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Abstract

We consider the anti-ferromagnetic Potts model on the the integer
lattice Z2. The model has two parameters: q, the number of spins,
and λ = exp(−β), where β is ‘inverse temperature’. It is known
that the model has strong spatial mixing if q > 7, or if q = 7 and
λ = 0 or λ > 1/8, or if q = 6 and λ = 0 or λ > 1/4. The λ = 0
case corresponds to the model in which configurations are proper q-
colourings of Z2. We show that the system has strong spatial mixing
for q � 6 and any λ. This implies that Glauber dynamics is rapidly
mixing (so there is a fully-polynomial randomised approximation
scheme for the partition function), and also that there is a unique
infinite-volume Gibbs state. We also show that strong spatial mixing
occurs for a larger range of λ than was previously known for q = 3,
q = 4 and q = 5.

1. Introduction and statement of results

1.1. The anti-ferromagnetic Potts model

We consider the anti-ferromagnetic Potts model on the integer lattice Z2. The set of spins
is Q = {1, . . . , q}. Configurations are assignments of spins to vertices, and � = QZ

2

is the set of all configurations. A region R is a (not necessarily connected) subset of vertices,
and σR denotes the restriction of configuration σ to R. �R = QR is the set of all such
restrictions. If R is a finite region, then its vertex boundary, ∂R, is the set of vertices that
are not in R, but are adjacent to R. A boundary configuration on ∂R is a function from ∂R

to the set {0} ∪ Q. The spin ‘0’ corresponds to a ‘free boundary’ which does not influence
the vertices in R. Let E(R) denote the set of lattice edges that have at least one vertex in R.
Given a region R and a boundary configuration B on ∂R, the energy of the configuration
σR ∈ �R is given by the Hamiltonian

H(σ) =
∑

(i,j)∈E(R)

βδ(σi, σj ),

where β ∈ R is the ‘inverse temperature’ and

δ(s, s′) =
{

1, if s = s′;
0, otherwise.
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Improved mixing bounds

The partition function Z is equal to
∑

σ∈�R
exp(−H(σ)). The finite-volume Gibbs measure

πB is the distribution on �R in which, for every σ ∈ �R , πB(σ ) = exp(−H(σ))/Z. If
we let monσ (E(R)) denote the number of monochromatic edges in E(R) and take λ =
exp(−β), it is apparent that πB(σ ) is proportional to λmonσ (E(R)).

In the zero-temperature case β = ∞, we have λ = 0, and πB is the uniform distribution
on ‘proper’ colourings, which are configurations without monochromatic edges. In this
paper we will focus on the situation in which the temperature is non-zero, so λ ∈ (0, 1].

For any � ⊆ R, πB,� denotes the distribution on configurations of �� induced by πB .

1.2. Strong spatial mixing

If the parameters q and λ are chosen appropriately, then the anti-ferromagnetic Potts
model has strong spatial mixing. Informally, this means that for any finite region R, if you
consider two different boundary configurations B and B ′ on ∂R which differ at a single
vertex y, then the effect that this difference has on a subset � ⊆ R decays exponentially
with the distance from � to y. The formal definition below is taken from [5] but has been
adapted to the special case of the anti-ferromagnetic Potts model on Z2.

Definition 1. The anti-ferromagnetic Potts model on Z2 has strong spatial mixing for
parameters λ and q if there are constants η and η′ > 0 such that, for any non-empty finite
region R, any � ⊆ R, any vertex y ∈ ∂R, and any pair of boundary configurations (B, B ′)
of ∂R which differ only at y, we have

dTV(πB,�, πB ′,�) � η|�| exp(−η′d(y, �)),

where d(y, �) is the lattice distance within R from the vertex y to the region � and dTV
denotes total variation distance.

We assume that y is not a free-boundary vertex in either configuration. That is, By ∈ Q

and B ′
y ∈ Q.

Strong spatial mixing is an important property because of two, related, consequences.
First, strong spatial mixing implies that there is a unique infinite-volume Gibbs measure on
configurations in �. Qualitatively, there is one equilibrium, not many. Second, strong spatial
mixing implies that Glauber dynamics can be used to efficiently sample configurations
from πB (for any finite region R and boundary configuration B on ∂R). We describe both
of these consequences below, before stating our results.

1.3. Uniqueness

A measure µ on � is an infinite-volume Gibbs measure if, for any finite region R and
any configuration σ , the conditional probability distribution µ(· | σR) (conditioned on the
configuration σR on all vertices other than those in R) is πσ∂R

. It is known that there is at
least one infinite-volume Gibbs measure corresponding to any choice of the parameters q

and λ. An important problem in statistical physics is determining for which parameters
this is unique. Strong spatial mixing implies that there is a unique infinite-volume Gibbs
measure [15, 19] with exponentially decaying correlations.

1.4. Rapid mixing

Suppose that R is a finite region of Z2, and that B is a boundary configuration on ∂R.
We will consider the (heat-bath) Glauber dynamics for sampling from πB . This is a Markov
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chain M with state space �R .A transition is made from a configuration σ ∈ �R by choosing
a vertex v uniformly at random from R, ‘erasing’ the spin at vertex v, and then choosing
a new spin for vertex v from the conditional distribution, given σR−{v} and B. Here is a
detailed description of the transition.

One step of the (heat-bath) Glauber dynamics Markov chain M

1. Choose a vertex v uniformly at random from R.

2. For i ∈ Q, let ni denote the number of neighbours of v which are assigned spin i

(either in σ or in B).

3. Choose a new spin c according to the distribution

Pr(c = i) = λni∑
k∈Q λnk

for i ∈ Q.

4. Obtain the new configuration σ ′ from σ by assigning spin c to vertex v.

It is known (for example, see [5]) that M is ergodic, with unique stationary distribution
πB . (It is easy to verify that M is ergodic for the positive temperature case λ ∈ (0, 1]
considered in this paper. Ergodicity is much more subtle in the zero-temperature case λ = 0.
Here is an example that is not ergodic with λ = 0 and q = 5. The region R consists of two
adjacent vertices u and v. The boundary configuration B assigns colours 3, 4 and 5 to the
neighbours of u and the same colours to the neighbours of v. Now M is not ergodic since
it cannot move between the configuration (u, v) = (1, 2) and the configuration (u, v) =
(2, 1). However, the chain is ergodic if q � 6 (the maximum degree plus two), and it is
ergodic if q � 3 if the boundary configuration is chosen appropriately (for example, the
free boundary case). See, for example, the ergodicity proofs in [8, 14].)

