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INVERTIBLE ELEMENTS IN THE DIRICHLET SPACE 

BY 

LEON BROWN 

ABSTRACT. It is shown that if a function in the Dirichlet space is inver-
itible then it is cyclic with respect to the operator of multiplication by the 
identity function. 

1. Introduction. By the Dirichlet space D, we mean the collection of functions an­
alytic in the open unit disc À whose derivatives are square summable with respect to 
area meaure. Equivalently, these are the functions that map A onto a region of finite area 
(counting multiplicity). In order to study D, we introduce the Bergman space B. This is 
the set of functions analytic in À that are square integrable with respect to area measure. 
With the L2 norm, 

Mil = JA\f\2dA, 

B is a Hilbert space. D is a Hilbert space with the norm 

Il/Ilo=l/(0)|2 + Il/'II,-

In [3] the author and A. L. Shields studied the question of classifying those functions 
in D which are cyclic with respect to the operator Mz\ M J — zf, that is, those functions 
/ such that polynomial multiples of/ are dense in D. In that paper the following question 
was presented (Question 4, p. 276): If E is a "Banach space of analytic functions" and 
/ is invertible in E must/ be cyclic? This question (for the Bergman space) was posed 
in [8] (see Question 25 on page 114). Harold S. Shapiro [7] used the term "weakly in­
vertible" in place of cyclic. This question can be rephrased as follows: does invertibility 
imply weak invertibility? In general the answer is no. A counterexample is presented 
by Shamoyan [6]. For the Dirichlet space the answer was, until now, not known, even 
under the additional hypothesis that/ be bounded (see question 9, page 282 of [3]). Our 
goal is to solve this problem: for the Dirichlet space, every invertible function is weakly 
invertible (i.e. cyclic). 

In the second section we present some miscellaneous results and use Carleson's for­
mula to analyze the "cut-off functions". We prove the main theorem in the third section. 

2. Miscellaneous results and Carleson's formula. If/ G D, let \f] denote the 
closure in D of polynomial multiples of/ = { P / : / ) G î P } , when fP denotes the set of 
polynomials. 
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LEMMA 1. (Richter and Shields [5, Lemma 3]). Iff €D,ip eDC\ H°°, and (ff <E D, 
then iprf-+ (ff, (<Pr(z) = (f(rzj), and (ff e \f]. 

LEMMA 2. Iftpn e H°° n D and ((fj)(z) —> Hz G A) and \\ (fJ\\D < M thenf is 
cyclic. 

PROOF. By Proposition 2 in [3], a sequence gn in D converges weakly to g G D if and 
only if gn(z) —• g(z)(z G A) and \\gn\\ < M for some constant M. Thus ip„f —• 1 weakly. 
By Lemma 1, tprf E \f]. Since [f] is weakly closed we have 1 in [/"•]. Since polynomials 
are dense in D, 1 is cyclic in D and thus by Proposition 5 in [3], / is cyclic in D. 

REMARK: Note that ipn does not have to be a multiplier of D. However, H°° <£ D and 
(fn must be in D. 

We recall a formula of Carleson [4] for the Dirichlet integral of a function/ (that is for 
11/11 Z

B = Jj\f\zdx dy). This formula is the sum of three nonnegative terms, involving 
respectively the Blashke factor of/, the singular inner factor, and the outer factor. We 
reproduce only the third of these. We shall write/(0 instead off(elî) for the boundary 
values of/. The boundary values of/ exist because D C / / 2 . We introduce the following 
notation: 

(*) 1(f) = I(f;x, 0 = (log \f(x + 0| - log \f(x)\ ) • (\f(x + 0|2 - | /W| 2 ) . 

Then from Carleson's formula we have 

i * i - 2 ^ 

(**) 8^ / ( s i n 2° ^ / ^ ^ ' O ^ ^ H / I I ^ G D ) , 
0 - 7 T 

with equality when/ is an outer function. Note that /(/;x, 0 is nonnegative for all JC, r 
since the two terms on the right side of (*) have the same sign. Hence 1(f) is unchanged 
if we replace each of these terms by its absolute value. 

