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SHUFFLING OF LINEAR ORDERS 

JOHN LINDSAY ORR 

ABSTRACT. A linearly ordered set A is said to shuffle into another linearly ordered 
set B if there is an order preserving surjection A —> B such that the preimage of each 
member of a cofinite subset of B has an arbitrary pre-defined finite cardinality. We show 
that every countable linearly ordered set shuffles into itself. This leads to consequences 
on transformations of subsets of the real numbers by order preserving maps. 

The purpose of this note is to present some new results in the study of ordered 
sets, in particular Theorem 1 and Proposition 2 below. These ideas arose in work on 
the structure of certain operator algebras [6]. However, the techniques of this note are 
entirely order-theoretic and combinatoric. In fact the main results seem quite natural 
questions to consider in their own right and it was quite surprising to discover that they 
rested on rather deep combinatoric theory [3, 2]. Because of the general nature of the 
present results and their proven value in [6], one hopes they will spark interest and find 
other applications in a wider field. 

This work was conducted while the author held an SERC(UK) Research Assistantship 
at the University of Lancaster and while visiting the University of Waterloo. In particular, 
I would like to thank Professor K. R. Davidson for his hospitality during that time. 

The following theorem is the main result of this paper: 

THEOREM 1. Let K Ç [0,1] be a compact set. If S Ç [0,1] meets each component of 
the relative complement, Kc, ofK in a finite number of points then there is an increasing 
bijectionf of the unit interval to itself such thatf(K) contains all but finitely many points 
ofS. 

We can express the order theoretic ideas of Theorem 1 without reference to the real 
number system. The following proposition, which is a simple consequence of Theorem 7, 
achieves this. 

PROPOSITION 2. Let A be a countable linearly ordered set and let La {a G A) be finite 
linearly ordered sets. Then there is an increasing map 

a:A-*L=YJLa 
a£A 

which maps onto all but finitely many points ofL, and, in any event, onto at least one 
point in every La. 
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The simplest examples show how one is led to the conditions of the theorem. If K 
is empty and S is not, then the requirement that f(K) may miss finitely many points of 
S becomes clear. For simple infinité sets the result is straightforward. For example if 
K = {0} U {1/2" : n > 1} and S = {l/n : n > 1} then a piecewise linear map taking 
1 /2n to \/n achieves the result. If K is ordered as Z or other simple infinite order types, 
the appropriate generalizations are easily made. 

Proposition 2 does not hold in general when A may be uncountable order type. For 
example if A were the real line and each La a two point set then a would have to 
map a rational into all but finitely many of the sets La. Indeed, if La = {l\, £2} and 
a(x) = t\ < £2 ~ 0"(y) then x < y and there is a rational number q between x and y 
which is mapped to one of l\, I2. But this corresponds countably many rationals with 
uncountably many reals, which is impossible. 

Theorem 1 is proved by considering mappings of the components of Kc into them­
selves. These components are pairwise disjoint open intervals which are linearly ordered 
by comparison of endpoints. The number of components of Kc which must be mapped 
to a single component of Kc is equal to the number of components of (K U S)c which 
lie in that component. This need to map linearly ordered sets into themselves in such a 
way that almost every point is hit a specified number of times motivated the following 
definition. 

DEFINITION. Let̂ 4 be a countable linearly ordered set. A function/: A —* Z+ is called 
an order of shuffling on A. Given an order of shuffling/ on A, we shall say that a linearly 
ordered set B shuffles into {A,f) if there is a surjective order homomorphism a of B onto 
A such that the cardinality of o~x {a} is at least/(a) for all but finitely many a E A. If 
this holds for Ma G A we say that B shuffles into (A,f) exactly. 

The main technical result of the paper, Theorem 7, will be that every countable linearly 
ordered set shuffles into itself with any order of shuffling. 

We must now recall some definitions and terminology from set and order theory. An 
order type is an equivalence class of linearly ordered sets, under the relation of order 
isomorphism. The advantage of considering order types is that we can speak of the set of 
all countable order types whereas we can only talk of the class of all countable linearly 
ordered sets. (Since every countable order type has a representative which is a subset of 
the rationals, this set is well defined.) 

