT1
ψiα(T )e−α◦

∑n/2
i=1(T2i−1−T2i )e−e−Tn dT (160)

and

gα◦(α1, . . . , αn)

=
1
n!

∫
Dr

dz1

2iπ
· · ·

∫
Dr

dzn

2iπ

∏
i 6= j

1
Γ (zi − z j)

×

∏
16i< j6n

Γ (zi + z j)

n∏
i, j=1

Γ (zi − α j)

n∏
i=1

uαi−ziΓ (α◦ + zi), (161)

where the contour Dr is such that r > αi for all 1 6 i 6 n (the contour can
be freely shifted to the right so that gα◦(α1, . . . , αn) does not depend on r ). We
know from Corollary 6.40 that for α ∈ (R>0)

n with αi + α◦ > 0,

fα◦(α1, . . . , αn) = gα◦(α1, . . . , αn).

We will need to analytically continue this relation to negative values of αi . The
integral in (161) is analytic in each variable αi as long as Re[αi ] < r , and r can
be taken arbitrarily large so that gα◦(α1, . . . , αn) is analytic in each variable αi

on R. Before proving that fα◦(α1, . . . , αn) is analytic as well, let us see how this
implies Corollary 6.41.

Using the change of variables Ti = − log(u) − T̃n−i+1 for all 1 6 i 6 n, we
obtain that when n is even

fα◦(α1, . . . , αn) =

∫
Rn

e−e−T̃n
ψ−iα(T̃ + log(u))e−α◦

∑n/2
i=1 T̃2i−1−T̃2i e−ueT̃1 dT̃

= u
∑n

i=1 αi fα◦(−α1, . . . ,−αn). (162)

Similarly, when n is odd,

fα◦(α1, . . . , αn) =

∫
Rn

e−e−T̃n
ψ−iα(T̃ + log(u))e+α◦

∑n/2
i=1 T̃2i−1−T̃2i eα◦ log(u)e−ueT̃1 dT̃

= uα◦+
∑n

i=1 αi f−α◦(−α1, . . . ,−αn). (163)

Using (162) and the equality fα◦(−α1, . . . ,−αn) = gα◦(−α1, . . . ,−αn) for
αi ∈ R, we find when n is even

fα◦(α1, . . . , αn) =
1
n!

∫
Dr

dz1

2iπ
· · ·

∫
Dr

dzn

2iπ

∏
i 6= j

1
Γ (zi − z j)
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×

∏
16i< j6n

Γ (zi + z j)

n∏
i, j=1

Γ (zi + α j)

n∏
i=1

u−ziΓ (α◦ + zi).

We can finally freely move the contour as long as the real part stays positive to
arrive at the statement of Corollary 6.41. Similarly, using (163) when n is odd,

fα◦(α1, . . . , αn) = uα◦
1
n!

∫
Dr

dz1

2iπ
· · ·

∫
Dr

dzn

2iπ

∏
i 6= j

1
Γ (zi − z j)

×

∏
16i< j6n

Γ (zi + z j)

n∏
i, j=1

Γ (zi + α j)

n∏
i=1

u−ziΓ (−α◦ + zi),

where the contour Dr is such that r − α◦ > 0.
Now we turn to proving analyticity of fα◦(α1, . . . , αn) via the next two

lemmas.

LEMMA 6.43. For any α◦, α1, . . . , αn ∈ R, u > 0, we have

fα◦(α1, . . . , αn) =

∫
R

n(n+1)
2

e−u
∑
π

∏
(i, j)∈π exi j

∏
16i< j6n

e−(αi+α j )xi j e−e−xi j

×

∏
16i6n

e−(αi+α◦)xi i e−e−xii dx, (164)

where the sum over π in the first exponential term is a sum over all up-right
paths from (1, 1) to (n, n) in the lower half-quadrant.

Proof. Note that for α ∈ (R>0)
n , fα◦(α1, . . . , αn) is the unnormalized Laplace

transform of eT1 under the half-space Whittaker measure; it is also the
unnormalized Laplace transform of the polymer partition function, which
can be written as in (164). More generally, for any α◦, α1, . . . , αn ∈ R, (164) is
obtained from (160) via a change of variables corresponding to the geometric
RSK map. This map is volume preserving [OSZ14, Theorem 3.1]. It is shown
in [OSZ14, (3.8) and Corollary 3.3] how the integrand in (160) becomes the
integrand in (164) via this change of variables.

LEMMA 6.44. For any α◦ ∈ R and u > 0, fα◦(α1, . . . , αn) is analytic in each
variable αi on R.

Proof. We show that for α = (α1, . . . , αn) in a compact subset of Rn , the integral
in (164) is absolutely convergent uniformly in α. For α in a compact set, we may
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rewrite (164) as

fα◦(α1, . . . , αn)

=

∫
R

n(n+1)
2

Cα(x) exp

c
∑
i, j

|xi, j | −
∑
π

ue
∑
(i, j)∈π xi, j +

∑
(i, j)∈π

ci, j e−xi, j

 dx,

where we choose the constant c large enough so that the prefactor Cα(x) is an
integrable function over R n(n+1)

2 (uniformly for α in a compact set), and for each
i, j , the constant ci, j is the inverse of the number of paths containing the vertex
(i, j). In order to prove uniform integrability, it is enough to show that each
term in the sum over paths π grows exponentially, thus compensating the term
c
∑

i, j |xi, j |. More precisely, we need to show that there exist some constants

k, k ′ such that for x 6∈ [−M,M]
n(n+1)

2 and any path π of fixed length,

ue
∑
(i, j)∈π xi, j +

∑
(i, j)∈π

ci, j e−xi, j > kek′M .

