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EUCLIDEAN WINDOWS
STEFANIA CAVALLAR anpD FRANZ LEMMERMEYER

Abstract

In this paper we study number fields which are Euclidean with re-
spect to functions that are different from the absolute value of the
norm, namely weighted norms that depend on a real paramétér
introduce the Euclidean minimum of weighted norms as the set of
values ofc for which the function is Euclidean, and we show that
the Euclidean minimum may be irrational and not isolated. We also
present computational results on Euclidean minima of cubic number
fields, and present a list of norm-Euclidean complex cubic fields that
we conjecture to be complete.

Introduction

Let R be an integral domain. A functiofi : R — R is called aEuclidean function on
R if it satisfies the following conditions witkh = 1:

(i) f(R)NIO,c]is finite for everyc > 0;
(i) f@r)=0ifandonlyifr =0;
(i) forall a,b € R with b # 0 there exists @ € R such thatf (a — bq) < « - f(b).

If f: R — Ryxqis a function satisfying conditions (i) and (ii), then the infimum of all
k € R such that condition (iii) holds is called ti®uclidean minimum oR with respect to
f, and will be denoted by/ (R, f); thus for alla, b € R \ {0} and every > 0O there is a

q € R (possibly depending os) such thatf (a — bg) < M(R, f) - f(b) + €.

If f is a multiplicative function, then we can replace condition (iii) by the equivalent
condition that for everg € K (K being the quotient field oR) there is &g € R such that
f(& —g) < k. The infimum of allc € R such that this condition holds for a fixé&dis
denoted byM (¢, f); clearly M (R, f) is the supremum of th&f (¢, f).

If R = O isthering of integers in a number fiekd, then the absolute value of the norm
satisfies conditions (i) and (ii), and a folklore conjecture statesih@) := M(R, |N|)
coincides with the inhomogeneous minimum of the norm form® gf (This conjecture is
known to hold for number fields with unit rank at most 1.) (gtbe a set of representatives
modulo@g of all ¢ = a/b € K with M(§) = M(K) (hereM (&) := M (&, |N|)); then we
say thatM (K) isisolatedif there is axz < « suchthatV/ (¢) < 2 forall ¢ € K thatare not
represented by some pointdn. In that case, we define the second minimuf(K) (as
well as higher minima/, (R)) as in [L3] or [6] by considering only the minima of points
that are not represented by pointgdp, and so on.

Replacingk in these definitions b = R” (this is the topological closure of the image
of K under the standard embeddikig— R”; for totally real fields we hav& = K QgR),
the Euclidean minimum becomes the inhomogeneous minimum of the norm fokn of
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Euclidean windows

we clearly havel/; (K) > M;(K) whenever these minima are defined, and it is conjecturec
that M1(K) = M1(K) is rational.

The aim of this paper is to explain how the Euclidean minimun®gf with respect
to ‘weighted norms’ can be computed in some cases; we shall show that the Euclide
minimum for certain weighted norms i@(+/69) is irrational and not isolated, thereby
showing that these conjectured properties for minima with respect to the usual normdo r
carry over to weighted norms.

1. Weighted norms

Let K be a number field?k its ring of integers, ang a prime ideal in@g. Then, for
any real numbet > 0,

Ng, ifq#p,

c, if g =p,

defines a map from the set of prime idealsf O into the positive real numbers, which
can be uniquely extended to a multiplicative map Ix —> R.o on the group/x of
fractional ideals. Puttingf (a) = ¢(x¢Ok) foranya € K* and f(0) = 0, we get a
function f = f, . : K — R0 which H. W. Lenstra [14] called weighted norm.

Our aim is to study examples of number fields that are Euclidean with respect to son
weighted norm. Lenstralfl] showed thatQ(¢3) andQ(¢4) are such fields, but the first
examples that are not norm-Euclidean were given by D. Clarg][7,

A formal condition for f;, . to be a Euclidean function is the finiteness of the sets
{fpcl@) < X :a e Ok} forall A € R. This property is easily seen to be equivalent to
c> 1.

For weighted normg = f, . on K, we define (following 13]) theEuclidean window
of p, w(p), by

¢:qr—

w(p) = {c e R: fy . is a Euclidean function 0@ }.

Proposition 1.1. The Euclidean window is@ossibly emptyinterval contained i1, co).

Proof. Assume thatw(p) is not empty, and let, r € w(p) with r < ¢. Then it is sufficient
to show thatf,, s is a Euclidean function o for everyr < s <t. Now Ok is Euclidean
with respect, for example, t, ., S0k is a principal ideal domain; hence everye K
has the fornt = «/f with («, 8) = 1. Moreover, there exist,, y; € Ok such that

Jo.r(a = Byr) < fo.r(B), ol = By) < fo.(B).
If p B, then

Sos(a = Byr) < forla = Byr) < fp:(B) = fp.s(B);

if p | B, on the other hand, thent «, and hence t (o — By;), and

Sos(@ = Byr) = for(e—By) < fo.r(B) < fps(B).
Thus f, s is indeed a Euclidean function @y . O

In this paper, we investigate Euclidean windows for various algorithms in some quadrat
and cubic number fields; we shall give examples of empty, finite and infinite Euclidea
windows, and we show that the first minima with respect to weighted norms need not |
rational. First, however, we shall show that the Euclidean minima for weighted norms ne
not be continuous functions offor rings of integers with finite unit groups.
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2. Weighted norms i

The Euclidean window for primes iA can easily be determined, as follows.
Proposition 2.1. The Euclidean minimumi ( f, ) of a weighted norm iz is given by

oo ife < p,
M(fpe)=1% ifc=p,
1 ife>p.
Moreoverw(p) = [p, 00).