It is also known that if the Potts model has strong spatial mixing (which is true for
appropriate choices of q and λ, as we will see below) then M is rapidly mixing.

Before describing what is known about rapid mixing, we recall the definitions. Let P

denote the transition matrix of M, and let P t(σ, σ ′) be the t-step probability of moving
from σ to σ ′. For δ > 0, the mixing time is defined as τM(δ) = min{t0 : dtv(P

t , πB) �
δ for all t � t0}. M is said to be rapidly mixing if τM(δ) is at most a polynomial in n and
log(1/δ), where n is the number of vertices in R.

It is well known that strong spatial mixing implies rapid mixing in our setting. The diffi-
culty of the proof depends upon the precise bound on τM(δ) that is obtained. Dyer, Sinclair,
Vigoda and Weitz give a nice simple combinatorial proof [5, Theorem 2.5] that strong spa-
tial mixing implies that a certain ‘heat-bath block dynamics’ mixes in O(n log(n/δ)) time.
Markov-chain comparison can now be applied in a standard way to show that Glauber dy-
namics mixes in O(n(n+ log(1/δ))) time (see, for example, [8, Section 7] or (for a slightly
larger bound) [1]). In fact, it is known that strong spatial mixing implies O(n log(n/δ))

mixing of Glauber dynamics, giving a small improvement on the mixing-time bound. As is
explained in [5], this can be proved using techniques from functional analysis [3, 15, 16, 18].
The idea is to bound the log-Sobolev constant of the block dynamics, and to translate this
bound into a bound on the log-Sobolev constant of Glauber dynamics.

1.5. Approximating the partition function

We have seen in Section 1.4 that when the Potts model has strong spatial mixing, the
Markov chain M, which corresponds to heat-bath Glauber dynamics, is rapidly mixing.
Thus, there is an efficient algorithm for sampling from the Gibbs distribution πB .
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Before stating our results in Section 1.6, we mention one consequence of rapid mixing. A
randomised approximation scheme is an algorithm for approximately computing the value
of a function f . The approximation scheme has a parameter ε > 0 which specifies the
error tolerance. For concreteness, suppose that f is a function from �∗ to R. For example,
for fixed values of q and λ, f might map an encoding of a region R and a boundary
configuration B to the value of the partition function Z corresponding to R and B. A
randomised approximation scheme for f is a randomised algorithm that takes as input an
instance x ∈ �∗ (for example, R and B) and an error tolerance ε > 0, and outputs a number
z ∈ Q (a random variable of the ‘coin tosses’ made by the algorithm) such that, for every
instance x,

Pr

[
f (x)

1 + ε
� z � (1 + ε)f (x)

]
� 3

4
. (1)

The randomised approximation scheme is said to be a fully polynomial randomised approx-
imation scheme, or FPRAS, if it runs in time bounded by a polynomial in |x| and ε−1. Note
that the quantity 3

4 in Equation (1) could be changed to any value in the open interval ( 1
2 , 1)

without changing the set of problems that have randomised approximation schemes.
Using ideas of Jerrum, Valiant and Vazirani [13], an efficient sampling algorithm for πB

can be turned into an FPRAS for the partition function. A straightforward proof is based on
Dyer and Greenhill’s extension [4] of [13].

In summary, if q and λ are chosen so that the Potts model has strong spatial mixing, then
M is rapid mixing. This, in turn, gives an FPRAS for the partition function.

1.6. Context and statement of results

For q = 2 (see [15]) it is known that there is a critical point λc such that uniqueness (and
strong spatial mixing) hold for λ > λc but there are two Gibbs measures for λ < λc. (In
one of these Gibbs measures, spin 1 is favoured at ‘even-parity’ vertices, and in the other,
spin 2 is favoured.) The value of λc (see [17]) is λc = √

2 − 1 ∼ 0.41.
Thus, we investigate the case q > 2. It is believed [17] that there is strong spatial mixing

for every λ ∈ (0, 1] for q = 3 and for every λ ∈ [0, 1] for q > 3. The point q = 3,
λ = 0 is excluded because, on physical grounds, this is believed to be a critical point. It
is believed that at this point there is a unique infinite-volume Gibbs measure, but that the
correlations only decay algebraically (for example, polynomially). Salas and Sokal used
Dobrushin uniqueness to show that that strong spatial mixing occurs for every λ ∈ [0, 1] for
q > 8. As Jerrum points out [11, Section 5], Salas and Sokal’s calculation applies whenever
q > 8(1 − λ), so it also applies to positive λ for smaller q. The result applies to a more
general context than the one studied in this paper: it applies to the anti-ferromagnetic Potts
model on any infinite graph. The generalised condition is q > 2
(1 − λ), where 
 is the
maximum degree. Jerrum [11] considered the λ = 0 case and showed rapid mixing (in
fact, O(n log(n/δ)) mixing) for Glauber dynamics when q > 2
. (In fact, he considered
a slightly different version of Glauber dynamics, but the difference is not important here.)
Jerrum’s result implies that of Salas and Sokal for λ = 0, since O(n log(n/δ)) mixing of
Glauber dynamics implies strong spatial mixing [5, Theorem 2.3].

The results that we have just discussed give strong spatial mixing for λ = 0 and q > 8. In
fact, better results are known for λ = 0. Salas and Sokal [17] used decimation to prove strong
spatial mixing for q � 7. This is a machine-assisted proof. The q = 7 case is also implied
by the work of Bubley, Dyer, Greenhill and Jerrum [2]. They gave a machine-assisted proof
of O(n log(n/δ)) mixing for a block dynamics on 4-regular triangle-free graphs. As we
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mentioned above, this implies O(n log(n/δ)) mixing for Glauber dynamics, which, in turn,
implies strong spatial mixing. A proof without machine assistance of strong spatial mixing
for q � 7 is given by Goldberg, Martin and Paterson [8, Theorem 5]. Once again, the result
applies more generally — in this case, to triangle-free graphs with maximum degree at
most 
 � 3 where q > 1.76
 − 0.47.

Achlioptas et al. [1] gave a machine-assisted proof of strong spatial mixing for λ = 0
and q = 6. Their method was to prove O(n log(n/δ)) mixing for a block dynamics, which
implies spatial mixing as discussed above.