In order to prove this, we show that for any constant c′ > 0, the auxiliary function
g(x1, . . . , xm) = c′e

∑m
i=1 xi +

∑m
i=1 e−xi satisfies the same bound. Indeed, take

x ∈ Rm
\ [−M,M]m ; either there exists some i for which xi < −M or we have

xi > M for all i . In the first case, g(x1, . . . , xm) > eM and in the second case
g(x1, . . . , xm) > c′emM . This concludes the proof of the lemma.

7. KPZ equation on the half-line

7.1. KPZ equation on R>0. The KPZ equation on R>0 with the Neumann
boundary condition is the a priori ill-posed stochastic PDE{

∂TH = 1
2∆H+

1
2

(
∂XH

)2
+ Ẇ ,

∂XH(T, X)
∣∣

X=0 = A (∀T > 0),
(165)

where W is a space–time white noise. Following [CS18], we say that H solves
this equation in the Cole–Hopf sense with the narrow-wedge initial condition
when H = logZ and Z is a mild solution to the multiplicative stochastic heat
equation (SHE) with the Robin boundary condition{

∂TZ = 1
2∆Z +ZẆ ,

∂XZ(T, X)
∣∣

X=0 = AZ(T, 0) (∀T > 0),
(166)
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with the delta initial condition. More precisely, a mild solution to (166) solves

Z(T, X) = P R
T (X, 0)+

∫ T

0

∫
∞

0
P R

T−S(X, Y )Z(S, Y ) dWS(dY ), (167)

understood as an Itô integral, where Z(T, ·) is adapted to the filtration
σ {Z(0, ·),W |[0,T ]}, and P R is the heat kernel satisfying the Robin boundary
condition for all T, Y > 0

∂XP R
T (X, Y )

∣∣∣
X=0
= AP R

T (0, Y ). (168)

The KPZ equation and the multiplicative SHE arise as a limit of several
stochastic processes in the KPZ universality class, which can be divided
into two classes: (1) Systems with a tunable asymmetry, such as ASEP, for
which the exponential of the height function is expected to converge to the
multiplicative SHE when time and space are rescaled and the asymmetry
vanishes simultaneously. For the half-line ASEP, this was proved in [CS18,
Par19]. (2) Systems with a temperature, or at least a parameter controlling
the strength of the noise, such as directed polymers. The partition function is
expected to converge in general to the multiplicative SHE when time and space
are rescaled and the temperature is sent to infinity simultaneously. In the full
space, convergence of directed polymer partition functions to the multiplicative
SHE is proved in [AKQ14]. A half-space analogue is in preparation [Wu18].

In the following, we will see how some of our moment formulas obtained
above degenerate in the scaling leading to the solution to the KPZ equation.
We will focus on the log-gamma directed polymer in a half-quadrant as the
parameters of the Gamma random variables go to infinity.

7.2. Log-gamma polymer at high temperature. Consider the half-space
log-gamma polymer partition function Z(t, n) and scale parameters as t =
T n + n1/2 X , αi = n1/2, α◦ ∈ R stays unscaled. Define the rescaled partition
function

Zn(T, X) = C(T, X, n)Z
(

T
2

n + n1/2 X,
T
2

n
)
, (169)

where the normalization factor is

C(T, X, n) = exp
(

T n log(n)− (T − X log(n))n1/2

2
−

T
8
−

X
2

)
.

PROPOSITION 7.1. Let T > 0, X > 0 and α◦ ∈ R. For all k ∈ Z>0,

lim
n→∞

E[Zn(T, X)k]
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= 2k
∫ r1+i∞

r1−i∞

dz1

2iπ
· · ·

∫ rk+i∞

rk−i∞

dzk

2iπ

×

∏
16a<b6k

za − zb

za − zb − 1
za + zb

za + zb − 1

×

k∏
m=1

zm

zm + α◦ − 1/2
exp

(
T
2

z2
m − zm x

)
, (170)

where r1 > r2 + 1 > · · · > rk + k − 1 and rk > −α◦ + 1/2.

REMARK 7.2. The right-hand side of (170) coincides with moment formulas
for the continuous directed polymer in a half-space obtained in [BBC16, Eq. (2)]
using the Bethe ansatz. (It was proved only assuming the uniqueness of solutions
for the half-space delta Bose gas evolution equations.) Hence, we deduce that
the parameter α◦ in the half-space log-gamma polymer is related to the boundary
parameter A in the stochastic PDEs (165) and (166) via α◦ = A + 1/2.

