
JFP 25, e14, 47 pages, 2015. c© Cambridge University Press 2015

doi:10.1017/S0956796815000180

1

Calculating correct compilers

PATRICK BAHR

Department of Computer Science, University of Copenhagen, Denmark

(e-mail:)paba@diku.dk)

GRAHAM HUTTON

School of Computer Science, University of Nottingham, UK

(e-mail:)graham.hutton@nottingham.ac.uk)

Abstract

In this article, we present a new approach to the problem of calculating compilers. In

particular, we develop a simple but general technique that allows us to derive correct compilers

from high-level semantics by systematic calculation, with all details of the implementation

of the compilers falling naturally out of the calculation process. Our approach is based

upon the use of standard equational reasoning techniques, and has been applied to calculate

compilers for a wide range of language features and their combination, including arithmetic

expressions, exceptions, state, various forms of lambda calculi, bounded and unbounded loops,

non-determinism and interrupts. All the calculations in the article have been formalised using

the Coq proof assistant, which serves as a convenient interactive tool for developing and

verifying the calculations.

1 Introduction

The ability to calculate compilers has been a key objective in the field of program

transformation since its earliest days. Starting from a high-level semantics for a

source language, the aim is to transform the semantics into a compiler that translates

source programs into a lower-level target language, together with a virtual machine

that executes the resulting target programs. There are two important advantages of

this approach. Firstly, the definitions for the compiler, target language and virtual

machine are systematically derived during the transformation process, rather than

having to be manually defined by the user. And secondly, the resulting compiler and

virtual machine do not usually require subsequent proofs of correctness, as they are

correct by construction (Backhouse, 2003).

The idea of calculating compilers in this manner has been explored by a number

of authors; for example, see Wand (1982a), Meijer (1992), Ager et al. (2003b).

However, it has traditionally been viewed as an advanced topic that requires

considerable knowledge and experience with concepts such as continuations and

defunctionalisation (Reynolds, 1972). In this article, we show that compilers can

in fact be calculated in a simple and straightforward manner, without the need

for such techniques, using standard equational reasoning. Our new approach builds

upon previous work in the area, and focuses specifically on compilers that target

stack-based virtual machines.

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

2 P. Bahr and G. Hutton

The starting point of our calculation process is the semantics for the source

language in the form of an evaluation function. We then formulate an equational

specification that captures the correctness of the compiler. Using this specification,

we calculate definitions of the compiler and the virtual machine by constructive

induction (Backhouse, 2003), using the desire to apply the induction hypotheses as

the driving force for the calculation process. While our approach avoids direct use

of continuations and defunctionalisation, these concepts are nonetheless useful for

explaining the underlying ideas, and for comparing to other work in the literature.

Therefore, we present our approach in two stages, firstly introducing the basic

ideas in a series of transformation steps that include the use of continuations and

defunctionalisation, and then showing how these steps can be combined into a single

step that calculates directly from the compiler specification.

The techniques that we use are all well known. Our contribution is to show

how they can be applied in a novel manner to give a new approach to calculate

compilers that is both simple and generally applicable. It has been used to calculate

compilers for a wide range of language features and their combination, including

arithmetic expressions, exceptions, local and global state, various forms of lambda

calculi, bounded and unbounded loops, non-determinism and interrupts. A key

ingredient for the scalability of our approach is the use of partial specifications to

avoid predetermining implementation decisions. For example, the specification of a

compiler for a language with exceptions may not stipulate how the compiler should

behave when the result is an uncaught exception, as this requires up-front knowledge

about how exceptions are to be implemented. Rather, the details of this behaviour

are determined during the calculation process itself.

We develop our approach gradually. We introduce the basic methodology using

a simple expression language, starting with a stepwise calculation, which we then

combine into a single calculation (Section 2). Subsequently, we refine the method-

ology as we apply it to languages of increasing complexity: the use of partial

specifications is demonstrated on a language with exceptions (Section 3); the use of

configurations is demonstrated on a language with state (Section 4) and finally the

use of rule induction for dealing with non-compositional semantics is demonstrated

on a lambda calculus (Section 5).