Proof. We first show that/ (f, ) = oo if ¢ < p (this implies thatw(p) € [p, c0)). To
this end, pub = p" and

s -y ifp#2,

“Tlrio1 ip=2

Thenp t (a—bq); hencef,, .(a—bq) = la—bg|forallg € Z.1fthe minimumk = M (f, )
were finite, there would exist@e Z suchthatf, .(a —bq) < k f.(b) = kc". But clearly
la] < la —bq| = fp.c(a —bg), and hence we gét|c™" < « for all n € N; however, since
¢ < p, the expression on the left-hand side tendsctaovith n.

Since it is well known thad (f, ,) = 12, we next show tha¥(f,, ) = Lifc > p. To
this end, choose, 8 € N, not divisible byp, such thapp < «/8 < c. If we puta= p"g"
andb = " + p"p", then we get

a C.nﬂl’l Cl’l c
fp,c(_) = ngn n 7 o n’
b/ an+ppn (/B +pt "+ p

n

a o
foe(5 =) = o g

and both expressions tend to Inagoes taco. Note also thay), .(a/b—q) > la/b—q| > 1
forallg € N\ {0, 1}, since the denominator ¢ /b — ¢) is prime top, and since: > p.

ThusM(f,) = 1if ¢ > p; but we can easily show thatf(f,.) < 1 by proving
that f,, . is a Euclidean function for alp > c. In fact, suppose that, b € Z \ {0} are
given, and that they are relatively prime.gdf| b, thenp t (a — bg) for all ¢ € Z; hence
fp.cla —bg) = |la — bg|, and we can certainly fingl € Z such thata — bg| < |b|. But
|b] < fp.c(b) sincec > p.

Now consider the caget b; then we choose € Z suchthata —bgq|, la—b(g+1)| < b.
Butr = a — bg andr’ = a — b(q + 1) cannot both be divisible by; if p 1 r, then
Jp.e(r) =1rl < bl = fp.c(b), andifp tr/, thenfp,c(r/) < fp.c(D). l

3. Weighted norms i)(v'14)

Since it is well known that an imaginary quadratic number field is Euclidean if and only
if it is norm-Euclidean, only the case of real quadratic fields is interesting. We shall de:
with only two examples here: one@(+/14), which has been studied often in this respect
(see the work of Bedocch®], Nagata 15, 16] and Cardond]), and the other i€(+/69),
which was shown to be Euclidean with respect to a weighted norm by Cla(kge also
work by Niklasch [17] and Hainke [11]J2(+/69) is discussed in Sectiodsand5.
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Consider the quadratic number fiekl = Q(+/14). It is well known thatM1(K) =
5/4 and M2(K) = 31/32 (see 13]); moreover,M; is attained exactly at the points
£ = (14 +/14)/2 mod Ok . Now we claim that the following proposition is true.

Proposition 3.1. For K = Q(v/14) andp = (2, v/14) we havew(p) < (v/5, V7).

Proof. Puta = 1+ /14, andg = 2. Then|N(a — By)| is an odd integer greater than
orequalto 5forally € Og. Thus fy (@ — By) = [N(e — By)| = 5, and if f, . is a
Euclidean function, we must haves f,, (8) = c2. This shows that > /5.

In order to show that < /7 we look at the ideay = (7, v/14) = (7 + 2v/14) of
norm 7. If f, . is Euclidean, then every residue class modputoust contain an elemeant
such thatfy (@) < fp.c(q) =7.

Since the unit group generates the subgrpup, +-1} of (Ok /q)* (and fy (£1) = 1),
and sincek3++/14 = £3 modq (wheref, «(£3++/14) = |N(£3++/14)| = 5), we must
find elements in the residue classe® modq. The only possible candidates are powers of
4+ /14, because the only ideals of odd norm less than 7Gré1), and(3+ +/14), none
of which yields elements equivalent#®? modgq. Moreover+4 + /14 = +3 modgq, and
we see that if there exist elements= 2 modq with f, .(«) < 7, thena = 2 is one of
them. Butf, (2) = ¢, and we find that < /7. O

We remark that it is not known whether(p) is empty or not.
If we look at prime ideals other tha@2, 4/14), the situation is quite different.

Proposition 3.2. Let K = Q(+/14), and letp be a prime ideal inOx of normNp =
41 mod 8. Thenvw(p) = @.

Proof. Assume thatfy . is a Euclidean function. Then there exists an

a=x+yv14=1++/14 mod 2

suchthatfy .(a) < fp,c(2) = 4. Sincex cannotbe a unit, thisis possible onlyifs divisible
byp. Ifa is divisible by some other prime ideglthenf, .(q) = Nq > 5, and we conclude
that f,..(p) < 1, a contradiction. Thugx) = p™ for somem > 1. Butp = (a + bv/14)
sincek has class number 1, andnust be even sincé p = a? — 14b% = +1 mod 8: thus
a +by/14 # 1+ /14 mod 2, and again we have a contradiction. O

4. The Euclidean algorithm if(+/69)

Next we study the field(+v/69); we shall prove the following result, which corrects a
claim announced without proof id 8], namely thatM2(K) < M2(K), and thatM>(K) is

isolated.
Theorem 4.1. In K = Q(+/69), we have
25 4
M1—2_37 Clz{iz—S«/G_g},
M—l—5 11— /69 Co={(£P.,+P)},r >0
2_46< - )’ 2_{ T r}ar/
where
1 4 1 1 4 1
Po=-¢"4+—=+ e ) /609, P=-¢"— (— + —e_r) V69.
2 (23 2./69 ) 2 23 2,69
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Here M; denotes thg'th inhomogeneous minimum of the norm forn®gf, C; is a set of
representatives modul®x of the points wheré/; is attained, and = (25+ 3+/69)/2is
the fundamental unit of . The second minimunM>(K) = M»(K), is not isolated.