Proof. Fix k ∈ Z>0. Then for α1, . . . , αt > 0 sufficiently large, (146) yields (we
have shifted all variables by 1/2)

E[Z(t, n)k] =
∮

dw1

2iπ
· · ·

∮
dwk

2iπ

∏
16a<b6k

wa − wb

wa − wb − 1
wa + wb

wa + wb + 1

×

k∏
m=1

2wm

wm + 1/2− α◦

t∏
i=1

(
1

αi − wm − 1/2

) n∏
j=1

(
1

wm − 1/2+ α j

)
,

where the contours are such that for all 1 6 c 6 k, the contour for wc encloses
{−α j + 1/2}16 j6n and {wc+1 + 1, . . . , wk + 1}, and excludes the poles of the
integrand at α◦ − 1/2 and α j − 1/2 (for 1 6 j 6 t). Furthermore, if t 6 n are
large, there is no pole at infinity and we may assume that the contour for wi is
the vertical line from ri − i∞ to ri + i∞, where the ri are chosen so that

rk + k − 1 < · · · < r2 + 1 < r1 < α◦ − 1/2.

For αi ≡ n1/2,

T n/2+n1/2 X∏
i=1

(
1

αi − w − 1/2

) T n/2∏
j=1

(
1

w − 1/2+ α j

)

= exp
(
−T n log(n)+ (T − X log(n))n1/2

2
+

T
8
+

X
2
+

T
2
w2
+ wx + o(1)

)
.
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Moreover, the convergence holds uniformly in w. This is because for any fixed
a ∈ R, the convergence (

1
1− z/n

)n

−−−→
n→∞

ez

holds uniformly for z in the set {z ∈ C : Re[z] < a}. It then suffices to apply
this convergence twice, for z = T

2w
2 and z = wx , and observe that along the

contours that we have chosen, the real part of wi and w2
i stays bounded. Using

scaling (169), we obtain that the limit of E[Zn(T, X)k] is

2k
∫ r1+i∞

r1−i∞

dw1

2iπ
· · ·

∫ rk+i∞

rk−i∞

dwk

2iπ

∏
16a<b6k

wa − wb

wa − wb − 1
wa + wb

wa + wb + 1

×

k∏
m=1

wm

wm + 1/2− α◦
exp

(
T
2
w2

m + wm x
)
.

The final result is obtained by applying the change of variables wi = −zk−i+1 for
all i .

Even if one could identify (170) with the moments of Z(T, X) (the solution to
(166)), this would not determine completely the distribution since the moments
grow too fast. In order to fully characterize the distribution of Z(T, X), we
would need to analyze the limit of the Laplace transform formula from Corollary
6.20 under scaling (169). It is not obvious how to take this limit rigorously and
we leave this for future consideration.

Note that in the special case where A = −1/2, the distribution of Z(T, 0) is
fully characterized in [BBCW18, Theorem B] (see also [Par19, Corollary 1.3]),
and it would be interesting to compare those formulas with the limit of Corollary
6.20 in the case α◦ = 0.

8. Tracy–Widom asymptotics for the log-gamma polymer partition
function

The aim of this section is to explain how to manipulate our Laplace transform
formulas in order to derive limit theorems for the partition function of the half-
space log-gamma polymer Z(n,m) in various ranges of parameters. In this
derivation, we will perform several nonrigorous steps. Most of them can be
made rigorous with some additional technical arguments. However, there is one
important obstruction to rigor that we cannot presently overcome: we are unable
to show that the infinite series that we manipulate are uniformly summable as
n,m → ∞, which suggests that we miss structural cancellations hidden in the
formulas.
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It is reasonable to expect that the fluctuations of the free energy log(Z(n,m))
are of the same nature as the fluctuations of last-passage percolation in a half-
quadrant, studied in [BR01b, BBCS18b, BBNV18], which corresponds to the
zero-temperature limit. In particular, the fluctuations of log(Z(n,m)) should be
the same as in the full-space case when n � m � 1, that is, converge to the
Tracy–Widom distribution associated to the Gaussian Unitary Ensemble (GUE).
We will focus below on the more interesting case of fluctuations close to the
boundary for which we expect a phase transition as the boundary parameter
varies.

Consider the half-space log-gamma polymer partition function Z(n, n) as in
Definition 1.1 with α1 = · · · = αn = α > 0. Let us scale u = −e−n f−n1/3σ x , where
f, σ are constants to be determined later. If we have the pointwise convergence
for every x ∈ R

E[eu Z(n,n)
] −−−→

n→∞
F(x),

where F(x) is the distribution function of a certain probability distribution, then
it follows (see [BC14, Lemma 4.1.39]) that

lim
n→∞

P
(

log(Z(n, n))− f n
σn1/3

6 x
)
= F(x).

It is not clear how to take asymptotics from the formula for the Laplace transform
of Z(n, n) in Corollary 6.40 or 6.41. However, we have a formula for the
Laplace transform of Z(n, n, τ ) from Corollary 6.20, which seems more adapted
to asymptotic analysis. Moreover, Z(n, n, τ ) should be close to Z(n, n, 0) =
Z(n, n) for fixed τ in the sense that n−1/3 |log(Z(n, n, τ ))− log(Z(n, n, 0))|
converges to zero in probability as n goes to infinity.

Thus, we are left with studying the asymptotics of log(Z(n, n, τ )) as n goes
to infinity for fixed τ . Using the change of variables zi = si − vi in the statement
of Corollary 6.20, we have

E[eu Z(n,n,τ )
] =

n∑
k=0

1
k!