All our programs and calculations are written in Haskell, but we only use

the basic concepts of recursive types, recursive functions and inductive proofs.

Whereas in many articles, calculations are often omitted or compressed for brevity,

in this article, they are the central focus, so they are presented in detail. All

the calculations have also been mechanically verified using the Coq proof as-

sistant, and the proof scripts are available as online supplementary material at

http://dx.doi.org/10.1017/S0956796815000180, together with all Haskell code and

an appendix that covers an additional example.

2 Arithmetic expressions

To introduce our approach, we begin by considering a simple language of arithmetic

expressions comprising integer values and an addition operator:

data Expr = Val Int | Add Expr Expr

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

Calculating correct compilers 3

We calculate a compiler for this language in a series of steps, starting with

the definition of a semantics for the language, to which we then apply a number

of transformations. These transformation steps involve continuations and defunc-

tionalisation. However, we then simplify the process by combining the separate

transformation steps, which results in a simple but powerful new approach to

calculate compilers.

2.1 Step 1 – Define the semantics

The semantics for our expression language is most naturally given by defining a

function that simply evaluates an expression to an integer value:

eval :: Expr → Int

eval (Val n) = n

eval (Add x y) = eval x + eval y

Note that the definition for eval is compositional, in the sense that the semantics of

addition is given purely in terms of the semantics of its two argument expressions.

With a view to use simple inductive proof methods, we will typically aim to define

our semantics in such a compositional manner. However, this may not always be

possible, and in Section 5, we will see an example that uses a non-compositional

semantics.

2.2 Step 2 – Transform into a stack transformer

The next step is to transform the evaluation function into a version that utilises a

stack, in order to make the manipulation of argument values explicit. In particular,

rather than returning a single value of type Int , we seek to derive a more general

evaluation function, evalS, that takes a stack of integers as an additional argument,

and returns a modified stack given by pushing the value of the expression onto the

top of the stack. More precisely, if we represent a stack as a list of integers (where

the head is the top element)

type Stack = [Int]

then we seek to derive a function

evalS :: Expr → Stack → Stack

such that:

evalS x s = eval x : s (1)

The operator : is the list constructor in Haskell, which associates to the right. For

example, m : n : s is the list obtained by prepending two elements m and n to the list

s .

Rather than first defining the function evalS and then separately proving by

induction that it satisfies the above equation, we aim to calculate a definition for

evalS that satisfies the equation by constructive induction (Backhouse, 2003) on the

expression x , using the desire to apply the induction hypotheses as the driving force

for the calculation process.

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

4 P. Bahr and G. Hutton

Specifically, we will start with the term evalS x s and gradually transform it

by equational reasoning. The goal is to arrive at a term t such that we can take

evalS x s = t as a defining equation for evalS. We do this by induction on the

expression x , so we have to do a calculation for each case of x . In the base case,

Val n , the calculation is easy:

evalS (Val n) s

= { specification }
eval (Val n) : s

= { definition of eval }
n : s

= { define: pushS n s = n : s }
pushS n s

Note that in the final step we defined an auxiliary function, pushS, that captures

the idea of pushing a number onto the stack. With the above calculation, we have

discovered the definition of evalS for expressions of the form Val n , namely

evalS (Val n) s = pushS n s

In the inductive case, Add x y , we proceed as follows:

evalS (Add x y) s

= { specification }
eval (Add x y) : s

= { definition of eval }
(eval x + eval y) : s

Now we appear to be stuck, as no further definitions can be applied. However,

as we are performing an inductive calculation, we can make use of the induction

hypotheses for the two argument expressions x and y , namely

evalS x s ′ = eval x : s ′

evalS y s ′ = eval y : s ′

In order to use these hypotheses, it is clear that we must push the values eval x and

eval y onto the stack, which can readily be achieved by introducing another auxiliary

function, addS, that captures the idea of adding together the top two numbers on

the stack. The remainder of the calculation is then straightforward:

(eval x + eval y) : s

= { define: addS (n : m : s) = (m + n) : s }
addS (eval y : eval x : s)