It is known that Glauber dynamics is rapidly mixing on rectangular regions when q = 3
and λ = 0. This is proved in the fixed-boundary case by Luby, Randall and Sinclair [14],
and in the free-boundary case by Goldberg, Martin and Paterson [7]. The (polynomial)
mixing-time bounds are not O(n log(n/δ)). Indeed, as mentioned above, it is not believed
that strong spatial mixing holds for λ = 0 and q = 3.

The following proposition summarises the results that we have just discussed.

Proposition 1. Consider the anti-ferromagnetic Potts model on Z2 with parameters q and
λ � 1. There is strong spatial mixing in the following cases.

(i) q � 8 and λ � 0,

(ii) q = 7 and λ = 0 or λ > 1/8 = 0.125,

(iii) q = 6 and λ = 0 or λ > 2/8 = 0.25,

(iv) q = 5 and λ > 3/8 = 0.375,

(v) q = 4 and λ > 4/8 = 0.5, and

(vi) q = 3 and λ > 5/8 = 0.625.

Thus, in these cases, Glauber dynamics is rapidly mixing and there is a unique infinite-
volume Gibbs measure.

The purpose of this work is to improve the results in Proposition 1. Our main objective
was to extend the q = 6 and q = 7 results for λ = 0 to all temperatures. We state our
results as two theorems, to separate the results that are proved without machine assistance
(Theorem 2) from those that are proved with machine assistance. Theorem 3 subsumes
Theorem 2.

Theorem 2. Consider the anti-ferromagnetic Potts model on Z2 with parameters q and
λ � 1. There is strong spatial mixing in the following cases.

(i) q � 7 and λ � 0,

(ii) q = 6 and λ = 0 or λ > 1/7 ≈ 0.1429,

(iii) q = 5 and λ > 2/7 ≈ 0.2857,

(iv) q = 4 and λ > 1
2 (

√
33 − 5) ≈ 0.3723, and

(v) q = 3 and λ > λ0, where λ0 ≈ 0.4735 is the real solution of λ3 + 4λ − 2 = 0.

Thus, in these cases, Glauber dynamics is rapidly mixing and there is a unique infinite-
volume Gibbs measure.
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Theorem 3. Consider the anti-ferromagnetic Potts model on Z2 with parameters q and
λ � 1. There is strong spatial mixing in the following cases.

(i) q � 6 and λ � 0,

(ii) q = 5 and λ � 0.127,

(iii) q = 4 and λ � 0.262, and

(iv) q = 3 and λ � 0.393.

The bounds for q = 5, q = 4 and q = 3 can be further improved by more extensive
machine calculation. These results will appear in the PhD thesis of one of the authors [10].

1.7. The anti-ferromagnetic Potts model on general graphs

In this paper we consider the anti-ferromagnetic Potts model on the integer lattice Z2.
One reason for restricting attention to Z2 is that it is a natural lattice, of interest in statistical
physics [15]. Another reason is that the model is known not to have good mixing properties
on a general graph.AsWelsh observes [20, 3.7.12], the partition function of the Potts model is
a specialisation of the Tutte polynomial along the hyperbola Hq = {(x, y) : (x−1)(y−1) =
q}. The anti-ferromagnetic Potts model (for real temperatures) corresponds to the additional
constraint 0 � λ � 1, which corresponds to a portion of the hyperbola in which x − 1 and
y −1 are negative. There is no FPRAS for the Tutte polynomial along this hyperbola unless
NP = RP; see [20, 8.7.2].

Jerrum and Sinclair [12] considered the anti-ferromagnetic Ising model, which corre-
sponds to the Potts model with q = 2. They used a reduction from MaxCut (the problem
of counting cut-sets of a specified size in a graph) to show that there is no FPRAS for the
partition function unless NP=RP. Their proof applies for a particular value of λ, but the
stretching and thickening technique of Jaeger, Vertigan and Welsh [9] can be used to show
that there is no FPRAS for any fixed λ (see [6]). Welsh has shown that the same result holds
for any q � 3; see [20, 8.7.2]. Thus, unless NP=RP, the anti-ferromagnetic model does not
exhibit strong spatial mixing on a general graph. In this paper, we do not consider a general
graph. Instead, we consider the integer lattice Z2.

2. Recursive coupling

2.1. The recursive coupling tree

The essence of proving strong spatial mixing lies in showing that, if you take an arbitrary
region R and boundary configurations B and B ′ on ∂R that disagree on a single boundary
vertex y, then there is a coupling of πB and πB ′ in which the probability of disagreement
at a vertex decays exponentially with its distance from y. We will construct such a coupling
using the recursive method of Goldberg, Martin and Paterson [8]. We start by describing
the method.

Let R be a non-empty finite region. As in [8], we will find it convenient to work with
the edge-boundary of R, rather than with the boundary ∂R of vertices surrounding R. Here
is the notation that we will use. The boundary of the region R is the collection of edges
that have exactly one endpoint in R. A boundary configuration B is a function from the set
of edges in the boundary to the set {0} ∪ Q. Given a configuration σ ∈ �R , the quantity
monσ (E(R)) is the number of monochromatic edges in E(R), where a boundary edge
is said to be ‘monochromatic’ if its spin is the same as the spin that is assigned by σ to
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its endpoint. πB is the Gibbs distribution in which the probability of σ is proportional to
λmonσ (E(R)). We will be interested in studying how much πB varies when we change the
spin of a single edge of B. This small change to the boundary is formalised by the following
notation.

Definition 2. A boundary pair X consists of

• a non-empty finite region RX,

• a distinguished boundary edge sX = (wX, fX) with fX ∈ RX, and

• a pair (BX, B ′
X) of boundary configurations which differ only on the edge sX.

We require

• BX(sX) ∈ Q, and

• B ′
X(sX) ∈ Q, and

• any two perpendicular boundary edges that share a vertex f ∈ ∂RX have the same
spin in at least one of the two configurations BX and B ′

X.

(Note that in the paper [8], this was referred to as a ‘relevant boundary pair’. The reason for
the terminology is that paper [8] also used the notion of a boundary pair in which the final
condition above (the one about perpendicular boundary edges) is dropped. Note also that
this condition depends upon the geometry of the lattice. In this paper we always work on
the lattice Z2, and we always include all the conditions listed above, so we drop the word
‘relevant’ to simplify the terminology.)