∫
DR

dz1

2iπ
· · ·

∫
DR

dzk

2iπ

∮
dv1

2iπ
· · ·

∮
dvk

2iπ

×

∏
16i< j6k

(zi − z j)(vi − v j)Γ (vi + v j)Γ (−zi − z j)

(−vi − z j)(−v j − zi)Γ (v j − zi)Γ (vi − z j)

k∏
i=1

Γ (2vi)

Γ (vi − zi)

×

k∏
i=1

[
π

sin(π(vi + zi))
en(G(vi )+G(zi ))−n1/3xσ(vi+zi )

Γ (α◦ − zi)

Γ (α◦ + vi)

eτ z2
i /2−τv

2
i /2

vi + zi

]
, (171)

where the contour for the variables vi is a small positively oriented circle around
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α, the contour DR = R + iR is such that −α < R < min{0, α◦, 1− α} and

G(z) = log(Γ (α − z))− log(Γ (α + z))− f z. (172)

We may deform the integration contours as long as we do not cross poles. In
particular, we must ensure that Re[zi + vi ] ∈ (0, 1) and that the poles when
zi = α◦ and when zi = −z j lie to the right of the integration contour of zi .

The asymptotic behavior as n goes to infinity of expansions such as (171)
is usually analyzed using the saddle-point method. One needs to study the
function G(z), deform the contours so that they go through a critical point of
G and justify that the main asymptotic contributions of the integral is localized
in a neighborhood of this critical point, where one may use straightforward
approximations.

Note that

G ′(z) = − f − Ψ (α − z)− Ψ (α + z), G ′′(z) = Ψ1(α − z)− Ψ1(α + z),

where
Ψ (z) =

d
dz

log(Γ (z)), Ψn(z) =
dn

dzn
Ψ (z).

If we set f = −2Ψ (α), then G ′(0) = G ′′(0) = 0 and we can use the Taylor
expansion around zero

G(z) = σ 3z3/3+O(z4), (173)

where σ 3
= G ′′′(0)/2. Hence we find that G has a double critical point at zero,

which means that when α◦ > 0, we may use a saddle-point method around
this critical point. For the Laplace’s method to work, one also needs to control
the decay of Re[G(z)] along the contours. However, when α◦ < 0, this is not
possible and the asymptotic behavior of (171) will be quite different.

We will first provide probabilistic heuristics explaining why we should expect
a phase transition at α◦ = 0. Then we show that a formal asymptotic analysis of
(171)—following ideas similar to [BCF14, BCR13, KQ18] though these works
are rigorous—confirms all these heuristics.

8.1. The Baik–Rains phase transition for directed polymers. Consider the
partition function of the half-space log-gamma polymer with weights wi, j ∼

Gamma−1(2α) for i > j and wi,i ∼ Gamma−1(α◦ + α). In order to understand
why the asymptotic behavior of Z(n, n) is different whether α◦ > 0 or α◦ < 0,
let us examine the asymptotics of the free energy

log(Z(n, n)) = log

∑
path π

∏
(i, j)∈π

wi, j

 .
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By KPZ universality, we expect that this quantity has a deterministic first
order linear in n and fluctuations on the scale n1/3. Only a small fraction of
admissible paths contribute to the first order of the free energy. Let H(π) =∑

(i, j)∈π log(wi, j) be the energy of a path. The paths contributing to the first order
are those with (close to) maximal energy. The expectation of the energy of a path
depends on the number of times the path hits the boundary. It is reasonable to
expect that if α◦ > α, the weights on the diagonal will be not larger than the bulk
weights (in average) and will not influence much the limiting behavior. However,
if α◦ is very small, the weights on the boundary will be typically very large so that
the path with maximal energy will typically take O(n) weights on the boundary.
This will increase the first order of the free energy and the Gaussian fluctuations
of those boundary weights will imply Gaussian fluctuations for the free energy.

By analogy with the zero-temperature case (see [BBCS18b, Section 6.1]), we
expect that for homogeneous weights, the first order of the free energy is the
same in a half-quadrant or a full quadrant. (This may also be derived, at least
formally, from saddle-point asymptotics of (171).) That is, for α◦ = α (and
consequently α◦ > α), we expect that (using [Sep12, Theorem 2.4])

log(Z(ns, nt))
n

−−−→
n→∞

−sΨ (θ)− tΨ (2α − θ), (174)

where θ is such that
s
t
=
Ψ1(2α − θ)
Ψ1(θ)

.

However, for α◦ sufficiently small, the situation may be different. For instance,
when α◦ is close to −α, the boundary weights become huge and will dominate
the asymptotic behavior of the partition function. In order to predict the precise
value of α◦ where the transition arises, the following proposition will be useful.
A similar argument is presented in the zero-temperature limit (exponential last-
passage percolation in a half-quadrant) in [BBCS18b, Section 6.1].

PROPOSITION 8.1. Let a, b > 0. Let Z1(n, n) be the partition function of the
half-space log-gamma polymer as in Definition 1.1, where the parameters are
chosen so that α1 = · · · = αn = a/2 > 0 and α◦ = b − a/2 is arbitrary. Let
Z2(n, n) be the partition function of the half-space log-gamma polymer where
the parameters are chosen as α1 = b−a/2, α2 = · · · = αn = a/2 and α◦ = a/2.
Then we have

Z1(n, n) (d)= Z2(n, n).