= { induction hypothesis for y }
addS (evalS y (eval x : s))

= { induction hypothesis for x }
addS (evalS y (evalS x s))

Note that pushing eval x onto the stack before eval y in this calculation corresponds

to the addition operator evaluating its arguments from left-to-right. It would be

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

Calculating correct compilers 5

perfectly valid to push the values in the opposite order, which would correspond to

right-to-left evaluation. In conclusion, we have calculated the following definition:

evalS :: Expr → Stack → Stack

evalS (Val n) s = pushS n s

evalS (Add x y) s = addS (evalS y (evalS x s))

where

pushS :: Int → Stack → Stack

pushS n s = n : s

addS :: Stack → Stack

addS (n : m : s) = (m + n) : s

Finally, our original evaluation function eval can now be recovered from our new

function by substituting the empty stack into equation (1) from which evalS was

constructed, and selecting the unique value in the resulting singleton stack:

eval :: Expr → Int

eval x = head (evalS x [])

We conclude by noting that introducing pushS and addS may seem rather

unnecessary at this point, and indeed, the above calculation can be performed

without them. But we will see that subsequent steps are based on being able to

encapsulate such operations as functions. However, the issue of when we need to

introduce new definitions will become clear when the separate steps are combined

together in Section 2.5.

2.3 Step 3 – Transform into continuation-passing style

The next step is to transform the new function evalS into continuation-passing style

(CPS) (Reynolds, 1972), in order to make the flow of control explicit. In particular,

we seek to derive a more general evaluation function, evalC, that takes a function

from stacks to stacks (the continuation) as an additional argument, which is used to

process the stack that results from evaluating the expression. More precisely, if we

define a type for continuations

type Cont = Stack → Stack

then we seek to derive a function

evalC :: Expr → Cont → Cont

such that

evalC x c s = c (evalS x s) (2)

We calculate the definition for evalC directly from this equation by constructive

induction on the expression x . The base case is once again easy,

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

6 P. Bahr and G. Hutton

evalC (Val n) c s

= { specification (2) }
c (evalS (Val n) s)

= { definition of evalS }
c (pushS n s)

while for the inductive case we calculate as follows:

evalC (Add x y) c s

= { specification (2) }
c (evalS (Add x y) s)

= { definition of evalS }
c (addS (evalS y (evalS x s)))

= { function composition }
(c ◦ addS) (evalS y (evalS x s))

= { induction hypothesis for y }
evalC y (c ◦ addS) (evalS x s)

= { induction hypothesis for x }
evalC x (evalC y (c ◦ addS)) s

In conclusion, we have calculated the following definition:

evalC :: Expr → Cont → Cont

evalC (Val n) c s = c (pushS n s)

evalC (Add x y) c s = evalC x (evalC y (c ◦ addS)) s

Our previous evaluation function evalS can then be recovered by substituting the

identity continuation into equation (2) from which evalC was constructed:

evalS :: Expr → Cont

evalS x = evalC x (λs → s)

The notation λx → e is Haskell syntax for a lambda abstraction, in which x is the

name of the bound variable and the expression e is the body.

2.4 Step 4 – Transform back to first-order style

The final step is to transform the evaluation function back into first-order style,

using the technique of defunctionalisation (Reynolds, 1972). In particular, rather

than using functions of type Cont = Stack → Stack for continuations passed as

arguments and returned as results, we define a datatype that represents the specific

forms of continuations that we actually need for the purposes of our evaluation

function.

Within the definitions for evalS and evalC, there are only three forms of contin-

uations that are used, namely one to invoke the evaluator, one to push an integer

onto the stack, and one to add the top two values on the stack. We begin by

separating out these three forms, by giving them names and abstracting over their

free variables. That is, we define three combinators for constructing the required

forms of continuations:

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

Calculating correct compilers 7

haltC :: Cont

haltC = λs → s

pushC :: Int → Cont → Cont

pushC n c = c ◦ pushS n

addC :: Cont → Cont

addC c = c ◦ addS

Using these combinators, our evaluation functions can now be rewritten as follows:

evalS :: Expr → Cont

evalS x = evalC x haltC

evalC :: Expr → Cont → Cont

evalC (Val n) c = pushC n c

evalC (Add x y) c = evalC x (evalC y (addC c))