The proof of Theorem.1is based on methods developed by Barnes and Swinnerton
Dyer[1]. Inthe discussion that follows, we shall regérds a subset &2 via the embedding
(x +yv/69) —> (x, y). Conversely, any poin® = (x, y) € RZ = K corresponds to a pair
Ep = x + yv/69,£), = x — y+/69. These elements are not necessarilil jmevertheless,
we callé, = x — y+/69 theconjugateof &p. Note, for example, thagpr = /69 alone
does not determine, since bothP = (0,1) and P = (+/69,0) correspond to such
a&p. The K-valuations'| - |1 and| - |» are defined byi(x, y)|1 = |x + y+/69| and
[(x, y)|2 = |x — y~/69], with a positive square root of 69.

Using the technique described in [6], it is easy to cover the whole fundamental doma
of the lattice® g with a bound ofk = 0.875, except fortSo U £51 U 82 U T, where

So = [-0.00085, 0.00085] x D.1739,0.1742;
S1 = [ 0.01917, 0.02005] x P.1763,0.1765];
S> = [-0.02005,-0.01917] x D.1763,0.1765];
T = [ 04999, 05001] x [0.2341,0.2342.

We find, transforming these exceptional sets by multiplication with the unasd
£ = (25— 3v69)/2, for example, that

£So C 18+ 269+ [—0.012 0.041] x [0.172 0.179];

that is,eSo — (18 + 24/69) is contained in covered regions 8§ U S1, which we shall
denote byt Sy — (184 24/69)C So U ;. Similar calculations show that

eSo — (18+ 2\/6_9) C SoUS1; ESo+ (18— 2\/6_9) C SoUSo;
eS1—(18+2V69) < T; gS1+ (18—2v69) T SoU Sz
eS2— (18+2V69) C SouUSy; S+ (19-2V69) C T;
eT — (61+769)/2 T Sz T+ (18—2/69) C S1.

Remark. The inclusions on the right-hand side can be computed from those on the left: fc
example, all exceptional points i must come fronf’, so the exceptional points i1,
must be congruent modut®x to points in7', and sincg61+ 74/69)/2¢ = 19 — 24/69,

we conclude thagS, 4+ (19— 24/69)CT.

We shall need the following result (this is [6, Proposition 2]).

Proposition 4.2. Let K be a number field, and a non-torsion unit of£x . Suppose that
S C F has the following property.

There exists a unique € Ok such that, for alE € S, the element§ — ¢ lies
in a k-covered region of, or againinS.

Then every-exceptional poinkg € S satisfiegég—6/(e — 1)|; = Ofor everyk -valuation
| - |; such thate|; > 1.

We also need a method to compute Euclidean minima of given points. Recall that tt
orbit of ¢ € K isthe set Ork¥) = {¢¢ : ¢ € Eg}, whereEg is the unit group of9k . Note
that all the elements in an orbit have the same minimum.
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Proposition 4.3. Letm e N be square-free, lek = Q(4/m) be areal quadratic number
field, lete > 1be aunitinOg, and leté € K. If M(K, &) < k for some reak, then there
exists an element = r + s/m € K with the following properties.

(i) n=§& modOk for somet; € Orb(é).
@iy INn| <k.
(iil) 1r] < m, Is| < p/+/m, wherep = (Vk/2) (/e + 1//e).
Proof. Assume thatM (K, &) < k; then there is ax € Ok such thatN( — a)| < k.

Choosen € Z such that/k/e < |(§ — a)e™| < ke, and puty = (¢ — )e™. Then we
prove the three parts of the proposition as follows.

() n= (& —a)e™ =£&c™ mod Ok, and clearlyée™ € Orb(&).
(i) [Nnl=INE — o) < k.
(i) Write n = r + s/m andy’ = r — s/m. Then|n| < Vke and|n’| = |n1'|/In] <

k/Inl < vke. Thus 2r| = [n+n'| < [l + || and 3s|/m = [n — 0’| < [n|+ |-
Using the lemma below, this yields the desired bounds.

This concludes the proof. O
Lemma 4.4. If x, y are positive real numbers such that< a, y < a andxy < b, then
x+y<a+b/a.

Proof. 0 < (a — x)(a — y) =a2—a(x+y)+xy <a2—a(x+y)+b. O
Now we are ready to determine a certain class of exceptional points ifiside

Claim 4.1. If Pisan exceptional pointifig that stays insidép under repeated applications
of the maps

a & —> e 16 + 18— 2469, (1)
B if —> g€ — (18+ 2@) : )

thenP = (184 2v/69)/(c — 1) = (0, 4/23). MoreoverM (P) = 25/23.

This follows directly from Propositiod.2; the Euclidean minimum (P) = 25/23 is
easily computed using Propositidri3. Any exceptional point that does not stay insfge
must eventually come throudft it is therefore sufficient to consider exceptional points in
T from now on.

Let Py € T be such an exceptional point, and define the series of pBytBs, Po, ...
recursively byP; 1 = «(P;). ThenPy € S1, and now there are the following two possibil-
ities.

(A) P e Soforall j > 2.
(B) Thereis am > 2 such thatP, € ;.

Before we can go in the other direction, we have to adfiggtomewhat. In facig (Pp) €
T implies that (Po) — e S»; thus we can define a sequence of pofgs-1, P_1, P_o, ...
by P_1 = B(Po—1)andP_;_1 = B(P_;) for j > 1. Again, there are two possibilities.

(C) P_jeSoforall j > 2.
(D) Thereisam > 2 such thatP_, € S1.
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Claim 4.2. If Py € T is an exceptional point satisfying conditions (A) and (C), then

1 4 1
Po (2, 23+ 2@) (0.5,0.234105).

Note that this point is not contained K. Of course, we knew this before: every point
in K has a finite orbit, whereaR; does not.