This proposition means that for the half-space log-gamma polymer, Z(n, n)
has the same distribution whether the boundary weights are Gamma−1(b) and
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the bulk weights are Gamma−1(a); or when the weights on the first row are
Gamma−1(b) while all other weights are Gamma−1(a). This is a consequence of
the more general identity in law in Proposition 2.6.

Proof. Let λ be distributed as Pq
(qa/2,...,qa/2),qb−a/2 and π be distributed as

Pq
(qb−a/2,qa/2,...,qa/2),0, where qa/2 appears n times in both measures. From

Proposition 2.6, we know that the distributions of λ1 and π1 are the same.
We will exploit this fact in the q → 1 limit.

By Proposition 6.27, the law of (1 − q)2n−1q−λ1 under Pq
(qa/2,...,qa/2),qb−a/2

converges to that of Z1(n, n). Let κ be distributed as Pq
(qb−a/2,qa/2,...,qa/2),qa/2 , where

qa/2 appears n − 1 times in the specialization (qb−a/2, qa/2, . . . , qa/2). One can
couple π and κ , by sampling first κ and then π according to the transition
operator U 6 (π |κ) from Section 4.2. By Lemma 4.15, we know that π1 =

κ1 + qGeom(0) = κ1. Moreover by Proposition 6.27, the law of (1− q)2n−1q−κ1

under Pq
(qa/2,...,qa/2),qb−a/2 converges to that of Z2(n, n). Since (1 − q)2n−1q−λ1

(d)
=

(1 − q)2n−1q−κ1, it suffices to let q tend to 1 on both sides to conclude the
proof.

Consider now the partition function Z2(n, n) of the half-space log-gamma
polymer with weights wi, j ∼ Gamma−1(2α) for i > j > 1 and wi,1 ∼

Gamma−1(α◦ + α). By Proposition 8.1, Z(n, n) (d)= Z2(n, n). In the latter model,
the energy of a path can be conveniently decomposed as the energy collected
along the first row plus the energy collected after the path has departed the first
row, that is,

H(π) =
k∑

i=1

log(wi1)+
∑

(i, j)∈π; j>1

log(wi, j).

Assuming that k (the number of steps in the first row) is roughly the same for all
paths that contribute to the first order of the free energy, we get

log(Z2(n, n)) ≈
k∑

i=1

log(wi1)+ log

 ∑
π ′:(k,2)→(n,n)

∏
(i, j)∈π ′

wi, j

 .
By the previous discussion on the case with homogeneous weights (174), the
second term can be approximated by

1
n

log

 ∑
π ′:(k,2)→(n,n)

∏
(i, j)∈π ′

wi, j

 ≈ −(1− k/n)Ψ (θ)− Ψ (2α − θ),
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where θ is such that 1−k/n = Ψ1(2α−θ)
Ψ1(θ)

. Hence, since E[log(wi , 1)] = Ψ (α◦+α),

E log(Z(n, n))
n

≈ max
k
{−k/nΨ (α◦ + α)− (1− k/n)Ψ (θ)− Ψ (2α − θ)} .

A quick study of the function

x 7→ −xΨ (α◦ + α)− (1− x)Ψ (θ)− Ψ (2α − θ) under the constraint

1− x =
Ψ1(2α − θ)
Ψ1(θ)

when x ∈ [0, 1] shows that when α◦ > 0, the maximum arises for x = 0 while
for α◦ < 0, the maximum arises for x such that θ = α + α◦.

Thus, we expect that when α◦ > 0,

log(Z(n, n))/n −−−→
n→∞

−2Ψ (α)

with n−2/3 fluctuations. However, when α◦ < 0, we expect that

log(Z(n, n))/n −−−→
n→∞

−Ψ (α + α◦)− Ψ (α − α◦),

with Gaussian fluctuations on the scale n−1/2. Since Var[log
(
Gamma−1(θ)

)
] =

Ψ1(θ), one can even predict that the variance of the Gaussian should be

xΨ1(α+α◦)=

(
1−

Ψ1(2α − θ)
Ψ1(θ)

∣∣∣
θ=α+α◦

)
Ψ1(α+α◦)= Ψ1(α+α◦)−Ψ1(α−α◦).

8.2. Fredholm Pfaffians and Tracy–Widom distributions. The Pfaffian of
a skew-symmetric 2k × 2k matrix A is defined by

Pf(A) =
1

2kk!

∑
σ∈S2k

sgn(σ )aσ(1)σ (2)aσ(3)σ (4) . . . aσ(2k−1)σ (2k), (175)

where sgn(σ ) is the signature of the permutation σ . Schur’s Pfaffian identity
states that for any x1, x2, . . . , x2n ,

Pf
(

xi − x j

xi + x j

)
=

∏
i< j

xi − x j

xi + x j
. (176)

Let (X, µ) be a measure space. For a 2×2 matrix valued skew-symmetric kernel,

K(x, y) =
(

K11(x, y) K12(x, y)
K21(x, y) K22(x, y)

)
, x, y ∈ X,
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we define the Fredholm Pfaffian (introduced in [Rai00, Section 8]) by

Pf
[
J+K

]
L2(X,µ) = 1+

∞∑
k=1

1
k!