DEFINITION: (cutoff functions) If/ G D and/ is an outer function then we set 

a) <fn(z) =<p\f;n](z) = exp{ ^ ) $% log | <p*n<j*)\dt} where 
— TX 

U V ) | = \u,(t)\ = 1" i f l /« l>" 
I1MOI IVnWI | | / ( 0 | i f | / ( / ) | < „ 

b) Similarly we define </> (f)(z) — <j> (z) with 

i0V)i = k«i = |/(0| if 1/(0 >1 
1 if | / (0|<l 

LEMMA 3. 

aj v?„ eDand\\ipn\\D < \\f\\D 

b)H'\\B<\\flso<l>£D. 

PROOF, a) | v?„(0)| = v?„(0) = exp{ ^ / log | <pn{t)\ dt} < exp{ £ J log \f(t)\ dt} 
— 7T — 7 T 

= |/(0)|. (since/ is an outer function). 
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To complete the proof we show that || </J|# < W/'WB- Since <pn are outer functions we 
may compute || </>'J|fl from (**). Thus it would be sufficient to prove that I(<pn) < 1(f) 
for all JC, /. 

First we show that 

(1) | k n ( * + 0 | 2 -Wn(x)\2 | < | \f(x + t)\2 ~ | / W | 2 | • 

We consider the following four cases, 
(i) If \f(x +t)\ < n and \f(x)\ < n then <pn(x + /) = \f(x +1)\ and ipn(x) = \f(x)\ and 
(1) follows. 
(ii) If \f(x + f)\ >n and \f(x)\ > n then ipn(x +t) — n and <pn(x) = n and (1) follows, 
(iii) If \f(x + t)\ > n and |/(*)| < n then we have 

n2-\<Pn(x)\2<\f(x + t)\2-\f(x)\2 

= \\f(x + t)\2-\f(xf\. 

(iv) If |/(JC + t)\ <n and \f(x)\ > n then (1) follows in a manner similar to (iii). 
The proof that 

|log | ipn(x +1)\ - log I (fn(x)\ I < |log I (f(x + 01 - log \f(x)\ I 

is treated in a similar manner. Thus I((fn) < 1(f) which completes the proof of a) 
b) We again consider four cases, i) and ii) are similar to ii) and i) of a). 
(iii)If |/(* + f)| > 1 and \f(x)\ < 1 then | \$(x + t)\2 - \<f>(x)\2\ = \f(x + t)\2 - 1 < 

||/(JC + 0 | 2 - | / W | 2 | . 
(iv) is similar to (iii) 
The proof that | log | <f> (x +1)\ - log | <j> (x)\ \ < \ log \f(x +1)\ - log \f(x)\ \ is treated 

in a similar manner. 
This completes the proof of b). 

LEMMA 4. Iff is invertible in D then ip\ — (f\f, 1] G [/] H //°° and (f\ is invertible. 

PROOF. We may assume/(0) > 0. If/ is invertible then/ and 1 / / are outer functions. 
Let ip = tp[l/f; 1] be cut-off function of 1/ / . Thus V G £> H H°° and <p, = fip e 
DH H°° (Lemma 3). Lemma 1 implies that ^ G [f]. The fact that ^f1 = 0 [1 / / ] 
completes the proof. 

3. The main theorem. 
THEOREM. Iff is invertible in D thenf is cyclic in D. 

PROOF. The fact that if g G \f] and g is cyclic, then/ is cyclic and Lemma 4 implies 
that we may assume that without loss of generality / G H°°, ||/||oo < 1 and/(0) > 0. 
Let x/jn — Lp[\j'/; w]. By Lebesgue's bounded convergence theorem |(fijjn)(t)\ converge 
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in L1 to | / • j \ = 1. Thus (f^n)(z) -> l(z £ A). In particular (f^n)(0) is bounded. We 

will show that HC/Y /̂IU i s bounded. Note that if^n)' = fip„ +f^n- We have 

llM'l|fi<ll/IUIIV„'IU<II^IU 
<ll(i//)'IU 

1 n 

\xl>n(z)\ = exp{ — Jpr(6 - t) log |VaO|dt} 

1 * 
< eXP{ — / Pr{0 - t) log |(1//)(0| * } 

— 7 T 

= |(i//)(z)|i z e A . 

Thus | |/V„||S < ll/V/IU = | | # ' / / 2 | | B < | | / ' / /2 | |B = Wd/fYh and we have | ^ f l | | D 

are uniformly bounded. An application of Lemma 2 completes the proof that/ is cyclic. 
We remark that this question is still open for the Bergman space. If one assumes that 

/ is in the Nevanlinna class then it is known that iff is invertible in B then/ is weakly 
invertibility in B ([1], [2]). 
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