For a proof, we apply Propositioh2to the setS = {Pg, P1, Po, ... }; this shows that
any& = P; lies on the linel + (18 — 2v/69)/€ — 1)]2 = 0 (the K-valuation| - |5 is
chosen so tha|, > 1); that is,&’ = —(4/23)v/69. Applying the same proposition to
S={Pyp—1, P 1, P_p,...}Qives

’g 18+ 24/69

=0, with
e—1

1

184+2V69 4
—— = —=+/69;
e—1 23 '

hence suctPy = (x, y) satisfyx + y~/69= 1+ (4/23)+/69.

Thus any poing = Po giving rise to a doubly infinite sequencg)), <z, that stays inside
So modulo®g for all j # 0, +1 satisfies = 1+ (4/23)v/69 andé’ = —(4/23)/69. If
we write Py = (x, y), then this gives

1 1 1
= _(+E&)== and [ ——+—’\’02341059
X 2(5 §) 5 y= : _(E £') 2769
as claimed.

Before we go on exploring the other possibilities, we study the orlfppaind compute
its Euclidean minimum.

Claim 4.3. The pointsP, = ¢~ Pp mod Ok in the orbit of Py coincide with theP, given
in Theorem4.1.

This is done by induction: the case= 0 is clear. For the induction step, notice that
s x, y) = (2—5x BN §x) ;
2 4 2 2
now

ip (258, g 207,80, 25 38,.)
"\4 2/69 23 4@ 4

—(~18.2) + ((— = —~/_9) 23 +(- % + 42_\/%)84)

(-18 2)+(1e’1 22 ’1)
= - k] . Y AA —F=F¢
2 23 269

= Py mod Ok .

Next, one can compute thaPy = (61/2 7/2) — P; and can show, again by induction, that
e’ Po = — P/ mod Ok forall » > 0. Thus the orblt ofPy under the action of the unit group
Ek of Ok is represented modukok by the point+P,, +P/ : r > 0}.

Claim 4.4. The pointsP, have Euclidean minimum

—5(11—@).

M(K, P,) = M(K, Po) = 76
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First, we observe that the poin® have the same Euclidean minimum, since they all
belong to the same orbit. Now assume that ¢ + u./m has positive norm. We want to

apply Propositiort.3and finde 1 = ¢ — u/m; hence
1 \2
—> =2t+2 and pu= .
&

(«/E+f >

In the case where: = 69, we have = 25/2, and hencg//m = Vk/27/276< Vk/3.

The orbit of Py = 1/2 + (4/23 + (1/24/69))v/69 is {£P,, P/ : r € Ng}, so it
is clearly sufficient to comput/ (K, P,) for r > 0. We start withPy itself. The only
n = Pop mod Ok satisfying the bounds of Propositidn3 have the formPp + a for some
a € 7, 0r By— (b+ +/69)/2 for some odd € Z. The minimal absolute value of the norm
of these elements {8V (n — (54 +/69)/2)| = (15/46)(11— v/69).

Similarly, the minimal norm for the = P; mod O is attained at’; + (5 — v/69)/2,
and again equald5/46) (11— v/69).

Finally, consider the) = P, mod Ok for somer > 2. ThenP, = x, + y,+/69 with
|x] < 0.00081=: §g and|y, — 4/23| < 0.0001=: 8;. The minimal absolute value of the
normof P, +a forsomen € Zisattained forr = 1, and equal|5(1+80)2—69(4/23—81)2| >
1.07; similarly, we find thatN (P, — (b + v/69)/2)]| > 1.07.

Thus we have seen that ifiivN (P, — «)| : @ € Ok, r € Z} is attained forr = 0 and
o = (54 +/69)/2, givingM (K, Po) = (15/46)(11— +/69), as claimed.

Before we go on, let us recall what we now knol’:= Q(+/69) has first minimum
M1(K) = 25/23, andM; is isolated. Moreover, the orbit of evekyexceptional point
for k = 0.875 that is not congruent t(4/23)/69 mod@x has a representative in the
exceptional seT'. Finally, if the orbit of such a point visit§ exactly once, then the pointis
Po = 1/2+(4/23+(1/2/69))v/69, and its minimum 8/ (K, Po) = (15/46) (11— +/69).

k(t+1)

Claim 4.5. Any exceptional poinD # Ppin T has Euclidean minimum
15
M(K. Q) < M(K, Po) = 22 (11~ V/69).
andM»>(K) = M(Py) is attained only at points in the orbit ¢5.

In fact, let Qg # Py be an exceptional p_oint ifi, and consider the orbftQ, : r € Z}
of Qo, where theQ; are defined by); = ¢~/ Qo mod Ok . SinceQq # Py, we know that
we are in one of the following situations:

1. (A) and (D) hold;
2. (B) and (C) hold;
3. (B) and (D) hold.

In each case, there exists a pofht£ Py in T,with an orbit that moves int@ both to the
right and to the left:

T — 8 — S So0—851—0—>8—>8So—>851—T---.
3

Now we prove the following lemma.

Lemma 4.5. Suppose that there is @ € T such thatQ1 = (Qo — 1) € S2 and
Omi1 = (x,y) = B"(Q1) € S1 with  as in map(2). Thenx — y+/69 < —(4/23)./69.
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Proof. Write 0, = (x,, y») and pug;, = x, — y,~/69. Theré] ~ —1.48 < —(4/23)v/69;
now we use induction to show thigt < —(4/23)v/69 for 1< n < m
Infact, if 0,11 = B(xx, yu), then

Eart = (&0 — (18+2V69))
= ¢t — 18+ 2v69

4
< —8’23«/6_9— 18+ 269

4
= ——+/69.
23\/_
. N O
A similar result holds for the other direction.
Lemma 4.6. Suppose there is @9 € T such thatQ_1 = a(Qg) € S1andQ_,,_1 =
(x,y) =a™(Q_1) € So. Thenx 4+ yv/69 > 1+ (4/23)v/69.
Proof. The proof is similar. O

This shows that, in orbit (3), we have
B 4 ;o 4
§>go_1+2—3~/@ and & <g)= 2—3«/@

for the pointQ = (x, y) andé = x + y+/69,&” = x — y+/69. Pute = & — (5+ +/69)/2
ande’ = &) — (5—+/69)/2. Then—aa’ = (15/46)(11- +/69), and, sincex < 0 and
o >0,0< (58— (5++69)/2(& — (5—+69)/2) < —aca’. Thus any such point has
Euclidean minimum strictly smaller that5/46) (11— V69).