∫
X
· · ·

∫
X

Pf
(

K(xi , x j)
)k

i, j=1
dµ(x1) . . . dµ(xk),

(177)
provided the series converges. The kernel J is defined by

J(x, y) = δx=y

(
0 1
−1 0

)
.

In what follows, µ is the Lebesgue measure and we write Pf
[
J+ K

]
L2(X).

For a ∈ R and θ ∈ (0π/2), let Cθa be the contour formed by the union of two
semi-infinite rays departing a with angles θ and−θ , oriented from a+∞e−iθ to
a +∞eiθ .

DEFINITION 8.2. The GSE Tracy–Widom distribution LGSE is a continuous
probability distribution on the real line such that for X ∼ LGSE, FGSE (x) :=
P(X 6 x) = Pf

(
J − KGSE

)
L2(x,∞), where KGSE is a 2 × 2 matrix valued kernel

defined by

KGSE
11 (x, y) =

∫
Cπ/31

dz
2iπ

∫
Cπ/31

dw
2iπ

z − w
4zw(z + w)

ez3/3+w3/3−xz−yw,

KGSE
12 (x, y) = −KGSE

21 (y, x) =
∫
Cπ/31

dz
2iπ

∫
Cπ/31

dw
2iπ

z − w
4z(z + w)

ez3/3+w3/3−xz−yw,

KGSE
22 (x, y) =

∫
Cπ/31

dz
2iπ

∫
Cπ/31

dw
2iπ

z − w
4(z + w)

ez3/3+w3/3−xz−yw.

Note that the kernel KGSE has the form

KGSE(x, y) =
(

A(x, y) −∂y A(x, y)
−∂x A(x, y) ∂x∂y A(x, y)

)
,

where A(x, y) is the smooth and antisymmetric kernel KGSE
11 (x, y). We define

another kernel

K∞(x, y) =
(

A(x, y) −2∂y A(x, y)
−2∂x A(x, y) 4∂x∂y A(x, y)+ δ′(x, y)

)
,

where δ′ is a distribution on R2 such that∫ ∫
f (x, y)δ′(x, y) dx dy =

∫ (
∂y f (x, y)− ∂x f (x, y)

)∣∣
y=x dx, (178)
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for smooth and compactly supported test functions f . It is shown in [BBCS18b,
Section 5] that the Fredholm Pfaffian of K∞ is well defined and we have

Pf[J−KGSE
]L2(x,+∞) = Pf[J−K∞]L2(x,+∞). (179)

Moreover, if a sequence of kernels Kn converges to K∞ in a certain sense (see
[BBCS18b, Proposition 5.7]), then

lim
n→∞

Pf[J−Kn]L2(x,+∞) = Pf[J−KGSE
]L2(x,+∞).

DEFINITION 8.3. The GOE Tracy–Widom distribution LGOE is a continuous
probability distribution on the real line such that for X ∼ LGOE, FGOE(x) :=
P(X 6 x) = Pf

(
J−KGOE

)
L2(x,∞), where KGOE is the 2× 2 matrix valued kernel

defined by

KGOE
11 (x, y) =

∫
Cπ/31

dz
2iπ

∫
Cπ/31

dw
2iπ

z − w
z + w

ez3/3+w3/3−xz−yw,

KGOE
12 (x, y) = −KGOE

21 (y, x) =
∫
Cπ/31

dz
2iπ

∫
Cπ/3
−1/2

dw
2iπ

w − z
2w(z + w)

ez3/3+w3/3−xz−yw,

KGOE
22 (x, y) =

∫
Cπ/31

dz
2iπ

∫
Cπ/31

dw
2iπ

z − w
4zw(z + w)

ez3/3+w3/3−xz−yw

+

∫
Cπ/31

dz
2iπ

ez3/3−zx

4z
−

∫
Cπ/31

dz
2iπ

ez3/3−zy

4z
−

sgn(x − y)
4

,

where we adopt the convention that

sgn(x − y) = 1x>y − 1x<y.

8.3. Formal saddle-point asymptotics leading to the Baik–Rains transition.
In this section, we explain how a nonrigorous asymptotic analysis of (171) leads
to the following.

FORMAL ASYMPTOTICS. Let Z(n, n) be the half-space log-gamma partition
function (Definition 1.1) with α1 = · · · = αn = α > 0 and α◦ ∈ R. Let us define

f = −2Ψ (α), σ =
3
√
Ψ2(α).

Modulo several nonrigorous steps in the (attempted) proof presented below, we
have the following weak limits:
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• When α◦ > 0,

lim
n→∞

P
(

log(Z(n, n))− f n
σn1/3

6 x
)
= FGSE(x).

• When α◦ = 0, we have

lim
n→∞

P
(

log(Z(n, n))− f n
σn1/3

6 x
)
= FGOE(x).