Conventionally, the symbols 0,1, <o, CO* and x\ denote respectively the order types of 
the empty set, the one-point set, the positive integers, the negative integers and the rational 
numbers. The symbol a>i denotes the first uncountable ordinal. We shall sometimes blur 
the distinction between order types and linearly ordered sets, for example letting the same 
symbol denote a relation between order types and the corresponding relation between 
their representatives. 

A linearly ordered set A is dense if for any a < b in A there is c in A with a < c < b. 
On the other hand, A is said to be scattered if it does not contain any subset of relative 
order type r\. 
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Finally, if (/, <) is a linearly ordered set and for each / E /, {Lh </) is a linearly 
ordered set then the order sum E/e/£/ is defined to be the set {(/, a) : i E I,a £ Li} with 
the lexicographic ordering. If / is a finite set the sum is generally written 

I i + •••+!„ . 

We shall be working with the set C of countable order types with the relation A < B 
meaning "A is a homomorphic image of B" This relation is a transitive, reflexive binary 
relation on C. Such relations are called quasi-orderings. Building on deep results of 
Nash-Williams [4, 5] and Laver [3], Landraitis in [2] proved a powerful combinatorial 
result for the quasi-ordering (C, r<). In order to discuss this result we must consider some 
properties of quasi-ordered sets. 

A quasi-ordered set (S, <$) is said to be well quasi-ordered (wqo) if whenever sn is 
an infinite sequence of elements of S then there are indices n < m such that s„ <s sm. 
By Ramsey's Theorem, every such sequence contains an increasing subsequence. From 
this it is clear that if (R1 <R) and (S, <s) a re wqo then (R x S,<R X -<S) is wqo. 

Landraitis' theorem (Theorem 3 below) is that (C, <) is wqo. This is proved indirectly, 
using a stronger condition, better quasi-ordering (bqo), which was introduced by Nash-
Williams in [5]. The property bqo is more technical to define, but is better poised for use 
in the transfinite induction arguments which are needed in this area. In fact Landraitis 
proves that (C, :<) is bqo and then makes use of the elementary fact that bqo => wqo. 
However, bqo does not play any direct part in this work and so we shall not discuss it 
further, but refer the interested reader to [5] or Rosenstein's excellent description in [8, 
Chapter 10]. 

THEOREM 3 (LANDRAITIS, [2] COROLLARY 3.4). The set C of countable linear order-
ings, with the quasi-ordering of "is a homomorphic image of", is well quasi-ordered. 

We can now begin the proof of Theorem 7 by proving two lemmas. 

LEMMA 4. Given a linearly ordered set A with an order of shufflingf, suppose that A 
shuffles into (A,f). Then there is an n such that whenever 

B= £ B, 
\<i<m 

and at least n of the Bif including B\ and Bm, satisfy A < Bt then B shuffles into (A,f) 
exactly. 

REMARK. We call the least such n the degree of exactness for (A,f). 

PROOF. Let o be an order homomorphism implementing the shuffling of A into 
(A,f). Let a\,..., a* be those a in A for which the cardinality of cr_1 (a) is less than/(a), 
enumerated in increasing order. 

The range of a covers each of the intervals 

(-ex), a\\ (ax, a2\ . . . , (ak, +oo) 
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(where (a, +oo) has the conventional meaning {x G A : x > a}, and (—00, a) likewise) 
and a maps onto each element of these intervals with the appropriate multiplicity. It is 
conceivable that A does not map onto any of the ah so we must include in B at least 
/(a/) copies of A to map onto each a,. Thus we take n = k+ \ + £f=i f(ai). Given a 
set B = J2\<i<m B[ satisfying the hypotheses, identify a sequence Bix,..., Bin such that 
A < Bi and 

1 - i\ < h < • ' • < h ~ M-

Let rr map Bir Ç B onto ^. Construct an exact shuffling of B onto A as follows: First 
map the initial segment rfV"^—00, ai) of B onto (—00,01) by OT\. We shall map the 
segmentrf} \+2

a~* (al ' ^ 2 ) o n t o (a i 'a^) w^m °"T/(ai)+2- Meanwhile, map everything which 
lies between these two segments, in particular, all of Bi2,..., i?/ )+1, onto a\. Continue in 
this way, letting g(i) =f(a\)+- • • +/(«/)+/+1 and mapping each segmentr3^<r~l («/, a/+i ) 
onto (a,, Û/4-I) with arg(/). We have required that exactly enough of the Bir map onto A to 
be able to continue in this way, finally mapping a final segment of Bin onto (a^ +00). • 

We shall need HausdofPs canonical form for countable scattered order types [1]. A 
proof of this well-known fact can also be found in [8]. 