Claim 4.6. The second minimun¥>(K) is not isolated.

This is accomplished by constructing a series of rational pghtg K \ C such that
lim, o M(Q,) = M2(K). To this end, we look for a poin®, € T — 1 that gets mapped
(multiplication bye plus reduction modul@g) to Sy, stays inSp exactlyr times, and then
goes toS; and back to the point i congruent toQ, mod Ok ; then Q, will satisfy the
following equation:

8r+4Qr _ Sr+4+ (8"4‘3 +---+e4+1)(18+2v69) + Q,.

(For more details, see the analogous construction of the pRjnits Section5.) This gives

4 1
0, =1+ Z))\/6_9+ T
Tablel gives explicit coordinates for small valuesrof
We claim thatM (Q,) tends toM»(K) = (15/46)(11— v/69) ~ 0.87827 ag —> 0.
Applying Proposition4.3 shows that, for givem > 0, the Euclidean minimum of, is
attained a, — ((5++/69)/2). Writingn = r + 4 andQ, — ((5++/69)/2) = (£,&') we
have

3
£ = —5——¢—9 T

, 3 5 15
S———‘l‘ \/_9+ 1 §+4—6\/6_9—m7

https://doi.org/10.1112/51461157000000334 Published online by C3¥bdidge University Press


https://doi.org/10.1112/S1461157000000334

Euclidean windows

Table 1: Euclidean minima of son@,

r Qr M(Qy)

1 97 541 ~
1 1+ 20/69 ¢ ~ 0871175523

0 14+70/69 151~ 0877990738

1 J+228/60 38O ~0.878263446

10350
6989 / 8508391 ~
2 3 3+ 2os52V 09  gggrem  ~ 0.878274371
1 30239 212369041
3 1+ 302969 3212369081 ~ 0.878274809

1 174445 5300717776 .
4 14 1aads /g9 SS00TLITIS ~ 0.878274826

and now we find that

V69 , — 15/69
(oS5 = e IR (1 ).

Since the ‘error term’

8"1—1(_14_;_2\/6_9)

is positive and tends to 0 as—> oo, Claim4.6follows, and Theorerd.1is proved.

5. Weighted norms i@(v/69)

Now we study the weighted norpf, . defined byp = (23,4/69). We claim that the
following theorem holds.

Theorem 5.1. LetR = O be the ring of integers ik = Q(+/69), and letp = (23, +/69)
be the prime ideal abov&3. Then the Euclidean window ¢f= f,, . is w(p) = (25, 00);
the Euclidean minimum is

25 75
MiOx. fy.o) = max| =, 22(— 8+ /69)|

forall ¢ € w(p), and M is isolated exactly when e [23, (23/15)(8+ +/69)).
Using the method described ifi|[ with some modifications described in the next section,

we can cover the fundamental domain@g with a bound ofk = 0.99 except for a set
surrounding(0, 0) that contains no exceptional point, afid; U S, U &S5, where

S1 = [-0.00840.0084 x [0.1739,0.175];
S = [0.2086,0.2087] x [0.19903,0.19904;
S, = [0.2086,0.2087] x [-0.19904 —0.19903].
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Transforming by units, we find that

eS1— (18+2v69) C S1USy; gS1+(18—2V69) T S1U(—S));
eSp — (23+3V69) T Sy g2+ (18— 2v69) C Sy
eSy+(18+2v69) & —S1;  #S5—(23—-3V69) T S

Claim 5.1. If P is an exceptional point that stays insigieunder repeated transformations
by e ande 1, thenP = (0, 4/23) has Euclidean minimum (P, fp.e) =25/c.

This is easy to see. Again, this enables us to reduce everything to exceptional poi
P € S5, and for the orbit P;) of suchP (whereP;, 1 is the image of; under multiplication
by ¢ plus reduction modul@g) there are the following possibilities.

(@) P, e =S1andP_; € Syforall j > 2.
(b) There existn # n such thatP,,, P, € S».

Claim 5.2. If Py € S is an exceptional point with property (a), then

, (-115+ 1569 —5+ /69
0:

46 T 269

For a proof, suppose th& is a point inS, with property (a). Then
PL=—ePo+ (23+3V69) € -5,

) ~ (0.208681690.19903536).

andP, = ¢ P1 — (184 2+/69) is a point for which the transforms by powerscaftay inside
S1. By Propositior. 2, this implies thatP; — (4/23)v/69|, = 0, and going back td we
find that| P — (— 5+ (19/23)/69)|, = 0.

Similarly, any exceptional poirit € S» with transforms by powers af that stay inside
S1 satisfieqé; + (4/23)\/§3|2 = 0. Thus any point satisfying property (a) hasoordinate

E+&  —115+15/69

2 46
andy-coordinate

£E—& —5+.69

2,69 269

as claimed.

Note that there is no obvious definition of a ‘Euclidean minimumPgfwith respect to
weighted normg;, , sincef;, . is a continuous function ok (with respect to the topology
inherited from the embedding — R?) if and only if ¢ = p; that is, if and only if]},c is
the absolute value of the usual norm. Thus we cannot exfgpdby continuity toR<. On
the other hand, we can put

M(P, fy.c) =SUp{M(P,, fy.o) : P, € K, lim P, = P};

that is, we define theinimum at a poin € K as the supremum of the minimaBt € K
over all sequence&,) converging toP in the topology mentioned above.# € K, then
clearly M (P, fp.e) = M(P, fp.c), as the constant serigd = P shows. We do not know
of any example where this last inequality is strict.
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Claim 5.3. We haveM (Pp) < ko = (75/23)(—8+ +/69) for all ¢ > 23. Moreover, any
K -rational exceptional point with property (b) has minimum strictly smaller tharn
particular, we haveM1(K) = 25/c for all ¢ € [23, (25/23)(24+ 3v/69)], and M1 is
isolated for these values of except possibly whea = (25/23)(24+ 3+/69).