A coupling � of πBX
and πB ′

X
is a distribution on �RX

× �RX
which has marginal

distributions πBX
and πB ′

X
. For such a coupling �, we define 1�,f to be the indicator

random variable for the event that, when a pair of configurations is drawn from �, the
spin of f differs in these two configurations. For any boundary pair X we define �X to be
some coupling of πBX

and πB ′
X

minimizing E[1�,fX
]. For every pair of spins c and c′, let

pX(c, c′) be the probability that, when a pair of configurations (C, C′) is drawn from �X,
fX has spin c in C and spin c′ in C′.

We define a labelled tree TX associated with each boundary pair X. We will use the tree
to obtain an upper bound on the expected number of disagreements at any distance from wX

in a coupling of πBX
and πB ′

X
.

The tree TX is constructed as follows. Start with a vertex r which will be the root of TX.
For every pair of spins c ∈ Q and c′ ∈ Q, c 
= c′, add an edge labelled (pX(c, c′), fX)

from r to a new node rc,c′ . If fX has no neighbours in RX, then rc,c′ is a leaf. Otherwise,
for some k ∈ {1, 2, 3}, let e1, . . . , ek be the edges from fX to nodes in RX. If k = 3, order
these edges so that e1 and e3 are not perpendicular. For each i ∈ {1, . . . , k}, let Xi(c, c

′) be
the boundary pair consisting of

• the region RX − fX;

• the distinguished edge ei ;

• the boundary configuration B of RX − fX that

– agrees with BX on common edges,
– assigns spin c′ to e1, . . . , ei−1, and
– assigns spin c to ei, . . . , ek; and

• the boundary configuration B ′ that agrees with B except that it assigns spin c′ to ei .
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Recursively construct TXi(c,c
′), the tree corresponding to boundary pair Xi(c, c

′). Add an
edge with label (1, ·) from rc,c′ to the root of TXi(c,c

′). That completes the construction
of TX.

We say that an edge e of TX is degenerate if the second component of its label is ‘·’. For
edges e and e′ of TX, we write e → e′ to denote the fact that e is an ancestor of e′. That
is, either e = e′, or e is a proper ancestor of e′. Define the level of edge e to be the number
of non-degenerate edges on the path from the root down to, and including, e. Suppose that
e is an edge of TX with label (p, f ). We say that the weight w(e) of edge e is p. Also the
name n(e) of edge e is f . The likelihood �(e) of e is

∏
e′:e′→e w(e). The cost γ (f, TX) of a

vertex f in TX is
∑

e:n(e)=f �(e). For any d � 1, let Ed(X) denote the set of level-d edges
in TX. Let �d(X) = ∑

e∈Ed(X) �(e). We use the following lemma, from [8].

Lemma 4 (see [8]). Consider the anti-ferromagnetic Potts model on Z2 with parameters q

and λ. Suppose that there is an ε > 0 such that, for every boundary pair X and every d � 1,
we have �d(X) � (1 − ε)d . Then the system has strong spatial mixing.

Proof. The relevance of TX for providing an upper bound on the quality of the coupling
is established in [8, Lemma 12], which shows that there is a coupling � of πBX

and πB ′
X

such that, for all f ∈ RX, E[1�,f ] � γ (f, TX) which is at most
∑

d�d(f,sx) �d(X), where
d(f, sX) is the lattice distance from f to sX. (Thus, d(fX, sx) = 1 and if f ∈ RX is adjacent
to fX then d(f, sX) = 2, and so on.) Following the proof of [8, Lemma 33], we find that

E[1�,f ] � 1

ε
(1 − ε)d(f,sX)

and ∑
f ∈RX

E[1�,f ] � 1 − ε

ε
.

Following the proof of [8, Lemma 34], we obtain similar conclusions, assuming that we
start with a pair of boundary configurations on the boundary ∂R of vertices surrounding R,
such that the pair differs only on a particular vertex vX. In particular, there is a coupling �

such that

E[1�,f ] � 6

ε(1 − ε)
(1 − ε)d(f,vX)

and ∑
f ∈RX

E[1�,f ] � 6

ε
.

This implies strong spatial mixing [8, Corollary 21].

2.2. Bounding the cost of level-d edges in the recursive coupling tree

A key ingredient from the construction of TX which affects γ (f, TX) is the quantity
E[1�X,fX

], which we denote ν(X). Thus, ν(X) = min� E[1�,fX
], where the minimum is

over all couplings � of πBX
and πB ′

X
.

In order to get good upper bounds on ν(X), Goldberg, Martin and Paterson [8] observed
that ν(X) can be upper-bounded in terms of corresponding values for boundary pairs with
smaller regions. They used the following lemma.

8https://doi.org/10.1112/S1461157000001169 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001169


Improved mixing bounds

�

�

RX

fX

wX

sX

�

�

RX

R′
fX

wX

sX

Figure 1: The application of Lemma 5.

Lemma 5 (see [8]). Suppose that λ = 0. Suppose that X is a boundary pair. Let R′ be any
subset ofRX which includesfX. Letχ be the set of boundary pairsX′ = (RX′ , sX′ , BX′ , B ′

X′)
such that RX′ = R′, sX′ = sX, BX′ agrees with BX on common edges, and B ′

X′ agrees with
B ′

X on common edges. Then ν(X) � maxX′∈χ ν(X′).

Figure 1 is an illustration of how Lemma 5 is used to find an upper bound on ν(X).
The basic idea is to pick a small subregion R′ that contains the vertex fX. Compute the
maximum value of ν for that subregion, where we maximise over boundary configurations
of R′ that agree with the boundary configurations of RX on the common overlap of these
boundaries. This maximum value is an upper bound for ν(X).

An interesting feature of the positive-temperature Potts model is that this approach does
not work. In particular, Lemma 5 does not apply to positive λ. For example, suppose that
q = 2 and λ = 1/2. Consider a region RX containing fX and one of its neighbours, y, as
illustrated below. (In this diagram and all subsequent diagrams we will denote vertices as
squares, so that we have space to label them.) In the diagram, sX is the edge between fX

and its lower neighbour (which is not pictured). The edge sX is assigned spins 1 and 2 by
the two boundary configurations BX and B ′

X. The rest of the boundary configurations are as
shown (assigning spins 1, 1, 1, 2 and 2 clockwise around the picture). A calculation shows
that ν(X) = 30/91. However, if R′ is chosen to be the region containing fX only, then
the corresponding boundary pairs X′ (depicted to the right) both have ν(X′) = 30/100 <

30/91.

