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INVERTIBLE ELEMENTS IN THE DIRICHLET SPACE

BY

LEON BROWN

ABSTRACT. It is shown that if a function in the Dirichlet space is inver-
itible then it is cyclic with respect to the operator of multiplication by the
identity function.

1. Introduction. By the Dirichlet space D, we mean the collection of functions an-
alytic in the open unit disc A whose derivatives are square summable with respect to
area meaure. Equivalently, these are the functions that map A onto a region of finite area
(counting multiplicity). In order to study D, we introduce the Bergman space B. This is
the set of functions analytic in A that are square integrable with respect to area measure.
With the L? norm,

A1l = [ 1r1da,

B is a Hilbert space. D is a Hilbert space with the norm

12 = 1FO) + 11712

In [3] the author and A. L. Shields studied the question of classifying those functions
in D which are cyclic with respect to the operator M,; M. f = zf, that is, those functions
f such that polynomial multiples of f are dense in D. In that paper the following question
was presented (Question 4, p. 276): If E is a “Banach space of analytic functions” and
f is invertible in E must f be cyclic? This question (for the Bergman space) was posed
in [8] (see Question 25 on page 114). Harold S. Shapiro [7] used the term “weakly in-
vertible” in place of cyclic. This question can be rephrased as follows: does invertibility
imply weak invertibility? In general the answer is no. A counterexample is presented
by Shamoyan [6]. For the Dirichlet space the answer was, until now, not known, even
under the additional hypothesis that f be bounded (see question 9, page 282 of [3]). Our
goal is to solve this problem: for the Dirichlet space, every invertible function is weakly
invertible (i.e. cyclic).

In the second section we present some miscellaneous results and use Carleson’s for-
mula to analyze the “cut-off functions”. We prove the main theorem in the third section.

2. Miscellaneous results and Carleson’s formula. If f € D, let [f] denote the
closure in D of polynomial multiples of f = { Pf : P € P}, when P denotes the set of
polynomials.
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LEMMA 1. (Richter and Shields [5, Lemma 3]). Iff € D, ¢ € DN H*®, and ¢f € D,
then p.f — of, (cpr(z) = <p(rz)), and of € [f].

LEMMA 2. If ¢, € H® N D and (pf)(2) — 1z € A) and || ¢af||, < M thenf is
cyclic.

PROOF. By Proposition 2 in [3], a sequence g, in D converges weakly to g € D if and
only if g,(z) — g(z)(z € A) and || g,|| < M for some constant M. Thus ¢,f — 1 weakly.
By Lemma 1, ¢,f € [f]. Since [f] is weakly closed we have 1 in [f]. Since polynomials
are dense in D, 1 is cyclic in D and thus by Proposition 5 in [3], f is cyclic in D.

REMARK: Note that ¢, does not have to be a multiplier of D. However, H* ¢ D and
¢, must be in D.

We recall a formula of Carleson [4] for the Dirichlet integral of a function f (that is for
]|f’||§ =Jf |f’|2 dx dy). This formula is the sum of three nonnegative terms, involving
respectively the Blashke factor of f, the singular inner factor, and the outer factor. We
reproduce only the third of these. We shall write f(¢) instead of f(e') for the boundary
values of f. The boundary values of f exist because D C H?. We introduce the following
notation:

(%) If) = I(f;x,0) = (og [f(x + )| —log [f()]) - (|fCx+ 0] = [f(0] D).

Then from Carleson’s formula we have

™

1 7 .1 72 ,
(%) v 0/(sm it) dt / I(f; x, Hdx < ||fH§(f € D),

-

with equality when f is an outer function. Note that I(f; x, ) is nonnegative for all x, ¢
since the two terms on the right side of (x) have the same sign. Hence /(f) is unchanged
if we replace each of these terms by its absolute value.