• When α◦ < 0,

lim
n→∞

P
(

log(Z(n, n))− fαn
σαn1/2

6 x
)
=

∫ x

−∞

e−t2/2

√
2π

dt,

where fα◦ = −Ψ (α−α◦)−Ψ (α+α◦) and σα =
√
Ψ1(α + α◦)− Ψ1(α − α◦).

We use Laplace’s method and rescale variables around the critical point of the
function G in (171). Note that the same function G as in (171) also appears in the
asymptotic analysis of the full-quadrant log-gamma polymer [BCR13, KQ18]
and can be controlled along certain contours. Since the asymptotic analysis
performed in this section is not rigorous anyway, we will not write the relevant
decay estimates of Re[G(z)]. Thus, let us rescale the variables around zero as
zi = σ

−1n−1/3 z̃i and wi = σ
−1n−1/3w̃i in (171) (we will drop the tildes in the

following formulas). There are now three cases to consider. If α◦ > 0, then

Γ (α◦ − n−1/3σ−1zi)

Γ (α◦ + n−1/3σ−1vi)
−→ 1.

If α◦ = 0, then
Γ (α◦ − n−1/3σ−1zi)

Γ (α◦ + n−1/3σ−1vi)
−→
−vi

zi
.

If α◦ < 0, then there is a pole at −α◦ for the variable z that prevents us from
using the saddle-point method around 0, the scalings will be different, and we
will use the saddle-point method around α◦.

8.3.1. Case α◦ > 0. Using the fact that

Γ (z) ≈
1
z
,

π

sin(π z)
≈

1
z
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for z close to zero, the integrand in (171) becomes, as n goes to infinity,

∏
16i< j6k

(zi − z j)(vi − v j)(zi − v j)(vi − z j)

(vi + z j)(v j + zi)(vi + v j)(zi + z j)

k∏
i=1

vi − zi

vi + zi

×

k∏
i=1

[
ev

3
i /3+z3

i /3−xzi−xvi
1

vi + zi

1
2vi

]
.

Note that for (u1, . . . , u2k) = (v1, z1, . . . , vk, zk), and using Schur’s Pfaffian
identity (176),

∏
16i< j6k

(zi − z j)(vi − v j)(zi − v j)(vi − z j)

(vi + z j)(v j + zi)(vi + v j)(zi + z j)

k∏
i=1

vi − zi

vi + zi
= (−1)kPf

(
ui − u j

ui + u j

)
.

We use that for Re[zi + vi ] > 0,

1
zi + vi

=

∫
∞

0
e−ri (zi+vi ) dri .

We may bring the integrations inside the Pfaffian to find that

lim
n→∞

E[eu Z(t,n)
] =

∞∑
k=0

(−1)k

k!

∫
∞

x
dr1· · ·

∫
∞

x
drkPf

(
K (ri , r j)

)k

i, j=1

= Pf[J−K]L2(x,∞),

where K is the 2× 2 matrix antisymmetric kernel

K11(r, s) =
1
4

∫
D1

dv
2iπ

∫
D1

dv′

2iπ
v − v′

vv′(v + v′)
ev

3/3+v′3/3−rv−sv′, (180a)

K12(r, s) =
1
2

∫
D1

dv
2iπ

∫
D−1/2

dz
2iπ

v − z
v(v + z)

ev
3/3+z3/3−rv−sz, (180b)

K22(r, s) =
∫
D−1

dz
2iπ

∫
D−1

dz′

2iπ
z − z′

z + z′
ez3/3+z′3/3−r z−sz′ . (180c)

Note that the formulas above do not make sense because the integrand in (180b)
and (180c) is not absolutely convergent on D−1 and D−1/2, respectively. The
integration over D−1/2 in (180b) is not a real issue since the contour could have
been freely deformed earlier to D1 (the only pole in z is at z = −v, which lies on
the left of D−1/2). However, the integrations over D−1 in (180c) are a real issue
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because the contours cannot be deformed due to the pole at z = −z′. However,
formally, one can write

K22(x, y) =
∫
∞

0

(
Ai(x − u)Ai′(y − u)− Ai′(x − u)Ai(y − u)

)
du,

and using the formal identity∫
R

Ai(x + u)Ai(y + u) = δ(x − y),

one can write K22 as

K22(x, y) =
∫
D1

dz
2iπ

∫
D1

dz′

2iπ
z − z′

z + z′
ez3/3+z′3/3−xz−yz′

+ δ′(x, y),

where δ′ is a distribution on R2 defined by (178). Then it follows from (179) in
Section 8.2 that

Pf[J−K]L2(x,∞) = FGSE(x).

Finally, we obtain—modulo several nonrigorous steps above—that when α◦ > 0
and τ > 0,

lim
n→∞

P
(

log(Z(n, n, τ ))− f n
σn1/3

6 x
)
= FGSE(x),

where f = −2Ψ (α) and σ = 3
√
Ψ2(α).

8.3.2. Case α◦ = 0. Following the same steps as in Section 8.3.1, we obtain
when α◦ = 0 that

lim
n→∞

E[eu Z(t,n)
] =

∞∑
k=0

(−1)k

k!