1/2

1 2

1 2

1

fX

y

ν(X) = 30/91

1/2

1 2

1

fX

ν(X′) = 30/100

1/2

1 2

2

fX

ν(X′) = 30/100

Our approach is to find an upper bound, µ(X), for ν(X) such that µ(X) can be upper-
bounded using smaller regions along the lines of Lemma 5. Let X be a boundary pair.
Recall that E(RX) is the set of lattice edges with at least one endpoint in RX. For any subset
E ⊆ E(RX) − {sX} and any configuration σ ∈ �RX

, let monσ (E) denote the number of
monochromatic edges in E, where a boundary edge is considered to be monochromatic if
its spin in BX is the same as the spin assigned by σ to its endpoint. For i ∈ Q, let �i be
the set of configurations in �RX

that assign spin i to vertex fX. Let ci be the total weight
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of these configurations, ignoring edge sX:

ci =
∑
σ∈�i

λmonσ (E(RX)−{sX}).

Let C contain the two spins assigned to sX by the boundary configurations. That is, C =
{BX(sX), B ′

X(sX)}, and let c = ∑
i 
∈C ci . We now define

µ(X) = max
i∈C

(1 − λ)ci

(1 + λ)ci + c
.

Lemma 6 below enables us to use µ(X) to find upper bounds for ν(X). The intuition behind
the lemma is best understood from equations (2) and (3). Informally, (2) says that the
disagreement probability ν(X) is at most the difference between the probability of seeing
a certain colour in one distribution (with one boundary configuration) and the probability
of seeing the same colour in the other distribution. A little manipulation gives equation (3),
which shows that this quantity is at most µ(X). The remainder of the argument shows that
µ(X) can be upper bounded using smaller regions.

(To see that it is plausible that µ(X) can be upper bounded using smaller regions, consider
the boundary configuration B which is the same as the boundary configurations in X except
that B(sX) = 0, so sX is a free boundary edge. Note that in the expression

(1 − λ)ci

(1 + λ)ci + c
= 1 − λ

1 + λ + c/ci

,

from the definition of µ(X), c/ci is the ratio of PrπB
(fX 
∈ C) to PrπB

(fX = i). By
convexity, this ratio can be bounded by considering smaller regions (see the proof for
details). Of course, the convexity argument allows some flexibility in the exact definition
of µ(X) and the best thing is to define µ(X) so that it is as small as possible, subject to the
constraint ν(X) � µ(X).)

Lemma 6. Suppose that X is a boundary pair. Let R′ be any subset of RX which includes fX.
Let χ be the set of boundary pairs X′ = (RX′ , sX′ , BX′ , B ′

X′) such that RX′ = R′, sX′ = sX,

BX′ agrees with BX on common edges, and B ′
X′ agrees with B ′

X on common edges. Then
ν(X) � maxX′∈χ µ(X′).

Proof. Without loss of generality (to simplify the notation), suppose that BX(sX) = 1,
B ′

X(sX) = 2, and c1 � c2. We will show that

(i) ν(X) � µ(X) and

(ii) µ(X) � maxX′∈χµ(X′).
First, we show (i). Note that

PrπBX
(fX = i) =




λc1

λc1 + c2 + c
, i = 1;

ci

λc1 + c2 + c
, 2 � i � q,

PrπB′
X

(fX = i) =




λc2

c1 + λc2 + c
, i = 2;

ci

c1 + λc2 + c
, i = 1, 3 � i � q.

Since c1 � c2 and λ � 1, the denominator in the expression for PrπB′
X

(fX = i)exceeds
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the denominator in PrπBX
(fX = i), so we can couple πBX

and πB ′
X

in such a way that
disagreement at fX occurs only when the sample from πB ′

X
assigns spin 1 to fX. Thus,

ν(X) � PrπB′
X

(fX = 1) − PrπBX
(fX = 1) (2)

= c1

c1 + λc2 + c
− λc1

λc1 + c2 + c

= c1(1 − λ)(c2 + λc2 + c)

(c2 + λc1 + c)(c1 + λc2 + c)

� (1 − λ)c1

(1 + λ)c1 + c
� µ(X). (3)

For part (ii), let W = RX−R′. For i ∈ Q and ρ ∈ �W , let �i,ρ be the set of configurations
σ ∈ �RX

with σfX
= i and σW = ρ. Let

ci,ρ =
∑

σ∈�i,ρ

λmonσ (E(RX)−{sX}),

let ĉρ = max(c1,ρ, c2,ρ), and let cρ = ∑q
i=3 ci,ρ . Then

µ(X) = max

(
(1 − λ)c1

(1 + λ)c1 + c
,

(1 − λ)c2

(1 + λ)c2 + c

)

= 1 − λ

1 + λ + c/c1
= 1 − λ

1 + λ + (∑
ρ∈�W

cρ

)/( ∑
ρ∈�W

c1,ρ

)
� 1 − λ

1 + λ + (∑
ρ∈�W

cρ

)/( ∑
ρ∈�W

ĉρ

)
= (1 − λ)

∑
ρ∈�W

ĉρ

(1 + λ)
∑

ρ∈�W
ĉρ + ∑

ρ∈�W
cρ

=
∑

ρ∈�W
(1 − λ)ĉρ∑

ρ∈�W
((1 + λ)ĉρ + cρ)

� max
ρ∈�W

(1 − λ)ĉρ

(1 + λ)ĉρ + cρ

= max
ρ∈�W

(
max

(
(1 − λ)c1,ρ

(1 + λ)c1,ρ + cρ

,
(1 − λ)c2,ρ

(1 + λ)c2,ρ + cρ

))
= max

ρ∈�W

µ(X′),

where X′ is the boundary pair in χ in which BX′ and B ′
X′ are induced by ρ. Note

that X′ is a boundary pair — in particular, it satisfies the condition about perpendicular
edges. The last step follows from the observation that c1,ρ , c2,ρ and cρ all contain the
factor λmonσ (E(RX)−E(RX′ )), which is constant for a fixed ρ, and can be cancelled out to
obtain µ(X′).