We start by observing that

94— 10,69
IN(Po=2)] = ——=—— ~ 047538092916, and
1 —600+ 7569
‘N (Po - §(5+ «/69)>‘ = %‘/_ ~ 0.99986042255.

Using the same technique as in Lemmasand4.6, we can show that th&-rational
points in S2 that satisfy condition (b) have a minimum that is strictly smaller thgn
observe that the differenog — 7, for n1 = (54 +/69)/2 andn, = 2 is not divisible
by p, and hence we havg, .(Po — nj) < [N(Po—n;)| for j = 1 orj = 2. Since any
sequence ofK -rational pointsP, converging toPy eventually stays insidé, this also
proves thatM1(O, fp,c) = 25/cas long as 2& > «o; but the last inequality holds for
all ¢ < (23/15)(8+ +/69) ~ 25.0034899. It also shows that the minimum is isolated for
these values, except possibly whes: (23/15)(8+ +/69).

Claim 5.4. We haveM (P, fp.e) = ko = (75/23)(—8+ +/69) for all ¢ > 23, and
M(Po, fp.c) = M(P) = (94— 10/69)/23 forc = 23.

In order to show thatg is a lower bound foM (Pp) for ¢ > 23, we construct a series
of K-rational points converging t&p, with minima that converge tog. We do this in the

following way: assume thak, € S, gets mapped t85, stays in—S; exactlyr — 2 times
and then gets mapped to the poiR, € —S>. Then

eR, — (23+3v69) € S5,

e?R, — (23+369) + (18+2/69) € —S1, ... ,

e R, — e 123+ 3V69) + (18+ 2v/69) (1 + e+ ---+& 2 e -5
and finally

r —
(¢ + 1) R, = &7 (23+ 3V/69) — (18+2v69) =

Now we usee” —1)/(e — 1) = (¢/t1 = 1)/(e — 1) — ¢" to find
r+1 -1

-1
r+1 -1

("1 + 1R, = ¢" (414 5V69) — (18+ NT))

=T~ 5+/69) — (18+ 2¢_9)

Dividing through bys"+! + 1 and simplifying, we get

15
Ry = 5+ v69+ ,+1+1(5—2—3@)~

The explicit coordinates for the first few points are given in Table

Claim 5.5. The Euclidean minimum aR, (r > 2) with respect tgf,, . is attained aR, —2
orR, — (54++/69)/2.
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Table 2: Euclidean minima of son&.

r R, [N (R, — 35+ /69))] [N (R, —2)]

1 4+ 1v69 2 =092 2 =048

2 2+ 269 38> ~0.996656378 182 ~ 0.475565843
3 By+pivee /02~ 0999732047 1812~ 0475388337
4 124 108/69 386228 5 0.990855279 4835316~ 0.475381225
5 S84+ 5560 24881~ 0999860216 3339483~ 0.475380941
6 2120 + 28782./69 SO031332375 ~ 0.999860414 2333361516~ 0.475380929

In fact, by applying PropositioA.3to R,, one checks that the two smallest values of
IN(R, — n)| occur forny = 2 orno = (5+ +/69)/2; one also verifies thalv (R, — 2)| ~
0.47 and|N (R, — (5++/69)/2)| ~ 0.99. Since the denominator & — 7 is not divisible
by p for anyn € Ok (it dividese”** 4+ 1 = 2 modp), and sincej; — 7 is an integer not
divisible byp, our claim follows.

Where the minimum with respect t . is attained depends on whether the numerator
of R, — 2 is divisible byp or not: if it is not, then the Euclidean minimum is attained there,
and we haveM (P, fp ) = IN(R, — 2)| < 1/2. If this numerator, howeves divisible by
p, then f, (R, — 2) can be made as large as we please by adding weightatod in this
case the minimum is attained Bt — (5 + +/69)/2 for large values of.

Claim 5.6. The numerator oR, — 2 is divisible byp if and only if » = 10 mod 23. In this
case, it is even divisible b§23) = p2.
Let us computeR?, modp. Sincee = 1 modp, we find that
8r+1 -1
———=1+4¢+4+---+¢& =r+1modp;
e—1
hence
-1
2R, = ¢"(23+ 3v/69) — (18+ 2@)8—1 = 5 modp,
e —
and therefor&r, — 2 = 0 modp if and only if 5 = 4 mod 23, which in turn is equivalent

tor = 10 mod 23.
The second part of the claim follows by observing that

& = (14 13V/69) = 1+ 135v/69 mod 23;

in particular,
e23m+10= 1 4 1369 mod 23
and
Zr__ll e g e 1=r+1413° Y /65 mod 23
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With a little more effort, we can show much more, namely that there is a subsequence
R, — 2 with numerators divisible by an arbitrarily large powepofn fact, the numerator of
R, — 2 will be divisible bypX if and only if 7, = 23(¢ 1+ 1)(R, —2) = 0 modp*+2, and
hereT, is an algebraic integer. An elementary calculation shows that the last congruence
equivalent to
_47+5/69 =: o mod p~+2. (4)

22

This will hold for arbitrarily largek if and only if there is a 23-adic integer= r + 1 such
that

€r+l

& =a (5)

holds inK, = Q23(+/69). Since both sides are congruent 1 nydve can take the -adic
logarithm (withzr = (234 3+/69)/2) and get = (log, «)/(log, ¢) as an equation iy,
and equationg) holds if we can show thatis in Z>3. To this end, let- denote the non-trivial
automorphism oK, /Qz3. Since log is Galois-equivariant, and singét? = o1to =1,
we get

_log,«” —log, o

“log,e”  —log,e

o

Thuss € @23, and since it is ar-adic unit,s € Zp3 as desired. We remark that
§=11+13-23+15.23+5.233+3.23 +....
This proves Clain®.4, and completes the proof of Theorém.