∫
∞

x
dr1· · ·

∫
∞

x
drkPf

(
K(ri , r j)

)k

i, j=1

= Pf[J +K]L2(x,∞),

where K is the 2× 2 matrix antisymmetric kernel

K11(r, s) =
1
4

∫
D1

dv
2iπ

∫
D1

dv′

2iπ
v − v′

(v + v′)
ev

3/3+v′3/3−rv−sv′, (181a)

K12(r, s) =
1
2

∫
D1

dv
2iπ

∫
D−1/2

dz
2iπ

v − z
z(v + z)

ev
3/3+z3/3−rv−sz, (181b)

K22(r, s) =
∫
D−1

dz
2iπ

∫
D−1

dz′

2iπ
z − z′

zz′(z + z′)
ez3/3+z′3/3−r z−sz′ . (181c)
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The formula for K22 in (181c) does not make sense but if one shifts the vertical
contours to the right so that they become D1 and compute the residues, then
the resulting formula does make sense. Moreover, Pf[J + K]L2(x,∞) = Pf[J −
K̃]L2(x,∞), where K11 = K̃11, K22 = K̃22, K12 = −K̃12 and K21 = −K̃21, and it
can be shown (see [BBCS18b, Lemma 2.6]) that

Pf[J− K̃]L2(x,∞) = FGOE(x).

Thus when α◦ = 0 and τ > 0, modulo several nonrigorous steps,

lim
n→∞

P
(

log(Z(n, n, τ ))− f n
σn1/3

6 x
)
= FGOE(x),

where f = −2Ψ (α) and σ = 3
√
Ψ2(α).

REMARK 8.4. If we scale α◦ close to the critical point as α◦ = n−1/3σ−1$ ,
the limiting distribution FGOE would be replaced by a crossover distribution
F(x;$), originally introduced in [BR01b, Definition 4] in the context of half-
space last-passage percolation with geometric weights. This distribution is such
that F(x; 0) = FGOE(x) and lim$→∞ F(x;$) = FGSE(x). The cumulative
probability distribution F(x;$) can be written as the Fredholm Pfaffian of a
crossover kernel introduced in [FNR06, (1.14)], which is also a special case
of the more general crossover kernel Kcross in [BBCS18b, Theorem 1.7 and
Definition 2.9].

8.3.3. Case α◦ < 0. In this case, one cannot deform the contours so that they
go through a neighborhood of zero as in Section 8.3.1, because there is a pole in
(171) at zi = α◦ < 0. Instead, we will scale u in a different way and apply the
saddle-point method in a neighborhood of α◦.

Let fα◦ = −Ψ (α − α◦)− Ψ (α + α◦). Letting u = −e−n fα◦−n1/2σα◦ x (where σα◦
is a constant to determine later), we may write

E[eu Z(n,n)
] =

n∑
k=0

1
k!

∫
DR

dz1

2iπ
· · ·

∫
DR

dzk

2iπ

∮
dv1

2iπ
· · ·

∮
dvk

2iπ

×

∏
16i< j6k

(zi − z j)(vi − v j)Γ (vi + v j)Γ (−zi − z j)

(−vi − z j)(−v j − zi)Γ (v j − zi)Γ (vi − z j)

k∏
i=1

Γ (2vi)

Γ (vi − zi)

×

k∏
i=1

[
π

sin(π(vi + zi))
en(Gα◦ (vi )+Gα◦ (zi ))−n1/2xσ(vi+zi )

Γ (α◦ − zi)

Γ (α◦ + vi)

1
vi + zi

]
, (182)

where
Gα◦(z) = log(Γ (α − z))− log(Γ (α + z))− fα◦z
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satisfies G ′α◦(α◦) = 0 and G ′′α◦(α◦) = Ψ1(α−α◦)−Ψ1(α+α◦) =: −σ
2
α . Assuming

that the saddle-point method would work without any issue, we rescale variables
zi as zi = α◦ + σαn−1/2 z̃i and variables vi as vi = −α◦ + σαn−1/2ṽi , and obtain

E[eu Z(n,n)
]

≈

n∑
k=0

1
k!

∫
D−1/2

dz1

2iπ
· · ·

∫
D−1/2

dzk

2iπ

∫
D1

dv1

2iπ
· · ·

∫
D1

dvk

2iπ

×

∏
16i< j6k

(zi − z j)(vi − v j)

(−vi − z j)(−v j − zi)

×

k∏
i=1

[
1

vi + zi
e−(z

2
i /2−w

2
i /2)−x(vi+zi )

−vi

zi

1
vi + zi

]
. (183)

Then using the Cauchy determinant formula∏
16i< j6k

(zi − z j)(vi − v j)

(−vi − z j)(−v j − zi)
= det

(
1

zi + vi

)k

i, j=1

we may recognize that (183) ≈ det(I −KG)L2(x,+∞), where

KG(r, s) =
∫
D−1/2

dz
2iπ

∫
D1

dv
2iπ

v

z(z + v)
e−z2/2+v2/2−rv−sz

=
1
√

2π
e−r2/4−s2/4

so that we would obtain

lim
n→∞

P
(

log(Z(n, n, τ ))− fαn
σαn1/2

6 x
)
=

∫ x

−∞

e−t2/2

√
2π

dt,

where fα◦ = −Ψ (α − α◦)− Ψ (α + α◦) and σα =
√
Ψ1(α + α◦)− Ψ1(α − α◦).
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