It is easy to check by unfolding definitions that these definitions are equivalent to the

previous versions. The next stage in applying defunctionalisation is to define a new

datatype, Code, whose constructors represent the three combinators. We write the

definition in generalised algebraic datatype style to highlight the correspondence:

data Code where

HALT :: Code

PUSH :: Int → Code → Code

ADD :: Code → Code

The types for the constructors in this definition are obtained simply by replacing

occurrences of Cont in the types for the combinators by Code. The use of the

name Code for the type reflects the fact that its values represent code for a

virtual machine that evaluates arithmetic expressions using a stack. For example,

PUSH 1 (PUSH 2 (ADD HALT)) is the code that corresponds to the expression

Add (Val 1) (Val 2).

The fact that values of type Code represent continuations of type Cont is

formalised by the function exec, which maps the former to the latter:

exec :: Code → Cont

exec HALT = haltC

exec (PUSH n c) = pushC n (exec c)

exec (ADD c) = addC (exec c)

By expanding out the definitions for the type Cont and its three combinators, we see

that exec is a first-order, tail recursive function that executes code using an initial

stack to give a final stack. That is, exec is a virtual machine for executing code:

exec :: Code → Stack → Stack

exec HALT s = s

exec (PUSH n c) s = exec c (n : s)

exec (ADD c) (n : m : s) = exec c ((m + n) : s)

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

8 P. Bahr and G. Hutton

Finally, defunctionalisation itself proceeds by replacing occurrences of the com-

binators pushC, addC and haltC in the evaluation functions evalS and evalC by their

respective counterparts from the datatype Code, which results in the following two

definitions:

comp :: Expr → Code

comp x = comp ′ x HALT

comp ′ :: Expr → Code → Code

comp ′ (Val n) c = PUSH n c

comp ′ (Add x y) c = comp ′ x (comp ′ y (ADD c))

That is, we have now derived a function comp that compiles an expression to code,

which is itself defined in terms of an auxiliary function comp ′ that takes a code

continuation as an additional argument. This is essentially the same compiler as

developed by Chapter 13, except that all the required compilation machinery —

compiler, target language and virtual machine — has now been systematically

derived from a high-level semantics for the source language using equational

reasoning techniques.

Note that the code produced by our compiler is not a sequence of instructions, the

form that one would typically associate with machine code. Rather, the code is in a

form called CPS notation (Appel, 1991). This representation of code was first used

in early compilers for Scheme (Steele, 1978; Adams et al., 1986), and has proved to

be beneficial for implementing optimising compilers (Appel, 1991). Despite sharing

the same name, one should not confuse code represented in this style with the CPS

semantics in Section 2.3. In the former, continuations are represented symbolically,

whereas in the latter continuations are functions.

The correctness of the compilation functions comp and comp ′ is captured by the

following two equations, which are consequences of defunctionalisation, or can be

verified by simple inductive proofs on the expression argument:

exec (comp x) s = evalS x s

exec (comp ′ x c) s = evalC x (exec c) s

In order to understand these equations, we expand their right-hand sides using the

original specifications (1) and (2) for the new evaluation functions, to give

exec (comp x) s = eval x : s

exec (comp ′ x c) s = exec c (eval x : s)

The first equation now states that executing the compiled code for an expression

produces the same result as pushing the value of the expression onto the stack, which

establishes the correctness of comp. In turn, the second equation states that compiling

an expression and then executing the resulting code together with additional code

gives the same result as executing the additional code with the value of the expression

on top of the stack, which establishes the correctness of comp ′. These are the same

correctness conditions as used by Chapter 13, except that they are now satisfied by

construction.