6. Weighted norms in cubic number fields

Using the idea of Clark (see [8, 11, 17]; it actually first appeared in work by Lenstra
[14, p. 35]), we slightly modified the programs describeddinr order to examine weighted
norms in cubic fields. Many of the results in this section were obtained by the first authc
and described in [5]; see Tabidor the results obtained so far.

The idea is simple. Assume tha&t is a number field with class number 1, such that
M = Mi(K) > 1 andM>(K) < 1; assume that@ (K) is finite, and write the points
& € C1(K) (1 <i <t)inthe formg; = «;/B;i, where(a;, B;) = 1. Assume, moreover,
that there is a prime idealsuch thap | g; for all i.

Now consider the weighted norryi, .; by making ¢ big enough we can certainly
arrange thatf, .(¢§,) < 1 for all i < ¢; in fact, if p” || gcd(By, ..., B, then
fp.c(&) < M(Np)"c™™, thus we need only to choose> Np /M. (Actually, this shows
thatw (p)  (Np V/M, 00).)

To guarantee that, for evetye K, there exists & € Ok such thatf, .(§ —y) <1,
we shall look forys, y2 € Ok suchthaiNg (& —yi)| < 1fori =1,2andp { (y1 — y2);
then at least one of the— y;, sayé — y1, has a numerator that is not divisible pyand
this implies thatfp,c (€ — y1) < [N — y1)| < 1.

Modifications of the programs described #] pllow us to find new examples of cubic
fields that are not norm-Euclidean, but are Euclidean with respect to some weighted nor
We represented prime ideals of the maximal order = Z @ «Z @ BZ in the form
p=(p,a+a),p=(p,B+aa+b)orp=(p),according to whethegr has degree 1, 2
or 3. Testing the divisibility of an integer @x by p can then be done using only rational
arithmetic.
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Table 3: Euclidean windows for cubic fields

disck M1(K) M>(K) Np w(p)
—367 1 9/13 13 (13,279/8)
—351 1 9/11 11 (11,00
—327 101/99 <09 11 (101/9,00)
—199 1 <047 7 (7,00)

985 1 5/11 5 (5, 00)
1345  7/5 <04 5 (7,00)
1825  7/5 <05 5 (7, 00)
1929 1 3/7 7 (7,00)
1937 1 5/9 3 (3,00)
2777  5/3 1719 3 @
2836 7/4 78 2 (W7, 00)
2857  8/5 <05 5 (8, 00)
3305  13/9 3745 3 (J/13,5)
3889  13/7 1 7 (13,00)
4193 7/5 <065 5 (7,00)
4345  7/5 113 5 (7,00)
4360 41/35 7/10 7 (41/5,00)
5089 17/11 7/11 11 (17,00)
5281 1 <06 5 (5, 00)
5297 21/11  23/33 11 (21,00)
5329  9/8 6373 2 (9,73)
5369 21/19  17/19 19 (21,00)
5521  23/7 87 7 (23,00)
7273 973/601 729/601 601 (973,00)
7465 1 <08 5 (5, 00)
7481 1 <07 5 (5, 00)
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Let us callé € K coveredif there existy1, y2 € Ok such thatNg (¢ — y;)| < L and
p 1 (y1 — y2); if & is covered, then so igt for any unite € O (this allows us to use the
program E-3 of [6]).

We first consider the fiel&k generated by a roat of x2 + x2 — 6x — 1; we have
discK = 985, and the only point with minimum greater than or equal to 1 is

B30 —0? 22—+ 202
§1= = )
a—1 5

Theideab = (¢ —1)occurring in the denominator is a prime ideal of norm 5. Our programs
cover a fundamental domain &f, except for the possible exceptional poigts= 0 and
& = &1. Thusf . is a Euclidean function for every> Np = 5; thatis,w(p) = (5, c0).

Now let K be the field with dis& = 1937 generated by a roetof x3 4+ x2 — 8x + 1.
It has Euclidean minimun/ (K) = 1 attained a(4 + 402)/9; in fact, |N (¢£1)| = 1 for
£1 = (—14+ 9a + 4a?) /9, and the prime ideal factorization &f is

() =B, ?+ 1B a+ 172

Our programs cover a fundamental domain Kf except for the possible exceptional
pointséyg = 0, & = & andé = (1 + «?)/3. This last point has Euclidean minimum
1/3=|N(1 — 3« + «?) /3| with respect to the usual norm, and site 3a+a?)/3 = p~1,
adding weight tgp does not increase its minimum.

Our third example is the cubic field with discriminant dis& = 3305, generated by
aroota of x3 — x2 — 10x — 3. It has minimumV/; = 13/9, attained atl — 2« — 4a?) /9,
with |N(£1)| = 13/9 for& = (=71 + 520 + 32¢2)/9. Its prime ideal factorization is
(€1) = (13, a — 1)(3, )~2; we thus add weight > +/13 top = (3, «), and we can cover
a fundamental domain df, except for the possible exceptional poiggs= 0, & = &; and
£=(2—a+20%)/5 NowM (&) = |N(&)| = 3/5, wheret; = (—3 + 4o + 20%)/5 has
the prime ideal factorizatiottz) = p(5, « + 2)~L. Thus the weighted prime ideal occurs
in the numerator of,, and we havefy, .(§2) < 1ifand only ifc < 5; since|N(¢)| > 1 for
all &£ = & mod Ok, this implies thatw (p) = (+/13,5).