DEFINITION. Let So = {0,1} and inductively, for each countable ordinal a, let Sa be 
the set of all order types which can be written in the form E/G/ £/ where / is either co or 
CO* and the Lt all belong to \Jp<a Sp. 

THEOREM 5 (HAUSDORFF). The set of all countable scattered order types is equal to 

Ua<COi ^a-

LEMMA 6. Let A be a countable scattered linear ordering and let f be an order of 
shuffling on A. Then A shuffles into (A,f). 

PROOF. We proceed by induction on Sa. The assertion is certainly true for £0 so 
suppose that it also holds for all Sp with /3 < a. Let A belong to Sa. Now A = E/G/^/ 

where each L, G \Jp<a Sp and / is ordered as one of CO or CO*. For definiteness we shall 
assume / is ordered as CO since the proof in the other case is directly analogous. 

As was observed with the definition of wqo, the product of wqo sets is wqo. Thus, by 
Landraitis' Theorem, the set 

S = {/' : Li < Lj and Lf+\ •< Lj+\ for some j > /} 

is cofinite. Let m = maxSc. Then for each / > m there are infinitely many j > / with 
Lj •< Lj and Li+\ •< Lj+\. 

Regard the sets Li as subsets of A and, by restriction, obtain orderings of shuffling 
fi =/|z,/ on Li. By hypothesis each L/ shuffles into (Li, fi) and so clearly^7 = L\ + • • • +Lm 

shuffles into (A1 ,f\A>). Thus, it will suffice to show that A" = Ew</<co^/ shuffles into 
(A" J") exactly, where/" =f\A„. 

Consider first Lm+\. Now Lm+\ shuffles into (Lm+\ ,fm+\ ) by hypothesis, so let n\ be the 
degree of exactness for (Lm+\,fm+\) from Lemma 4. By the last sentence of the second 
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paragraph, we can pick &2 > k\ (setting k\ = m +1 ) so that Lm+ \ <Lkl_\ and Lm+2 < Lkl, 
and so that Lm+\ < Li for at least n\ values of k\ < i < k2. Then E-AT1 LI shuffles into 

l—K\ 

(Lm¥\,fm±\) exactly. 
Moreover, Lm+2 shuffles into (Lm+2,fm+2) by hypothesis, so we take «2 to be its degree 

of exactness. We can repeat the argument of the last paragraph, finding £3 > k2 such 
that Lm+2 -< £*3-i, Lm+i < Lk3 and Lm+2 :< L, for at least n2 values of A:2 < / < £3. 
This procedure can now be iterated, and the homomorphisms so obtained can be patched 
together to give an exact shuffling of A" into (A",/"). m 

THEOREM 7. Let A be a countable linearly ordered set and let f be an order of 
shuffling on A. Then A shuffles into (A,f). 

PROOF. By another theorem of Hausdorff [1] (see also [8, Theorem 4.9]) every 
linearly ordered set can be written in the form 

where 7 is a dense linear ordering and the L, are scattered linear orderings. Since A is 
assumed to be countable we may write A in this form where both I and all the Li are 
countable. By a well-known theorem of Cantor, I must have order type 

1, % 1 H-T|, T] + l Or 1+T1 + 1. 

If / has a greatest or a least element then by the last lemma the L, corresponding to 
those elements shuffle into themselves with their restricted order of shuffling. Thus, it 
only remains to show that A1 = E/GTI^/ shuffles into itself with the restricted order of 
shuffling. 