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

Calculating correct compilers 9

2.5 Combining the transformation steps

We have now shown how a compiler for simple arithmetic expressions can be

developed using a systematic four-step process, which is summarised below:

1. Define an evaluation function in a compositional manner;

2. Calculate a generalised version that uses a stack;

3. Calculate a further generalised version that uses continuations;

4. Defunctionalise to produce a compiler and a virtual machine.

However, there appear to be some opportunities for simplifying this process. In

particular, steps 2 and 3 both calculate generalised versions of the original evaluation

function. Could these steps be combined to avoid the need for two separate

generalisation steps? In turn, step 3 introduces the use of continuations, which

are then immediately removed in step 4. Could these steps be combined to avoid

the need for continuations? In fact, it turns out that all the transformation steps

2–4 can be combined together. This section shows how this can be achieved, and

explains the benefits that result from doing so.

In order to simplify the above stepwise process, let us first consider the types and

functions that are involved in more detail. We started off by defining a datatype

Expr that represents the syntax of the source language, together with a function

eval :: Expr → Int that provides a semantics for the language, and a datatype Stack

that corresponds to a stack of integer values. Then, we derived four additional

components:

• A datatype Code that represents the code for the virtual machine;

• A function comp :: Expr → Code that compiles expressions to code;

• A function comp ′ ::Expr → Code → Code that also takes a code continuation;

• A function exec :: Code → Stack → Stack that provides a semantics for code.

Moreover, the relationships between the semantics, compilers and virtual machine

were captured by the following two correctness equations:

exec (comp x) s = eval x : s (3)

exec (comp ′ x c) s = exec c (eval x : s) (4)

The key to combining the transformation steps is to use these two equations

directly as a specification for the four additional components, from which we then

aim to calculate definitions that satisfy the specification. Given that the equations

involve three known definitions (Expr , eval and Stack) and four unknown definitions

(Code, comp, comp ′ and exec), this may seem like an impossible task. However, with

the benefit of the experience gained from our earlier calculations, it turns out to be

straightforward.

We begin with equation (4), and proceed by constructive induction on the

expression x . In each case, we aim to rewrite the left-hand side exec (comp ′ x c) s

of the equation into the form exec c′ s for some code c′, from which we can then

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

10 P. Bahr and G. Hutton

conclude that the definition comp ′ x c = c′ satisfies the specification in this case. In

order to do this, we will find that we need to introduce new constructors into the

Code type, along with their interpretation by the function exec. In the base case,

Val n , we proceed as follows:

exec (comp ′ (Val n) c) s

= { specification (4) }
exec c (eval (Val n) : s)

= { definition of eval }
exec c (n : s)

Now we appear to be stuck, as no further definitions can be applied. However, recall

that we are aiming to end up with an expression of the form exec c′ s for some code

c′. That is, in order to complete the calculation we need to solve the equation

exec c′ s = exec c (n : s)

Note that we can’t simply use this equation as a definition for exec, because the

variables n and c would be unbound in the body of the definition. The solution

is to package these two variables up in the code argument c′ by means of a new

constructor in the Code datatype that takes these two variables as arguments,

PUSH :: Int → Code → Code

and define a new equation for exec as follows:

exec (PUSH n c) s = exec c (n : s)

That is, executing the code PUSH n c proceeds by pushing the value n onto the

stack and then executing the code c, hence the choice of the name for the new

constructor. Using these ideas, it is now straightforward to complete the calculation:

exec c (n : s)

= { definition of exec }
exec (PUSH n c) s

The final expression now has the form exec c′ s , where c′ = PUSH n c, from which

we conclude that the following definition satisfies specification (4) in the base case:

comp ′ (Val n) c = PUSH n c

For the inductive case, Add x y , we begin in the same way as above by first

applying the specification and the definition of the evaluation function:

exec (comp ′ (Add x y) c) s

= { specification (4) }
exec c (eval (Add x y) : s)

= { definition of eval }
exec c (eval x + eval y : s)

Once again we appear to be stuck, as no further definitions can be applied. However,

as we are performing an inductive calculation, we can make use of the induction

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

Calculating correct compilers 11

hypotheses for the two argument expressions x and y , namely

exec (comp ′ x c′) s ′ = exec c′ (eval x : s ′)

exec (comp ′ y c′) s ′ = exec c′ (eval y : s ′)