3. Proof of Theorem 2

We start with a lemma, which we will use to obtain upper bounds on µ(X). The intuition
behind the lemma is that if RX is the region consisting of a single node fX, then µ(X) is
maximised by avoiding the colours of sX in the rest of the boundary and otherwise spreading
colours evenly over the boundary.
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Lemma 7. Suppose that X is a boundary pair in which RX consists of a node fX only.
Let v = 3 mod (q − 2) and u = �3/(q − 2)
. (So u(q − 2) + v = 3.) Then

µ(X) � 1 − λ

1 + λ + vλu+1 + (q − 2 − v)λu
.

In particular, if q � 5, then

µ(X) � 1 − λ

q − 4(1 − λ)
.

Proof. Without loss of generality, suppose that BX(sX) = 1, B ′
X(sX) = 2, and c1 � c2.

Let E = E(RX) − sX, noting that |E| � 3. Let ni be the number of edges in E that are
assigned spin i by BX. Note that ci = λni , so the constraint c1 � c2 just says that n2 � n1.

Now we wish to choose BX in order to maximise µ(X), or, equivalently, to minimise

Z = c

(1 − λ)c1
.

First note that n1 = 0 since Z can be reduced by recolouring edges coloured 1 with
colour 2. Thus c1 = 1.

Now we want to set n2, . . . , nq in order to minimise c = λn3 + . . . + λnq , where
n3 + . . . + nq � 3. Since λ � 1, we want to take n3 + . . . + nq = 3.

Next, note that there is an optimal solution in which all nj and nk are within 1 of
each other. To see this, consider a solution with nj > nk + 1. The boundary obtained by
reassigning one of the j edges with spin k has a c-value which is at least as small, since the
new c-value minus the old one is

−λnj − λnk + λnj −1 + λnk+1 = (1 − λ)(λnj −1 − λnk ) � 0.

So the optimum value of c is vλu+1 + (q −2−v)λu, which gives the first part of the lemma.
To derive the bound for q � 5, note that for q � 6 we have u = 0 and v = 3. For q = 5

we have u = 1 and v = 0. Both of these give the same bound.

We now turn to the proof of Theorem 2. The cases (q > 7), (q = 7, λ = 0) and
(q = 6, λ = 0) follow from previous work (see Proposition 1). For each of the remaining
cases we will use Lemma 7 to show that if X is a size-1 boundary pair, then µ(X) < 1/3.
This implies by Lemma 6 that every boundary pair X satisfies ν(X) < 1/3 and there is an
ε > 0 such that every boundary pair X satisfies

ν(X) � (1 − ε)
1

3
.

By induction on d (see [8, Lemma 18]), we get �d(X) � (1 − ε)d . Hence, by Lemma 4 we
have strong spatial mixing (and the theorem is proved).

We now consider the remaining cases. The second part of Lemma 7 applies for q � 5
where q − 4(1 − λ) > 3(1 − λ); that is, λ > 1 − q/7. This finishes the cases with q � 5.

For q = 4 we use the first part of Lemma 7 with u = 1 and v = 1, and for q = 3 we use
the first part of Lemma 7 with u = 3 and v = 0.

Remark 1. Lemma 7 applies to the Potts model in a more general setting than the one
considered in this paper. In particular, it applies to the Potts model on a general graph
with maximum degree 
. In the generalised version, the ‘3’ in the definition of v and u

becomes ‘
 − 1’. The final part of the lemma applies when q � 
 + 1. It gives
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µ(X) � (1 − λ)/(q − 
(1 − λ)), so, for example, we get the following result, which
is slightly better than the condition derived by Salas and Sokal and discussed in Section 1.6.

Theorem 8. Consider the anti-ferromagnetic Potts model on a graph G with maximum
degree 
 with parameters q and λ � 1. There is strong spatial mixing if q > (1−λ)(2
−1).

4. Proof of Theorem 3 for q = 6 and positive λ

We will prove strong spatial mixing for q = 6 and λ > 0 by showing that there is an
ε > 0 such that, for every boundary pair X and every d � 1, �d(X) � (1 − ε)d . Then
we apply Lemma 4. Following Goldberg, Martin and Paterson [8], we will consider the
geometry of the lattice to derive a system of recurrences whose solution gives the desired
bound. (The same proof technique applies to the λ = 0 case. However, we exclude λ = 0
because the result is already known [1], and excluding λ = 0 simplifies our presentation.)

We start by considering some particular boundary pairs. In particular, we will be
interested in a boundary pair X such that RX is one of the seven regions Q1, Q2, Q3,
Q4, Q5, Q6, and Q7 depicted below. As before, we denote vertices as squares in the
diagrams and sX is the edge between fX and its lower neighbour. This edge is marked with
a short line segment.

Q1 Q2 Q3

fX fX fX

Q4 Q5 Q6 Q7

fX fX fX fX

Lemma 9. Suppose that q = 6 and λ ∈ (0, 1]. Let p1 = 41/118, p2 = 179/501, p3 =
79/216, p4 = 75/202, p5 = 49/129, p6 = 27/71 and p7 = 3/7. Define qi = pi + δ for
i ∈ {1, . . . , 7} where δ = 1/1000. Suppose that X is a boundary pair with region RX = Qi

above. Then µ(X) � qi .

Proof. The lemma is proved by computation. For each region Qi we have considered every
boundary pair X which has RX = Qi . Each such boundary pair consists of a pair (BX, B ′

X)

of boundary configurations which differ only on the edge sX, obeying the requirements in
Definition 2. For each such boundary pair, we calculated a rational function in λ, µX(λ),
which gives an upper bound on µ(X) for any particular value of λ. The polynomials in the
numerator and denominator of µX(λ) have integer coefficients. In order to find an upper
bound on µX(λ) for λ ∈ (0, 1], we partitioned the interval [0, 1] into smaller intervals [a, b].
We then computed an upper bound for µX(λ) for λ ∈ [a, b] by taking λ = a for negative
terms in the numerator and λ = b for positive terms in the numerator. All terms in the
denominator are positive, so we use λ = a. This computation was carried out exactly, with
no approximations. Working through all the boundary pairs X and an appropriate collection
of intervals [a, b], we established the upper bounds given in the lemma.

Remark 2. The value pi defined in the statement of Lemma 9 is defined by

pi = max
X:RX=Qi

µX(0).
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µX(λ) is in general not monotonic in λ. A simple non-monotonic example is the boundary
pair consisting of a size-1 region with boundary 1, 2, 2 where sX is assigned spins 1 and 2.
For this boundary pair, c1 = λ, c2 = λ2 and c3 = c4 = c5 = c6 = 1, so

µX(λ) = (1 − λ)c1

(1 + λ)c1 + c
= (1 − λ)λ

(1 + λ)λ + 4
.