First we remark that if S is a countable scattered linearly ordered set then there is 
a homomorphism T:T| —» S such that T~1{S} is infinite for each s G S. This is easily 
verified by transflnite induction using Hausdorff s theorem (Theorem 5.) Thus if 77/ is a 
copy of TJ there are order homomorphisms 77: r\i —> L, with this property for each / G x\. 
Thus there is an order homomorphism 

i£t\ if*] 

such that r_ 1 {a} is infinite for each a E Af. Hence r induces a homomorphism with the 
same property from A' to itself by the formula r(a) = r(i) for a G Z,/, • 

We are now in a position to prove our main result, Theorem 1 : 

PROOF. Without loss we can replace S with SDK, with the consequence that S is now 
closed. Supposed has no interior. Let Ua (a G A) be the components of [0,1] \K indexed 
in order by a countable linearly ordered set A. By the conditions on S, the components 
of [0,1] \ S are ordered as L = T,aeA La where La are all finite. Index these components 
as Vai (a G A,i G La). By Proposition 2, let a map A onto all but finitely many points 
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of L and, in any event, onto at least one point of every La. We can ensure that a maps 
onto the greatest and least elements of L, if such exist. For simply delete the greatest 
or least elements of A to get A1 and obtain a map a' of A' onto all but finitely many 
points of T,aeA' La- Then extend a' to a map a which maps the extreme points of A to the 
corresponding extremal points of L. 

Now begin to define the m a p / on [0,1] as follows: If t G Ua, let x\ and x-i be 
respectively the infimum and supremum of the union of those intervals Ub with a(b) = 
a(a) and write Va(d) - (yi ,yi)- On (JCI , xi) let / be the linear map taking x/ to y\ (/ = 1,2). 
In this way, we define/ on \Ja Ua as a function mapping into \JleL V\. However, there 
may very well be finitely many Va/s which/ does not map onto. Each one of these 
is nevertheless contained in an interval Ua, which it shares with at least one Vaj (for 
ij G La) which is in the range of/. For each such a, it is straightforward to construct a 
strictly increasing map taking the union of those Vaj which are in the range of/ onto an 
open dense subset of Ua. Adjust/ by composing with such maps and we obtain a strictly 
increasing map of \Ja Ua into [0,1] which contains \JleL V\ in its range. 

Since \JleL V\ is dense and/ is increasing,/ extends to a continuous map of [0,1] to 
itself. For if x G [0,1] then since/ is increasing, the left- and right-hand limits of/ at x 
exist. But they must be equal since otherwise a portion of the dense set \JleL V[ would 
lie between them. By slight abuse, we also call this extended map/. Notice that/ maps 
onto the endpoints of every Vaj except perhaps for the finitely many ones in Ua's on 
which/ had to be adjusted in the last paragraph. Thus it only remains to check that/ is 
a bijection of the unit interval to itself. 

But our requirement that a map extremal elements of A to extremal elements of L 
now yields/(0) = 0 and/( l) = 1 and s o / maps onto [0, 1] by the Intermediate Value 
Theorem. It is clear from the construction tha t / is strictly increasing on \Ja Ua. But 
\Ja Ua is dense in [0,1] s o / must be strictly increasing on the whole interval. 

Suppose now K has interior. The case K = [0,1] is trivial so we suppose that K, and 
hence S, is not the whole unit interval. Picking a point xo outside S and considering 
[0,xo] and [xo, 1] separately, we may suppose that 1 £ S. There are now three cases to 
distinguish: (i) 0 belongs to IntS, (ii) 0 is an accumulation point of IntS, and (iii) 0 
does not belong to the closure of Int S. 

In the first case K contains an interval [0, a] and excludes an interval (6, 1]. Take/ to 
be any increasing bijection of [0, 1] to itself which maps a to b. In the second case it is 
routine to find sequences 

\ = b\ > a\ > b2 > a2 > - • • 

decreasing to zero such that [#/, bi\ lies in K for even / and in Kc for odd. One then 
constructs/ so as to map an to 62/+1 a n d 62/ to Û2/-1 • m the last case, let a be the infimum 
of Int K. The interior of [0, a] Pi K is empty so by what has gone before there is a map of 
[0, a] to itself with the appropriate properties for [0, a] D K and [0, a] Pi S. Considering 
the parts of K and S in [a, 1] returns us to case (i) or (ii) above, and the maps obtained 
can be patched together. • 
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