Finally, consider the cubic fiel& with discriminant dis& = 3889. Its first minimum
is attained at, = (3—a — 3e?)/7, and its denominator is the prime idgahat divides the
denominator of» = (2—3a —2a?) /7, where the second minimuii>(K) = 1 is attained.
(Something similar happens for di&kc= 5521 and dis& = 7273, whereM»(K) > 1;
in these cases, we have to verify thdt(K) < 1.) Here we find the possible exceptional
pointsé = 0, &1, andép, as well as

1 1 1
171:7(1—05—20[2), n2:7(2—2a+3a2) and n3=7(3—3a+a2).

Since their denominator is the prime id€dl 2 + «), their Euclidean minimum is 1/7, for
both the usual and the weighted norm.

Some of our examples of cubic fields that are Euclidean with respect to some weight
norm were found independently by Amin Coja-Oghlan, and are described in his th@sis [

7. Norm-Euclidean cubic fields

We take this opportunity to report on recent computations concerning norm-Euclidee
cubic fields. Calculations for the totally real cubic fields up to dise< 13,000 have
produced the results shown in Taldle
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Table 4: Norm-Euclidean real cubic fields

disck E N P
0<d< 1000 26 1 27
1000<d < 2000 29 5 34
2000<d < 3000 31 4 35
3000<d < 4000 36 6 42
4000<d < 5000 28 7 35
5000<d < 6000 35 7 42
6000<d < 7000 30 8 38
7000<d < 8000 37 10 47
8000<d < 9000 30 11 41
9000<d <10000 29 10 39
10000< d < 11000 34 9 43
11000<d < 12000 37 16 53
12000< d € 13000 31 6 37
by 413 100 513

The columnsE andN display the number of norm-Euclidean and non-norm-Euclidean
number fields of fields with discriminants in the indicated intervals.

We also have to correct the entries for the fields with discriminant 3969 in our tables i
[6]: the field K1 generated by a root af —21x— 28 hasM1(K1) = 4/3, M>(K1) = 31/24
andM3(K1) = 1, and the fieldk» generated by3 — 21x — 35 hasM1(K») = 7/3 and
M2 (K2) = 125/63.

For complex cubic fields, calculations by R. Quéme have indicated that the fields wit
discriminants dis& = —999 and dis& = —1055 are not norm-Euclidean, and we have
subsequently been able to verify thet(K) > 294557/272112 for dis€ = —999, that
M(K) > 1483/1370 for dis& = —1055, and that there are no norm-Euclidean number
fields with—876 > disckK > —1600, suggesting the following conjecture.

Conjecture. There are exactly 58 norm-Euclidean complex cubic fields, and their discrimi
nants are-23,-31,—44,-59,-76,—83,-87,—-104,—-107,-108,—-116,—135,—-139,
—140,-152,-172,-175,—-200,—204,—211,—-212,—216,—231,—239,—243,—-244,
—247,-255,-268,—300,—324,—-356,—379,—411,—419,—424,—431,—-440,—451,
—460,—-472,—-484,—-492,—-499,-503,—-515,-516,-519,-543,-628,—-652,—687,
—696,—728,—744,—771,—815,—-876.

Note that, by a result of Casself[there are only finitely many norm-Euclidean complex
cubic number fieldX, and in fact their discriminant is bounded hgiscK| < 170 520.

Inthe real case, the situation is not so clear. The numerical data suggest that the propor
of norm-Euclidean fields is decreasing with discbut they do not yet support the conjecture
that the norm-Euclidean real cubic number fields have density 0 among the real cubic fiel
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Table 5: Norm-Euclidean complex cubic fields

d = |discK]| E N X
0<d< 200 18 1 19
200<d< 400 15 9 24
400<d < 600 16 10 26

600<d< 80 7 20 27
800<d <1000 2 29 31
1000<d <1200 0 29 29
1200<d <1400 O 35 35
1400<d <1600 O 27 27

) 58 160 218

with class number 1; in particular, there may be infinitely many norm-Euclidean real cubi
number fields.

8. Some open problems

In this last section we should like to mention several open problems concerning the E
clidean algorithm with respect to weighted norms. One of the most widely studied questiol
is, of course, whethe[+/14] is Euclidean with respect to sonfg., wherep = (2, v/14).

Is it true, in particular, that (p) = (+/5, +/7) in this case?

More generally, assume that is a number field with unit rank 1. Isw(p) always an
open subset ofl, co) C R for every prime ideap in Ok ? If this were the case, then there
would also exist number fields such thigt. is a Euclidean function for some< Np, since
there do exist number fields with(p) 2 [p, oco) for suitable primes (take norm-Euclidean
fields, for example).

A related question is whethe (f, () is a continuous function aof on [Np, oo) for
number fields with unit rank: 1.

The cubic field with discriminant dis€ = —335 hasM;(K) = 1; the minimum is
attained at points that have different prime ideals above 5 in their denominators. Calculatio
have not yet confirmed th&ty is Euclidean with respect to a norm that is weighted at two
different prime ideals. Similar remarks apply to algorithms with respect to functions that ar
not multiplicative: instead of giving weiglatto a prime ideap, one could look at functions
with f(p) = Np and f(p?) = ¢ for somec > Np2. This idea is applicable whenever
the denominators of the exceptional points are divisible by the square of a prime ideal; f
example, foZ[+/14].

Acknowledgements. We thank—in chronological order—Hendrik Lenstra, Gerhard Niklas
and David Kohel for the argument used to prove Claidh

Note added in prooMalcolm Harper 2] has proved that, in particular, the rifign/14] is
Euclidean with respect to a suitable Euclidean function, by extending the methods used
[9]. The question of whethéZ[+/14] is Euclidean with respect to a weighted norm remains
open.
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