Nevertheless, maxX:RX=Qi
µX(λ) seems to be monotonically decreasing in λ.

We now define some sets V , W , U , T , S, R of boundary pairs X. The sets depend only
on the region RX and the edge sX, but not on the boundary configurations BX and B ′

X. The
following diagram illustrates the sets.

V W U

fX

����

fX

���� ����
���� fX

T S R

����
fX

����
���� fX

����

����

���� fX ���� fX ����

A crossed-out square represents a vertex that is not in the region RX. Squares that are not
drawn represent vertices that are either in, or not in, the region RX. As before, the edge sX is
marked with a short line segment. The diagrams may be rotated according to the symmetries
of Z2. For example, a boundary pair X belongs to the set R if at least two of the neighbours
of fX are not in RX. A boundary pair X belongs to the set U if the left or right neighbour
of fX (or both) is not in RX. Obviously, these sets are not disjoint.

We will now define some recurrences. Let �d denote the maximum, over boundary
pairs X, of �d(X). Let Vd denote the maximum of �d(X) over boundary pairs X ∈ V ; we
use similar notation for the other sets.

Consider a boundary pair X. We will consider six cases below. Every boundary pair is
covered by exactly one of the cases (up to symmetry). In the diagrams, an empty square
represents a vertex in the region RX. As before, a crossed-out square represents a vertex not
in RX, and all other vertices can be either in RX or not in RX.

fX

����
fX ���� fX

���� fX ����
���� ����

fX

����
fX

To see that the cases cover all boundary pairs, note the that the left-most four diagrams
cover all the cases in which all three neighbours of fX are present. The lower central diagram
applies if neither of the diagonal vertices is present in RX. The diagram above that applies
if just one of the diagonal vertices is present. The two diagrams to the left apply if both of
the diagonal vertices are present.

We now add an inequality below each diagram, giving an upper bound on �d(X) for
d � 2 when X is a boundary pair covered by the corresponding case. The inequality arises
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by considering the boundary pairs corresponding to the children of X in the tree TX. The
values q1–q7 are from Lemma 9.

fX

�d(X) � q1(�d−1 +2Vd−1)

����
fX

�d(X) � q4(Vd−1 + Ud−1 + Sd−1)

���� fX

�d(X) � Ud

���� fX ����

�d(X) � q2(�d−1 + 2Td−1)

���� ����
fX

�d(X) � q6(2Sd−1 +Rd−1)

����
fX

�d(X) � q7(2Wd−1)

For example, consider a boundary pair X covered by the lower centre diagram. We will now
show how to prove �d(X) � q6(2Sd−1 + Rd−1). In the construction of TX, for every pair
of spins c ∈ Q, c′ ∈ Q, c 
= c′, we introduce a child rc,c′ of the root r . We construct
three boundary pairs X1(c, c

′) (where the new distinguished edge goes left from fX),
X2(c, c

′) (where the new distinguished edge goes up from fX) and X3(c, c
′) (where the

new distinguished edge goes right from fX). The boundary pair X1(c, c
′) is in S (this can be

verified by consulting the diagram corresponding to S above), so �d−1(X1(c, c
′)) � Sd−1.

Similarly, X3(c, c
′) ∈ S, so �d−1(X3(c, c

′)) � Sd−1. Finally, X2(c, c
′) ∈ R (this can be

verified by consulting the diagram corresponding to R above), so X2(c, c
′) � Rd−1. Since

ν(X) is the sum of the probabilities pX(c, c′), we conclude that �d(X) � ν(X)(2Sd−1 +
Rd−1). Now we apply Lemma 6 and Lemma 9 to get ν(X) � µ(X) � q6. Thus, we have
shown that �d(X) � q6(2Sd−1 + Rd−1). The other inequalities are derived similarly.

Putting all six cases together, we get the following inequality for d � 2:

�d � max(q1(�d−1 + 2Vd−1),

q2(�d−1 + 2Td−1),

q4(Vd−1 + Ud−1 + Sd−1),

q6(2Sd−1 + Rd−1),

Ud,

q7(2Wd−1)). (4)

By re-considering similar scenarios with the additional assumption that X ∈ V , we derive
a corresponding upper bound for Vd . The following seven cases cover all the boundary pairs
in V .

fX

����

fX

����

�d(X) � q1(Ud−1 + �d−1 + Vd−1)

���� fX

����
���� fX

����

�d(X) � Ud

���� fX ����

����

�d(X) � q2(Rd−1 + �d−1 + Td−1)

����
fX

����

�d(X) � q4(2Ud−1 + Sd−1)
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���� ����
fX

����

�d(X) � q6(Sd−1 + 2Rd−1)

����
fX

����

�d(X) � q7(Sd−1 + Wd−1)

����
fX

����

�d(X) � q4(Vd−1 + Ud−1 + Rd−1)

Putting these together, we get this inequality for d � 2:

Vd � max(q1(Ud−1 + �d−1 + Vd−1),

q2(Rd−1 + �d−1 + Td−1),

q4(2Ud−1 + Sd−1),

q6(Sd−1 + 2Rd−1),

q4(Vd−1 + Ud−1 + Rd−1),

Ud,

q7(Sd−1 + Wd−1)). (5)

In a similar manner we can find an upper bound for Wd , and the following cases cover
the boundary pairs in W .

fX

���� ����

�d(X) � q6(2Ud−1 + �d−1)

����
fX

���� ����

�d(X) � q7(2Sd−1)

���� fX

���� ����

�d(X) � Ud

These cases give the following inequality for d � 2:

Wd � max(q6(2Ud−1 + �d−1), Ud, q7(2Sd−1)). (6)

The following cases cover all boundary pairs in U , so we can find an upper bound for Ud .

fX ����

�d(X) � q3(2Vd−1)

����
fX ����

�d(X) � q5(Vd−1 + Ud−1)

����
fX ����

�d(X) � q7(Sd−1 + Ud−1)

����
fX ���� ���� fX ����

�d(X) � Rd
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These give an upper bound on Ud for d � 2:

Ud � max(q3(2Vd−1), q5(Vd−1 + Ud−1), q7(Sd−1 + Ud−1), Rd). (7)

The following cases illustrate the situation for boundary pairs in S.