DEFINITION: (cutoff functions) If f € D and f is an outer function then we set
a) pa(2) = @[f;nl(z) = exp{ ﬁ I :'li} log | ¢x(e™")|dt} where

noif|f(o] 2n

loa(eD] = [on(0] = {|f(t)| if [f()] <n

b) Similarly we define ¢ (f)(z) == ¢ (z) with

N _ [l iflfo >1

LEMMA 3.
a) on € D and ”‘Pn”D < ”f”D
b)[16'lls < IfIl, so ¢ € D.

PROOF. @) | ¢(0)] = ¢4(0) = exp{ 2%_} log | @a(n)] dr} < exp{ ﬁ_} log |f(n)] dt}

= |f(0)]. (since f is an outer function).
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To complete the proof we show that || ¢’, ||z < ||f'|s. Since ,, are outer functions we
may compute || ¢’, ||z from (x*). Thus it would be sufficient to prove that I(¢,) < I(f)
for all x, 1.

First we show that

(1) | lnGe+ 01> = [ea)| | < | G+ 0]* = [F0)]?].

We consider the following four cases.

() If [f(x+ 0] < nand|f(x)] < nthen p,(x+1) = |f(x+1)]| and ¢,(x) = |f(x)| and
(1) follows.

1) If |[f(x + )| > nand |f(x)| > nthen ¢,(x+1) = nand ¢,(x) = n and (1) follows.
(i) If |[f(x + H| > nand |f(x)| < nthen we have

n? — @) < |fx+0))* = |f0)]
= | lfa+ 0> = [fw)?].

(iv) If |[f(x + 1)] < nand|f(x)| > n then (1) follows in a manner similar to (iii).
The proof that

[log | pa(x +1)] — log | pa()|| < [log |(Fx +1)| — log |f(x)]|

is treated in a similar manner. Thus 1(p,) < I(f) which completes the proof of a)
b) We again consider four cases, i) and ii) are similar to ii) and i) of a).
(iii) If |[f(x + )| > 1and |[f(x)| < Lthen|[p(x+0)|?> — ¢ @)|*| = [fx+n|> —1 <
| IfCe+0)? = [f)3.
(iv) is similar to (iii)
The proof that |log|¢ (x +1)] —logld ®)|| < |log|f(x+1)| —log|f(x)| | is treated
in a similar manner. :
This completes the proof of b).

LEMMA 4. If f is invertible in D then ¢ = ¢[f, 1] € [f1MN H*™ and ¢, is invertible.

PROOF. We may assume f(0) > 0.If f is invertible then f and 1/ f are outer functions.
Let ¢y = ¢[1/f; 1] be cut-off function of 1/f. Thus ¢ € DN H*® and ¢; = f¢ €
D N H*® (Lemma 3). Lemma 1 implies that ¢; € [f]. The fact that go,_' = ¢[1/f]
completes the proof.

3. The main theorem.
THEOREM. If f is invertible in D then f is cyclic in D.

PROOF. The fact that if g € [f] and g is cyclic, then f is cyclic and Lemma 4 implies
that we may assume that without loss of generality f € H®, ||f]|oc < 1 and f(0) > 0.

Let ¥, = ¢[1/f;n]. By Lebesgue’s bounded convergence theorem |(f1),)()| converge
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inL' to If- fll = 1. Thus (fy,,)(z) — 1(z € A). In particular (fy,)(0) is bounded. We
will show that || (f1,)'|| 3 is bounded. Note that (fy,) = fi, +f'¥,. We have

ralls < I llocll®nlls < ll0nlls
</ lls

|¢n(2)|

1 ™
exp{ 5 /p,(e — 1) log | (1) dt}

l ™
<exp{5— [ PO —1) log|(1/N)0)| di}

[(1/) @), z €A

Thus ||f"Yulls < 1If'/flls = 1/ f2lle < IF/£2lls = [1(1/fY||s and we have [|fv,]|p
are uniformly bounded. An application of Lemma 2 completes the proof that f is cyclic.

We remark that this question is still open for the Bergman space. If one assumes that
f is in the Nevanlinna class then it is known that if f is invertible in B then f is weakly
invertibility in B ([1], [2]).
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