���� fX ����

����

����
fX ����

����

�d(X) � Rd

fX ����

����

�d(X) � q5(Ud−1 + Vd−1)

����
fX ����

����

�d(X) � q7(Rd−1 + Sd−1)

These give the following inequality for d � 2:

Sd � max(Rd, q5(Ud−1 + Vd−1), q7(Rd−1 + Sd−1)). (8)

Now we derive a corresponding upper bound for Td . The following cases cover all
boundary pairs in T (apart from those in R).

����
fX

����

�d(X) � q7(Wd−1 + Sd−1)

����
fX ����

����

�d(X) � q7(Wd−1)

����

���� fX

����

�d(X) � q7(Sd−1)

These give the following inequality for d � 2:

Td � max(Rd, q7(Wd−1 + Sd−1)). (9)

Finally, we derive an upper bound for Rd . The following cases cover all boundary pairs
in R. Notice that the middle diagram below does not exactly match the set Q7, but clearly
we can use the value of q7 to bound µ(X) also for this case.

����
fX ���� ���� fX ����

�d(X) � q7(Wd−1)

����

���� fX ����

�d(X) = 0 for d � 2

These give the following inequality for d � 2:

Rd � max(0, q7(Wd−1)). (10)
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We now set ε = 1/1000 and show that for every d � 1, we have �d � (1 − ε)d . We
define some rational numbers. Let u = s = t = r = 7/10 and v = w = 92/100. We
will prove by induction on d that �d � (1 − ε)d , Vd � v(1 − ε)d , Wd � w(1 − ε)d ,
Ud � u(1 − ε)d , Sd � s(1 − ε)d , Td � t(1 − ε)d , and Rd � r(1 − ε)d .

The base case is d = 1. For any boundary pair X, we have �1(X) � ν(X) � µ(X), and
from Lemma 7

µ(X) � 1 − λ

6 − 4(1 − λ)
� 1

2
.

The base case then follows from the fact that

1

2
� min(1, v, w, u, s, t, r)(1 − ε).

The inductive step follows from equations (4), (5), (6), (7), (8), (9) and (10).

First, we use inequality (10), the facts that r � 0 and ε � 1 (so 0 � r(1 − ε)d ), and
the fact that q7w � r(1 − ε) to show that Rd � r(1 − ε)d . Similarly, we use the inductive
hypothesis, inequality (9) and the facts that r � t and q7(w + s) � t (1 − ε) to show that
Td � t(1 − ε)d .

Next, we establish upper bounds on Sd and Ud . To show that Sd � s(1 − ε)d , we use
the inductive hypothesis and inequality (8) together with the upper bound Rd � r(1 − ε)d

and the following facts: r � s, q5(u + v) � s(1 − ε), and q7(r + s) � s(1 − ε). To
show that Ud � u(1 − ε)d , we use the inductive hypothesis and inequality (7), together
with the upper bound Rd � r(1 − ε)d and the following facts: r � u, q32v � (1 − ε)u,
q5(v + u) � (1 − ε)u, and q7(s + u) � (1 − ε)u.

Finally, we establish upper bounds on Wd , Vd and �d . All of these bounds use the
inductive hypothesis and the upper bound Ud � u(1 − ε)d along with u � w, u � v

and u � 1. To establish Wd � w(1 − ε)d , we use inequality (6) along with the following
facts: q6(2u + 1) � (1 − ε)w and q72s � (1 − ε)w. To establish Vd � v(1 − ε)d , we use
inequality (5) along with the following facts:

q1(u + 1 + v) � v(1 − ε);
q2(r + 1 + t) � v(1 − ε);

q4(2u + s) � v(1 − ε);
q6(s + 2r) � v(1 − ε);

q4(v + u + r) � v(1 − ε);
q7(s + w) � v(1 − ε).

Finally, to establish �d � (1 − ε)d , we use Inequality (4) along with the following facts:

q1(1 + 2v) � 1 − ε;
q2(1 + 2t) � 1 − ε;

q4(v + u + s) � 1 − ε;
q6(2s + r) � 1 − ε;

q7(2w) � 1 − ε.

This concludes the proof of Theorem 3 for q = 6.
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5. Proof of Theorem 3 for q = 5, q = 4 and q = 3

The proof is the same as the proof for q = 6 in Section 4, except that for each value of q,
we compute new values for q1, . . . , q7 (as in Lemma 9). To find sufficiently small values
we need to constrain the value of λ. If λ is too small, the values of q1, . . . , q7 become too
large. We do not repeat the values of λ already covered by Theorem 2.

Lemma 10. Suppose that q = 5 and λ ∈ [0.127, 0.286]. Let p1 = 7/20, p2 = 9/25,
p3 = 19/50, p4 = 2/5, p5 = 2/5, p6 = 2/5 and p7 = 1/2. Define qi = pi + δ

for i ∈ {1, . . . , 7} where δ = 1/1000. Suppose that X is a boundary pair with region
RX = Qi . Then µ(X) � qi .

Lemma 11. Suppose that q = 4 and λ ∈ [0.262, 0.373]. Let p1 = 7/20, p2 = 19/50,
p3 = 19/50, p4 = 19/50, p5 = 2/5, p6 = 19/50 and p7 = 1/2. Define qi = pi + δ for
i ∈ {1, . . . , 7} where δ = 1/1000. Suppose that X is a boundary pair with region RX = Qi .
Then µ(X) � qi .

Lemma 12. Suppose that q = 3 and λ ∈ [0.393, 0.474]. Let p1 = 873/2500, p2 = 9/25,
p3 = 48/125, p4 = 9/25, p5 = 39/100, p6 = 37/100 and p7 = 1/2. Define qi = pi + δ

for i ∈ {1, . . . , 7} where δ = 1/1000. Suppose that X is a boundary pair with region
RX = Qi . Then µ(X) � qi .

Remark 3. Unlike Lemma 9, the values of pi in the lemmas above are strict upper bounds on
maxX:RX=Qi

µX(λ), where λ is the smallest value in the specified intervals above. Writing
the exact values of maxX:RX=Qi

µX(λ) would require many more digits.Again, these values
seem to be monotonically decreasing in λ.

We use computation in the same manner as for the proof of Lemma 9 to prove these
lemmas. Following the proof of the q = 6 case of the theorem, and using the values of qi in
the lemmas above, we can then define new rational numbers v, w, u, t , s and r , and prove
that �d(X) � (1 − ε)d .
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