In order to use these hypotheses, it is clear that we must push eval x and eval y

onto the stack, by transforming the expression that we are manipulating into the

form exec c′ (eval y : eval x : s) for some code c′. That is, we need to solve the

equation

exec c′ (eval y : eval x : s) = exec c (eval x + eval y : s)

First of all, we generalise from the specific values eval x and eval y to give

exec c′ (m : n : s) = exec c ((n + m) : s)

Once again, however, we can’t simply use this equation as a definition for exec, this

time because the variable c is unbound in the body. The solution is to package this

variable up in the code argument c′ by means of a new constructor in the Code

datatype

ADD :: Code → Code

and define a new equation for exec as follows:

exec (ADD c) (m : n : s) = exec c ((n + m) : s)

That is, executing the code ADD c proceeds by adding the top two values on the

stack and then executing the code c, hence the choice of the name for the new

constructor. Using these ideas, the remainder of the calculation is straightforward:

exec c (eval x + eval y : s)

= { definition of exec }
exec (ADD c) (eval y : eval x : s)

= { induction hypothesis for y }
exec (comp ′ y (ADD c)) (eval x : s)

= { induction hypothesis for x }
exec (comp ′ x (comp ′ y (ADD c))) s

The final expression now has the form exec c′ s , from which we conclude that the

following definition satisfies the specification in the inductive case:

comp ′ (Add x y) c = comp ′ x (comp ′ y (ADD c))

Note that as in Section 2.2, we chose to transform the stack into the form

eval y : eval x : s . We could have equally well chosen the opposite order, eval x :

eval y :s , which would have resulted in right-to-left evaluation for Add . We have this

freedom in the calculation because the semantics defined by eval does not specify

an evaluation order.

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

12 P. Bahr and G. Hutton

Finally, we complete the development of our compiler by considering the function

comp :: Expr → Code, whose correctness was specified by equation (3). In a similar

manner to equation (4), we aim to rewrite the left-hand side exec (comp x) s of the

equation into the form exec c s for some code c, from which we can then conclude

that the definition comp x = c satisfies the specification. In this case, there is no need

to use induction as simple calculation suffices, during which we introduce a new

constructor HALT :: Code in order to transform the expression being manipulated

into the required form:

exec (comp x) s

= { specification (3) }
eval x : s

= { define: exec HALT s = s }
exec HALT (eval x : s)

= { specification (4) }
exec (comp ′ x HALT) s

In conclusion, we have calculated the following definitions:

data Code = HALT | PUSH Int Code | ADD Code

comp :: Expr → Code

comp x = comp ′ x HALT

comp ′ :: Expr → Code → Code

comp ′ (Val n) c = PUSH n c

comp ′ (Add x y) c = comp ′ x (comp ′ y (ADD c))

exec :: Code → Stack → Stack

exec HALT s = s

exec (PUSH n c) s = exec c (n : s)

exec (ADD c) (m : n : s) = exec c ((n + m) : s)

These are precisely the same definitions as we produced in the previous section,

except that they have now been calculated directly from a specification of compiler

correctness, rather than indirectly by means of a series of separate transformation

steps.

In summary, we have shown how a compiler for simple arithmetic expressions

can be developed using a combined three-step approach, which is summarised

below:

1. Define an evaluation function in a compositional manner;

2. Define equations that specify the correctness of the compiler;

3. Calculate definitions that satisfy these specifications.

Our full methodology for calculating compilers is given at the end of the article in

Figure 1 on page 44. For the purpose of exposition, however, we will introduce the

details of the general approach step-by-step using example languages of increasing

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

Calculating correct compilers 13

complexity, gradually refining our approach as we progress. These refinements to

the methodology should not be confused with its application to calculate correct

compilers.

2.6 Reflection

We conclude this section with some reflective remarks on our original and combined

approaches to calculate a compiler for arithmetic expressions, together with some

comments on the relationship between derivations and proofs.

Simplicity. The original approach required the use of continuations and defunc-

tionalisation, which are traditionally regarding as being ‘advanced’ concepts, and

may not be familiar to some readers who may be interested in calculating com-

pilers. In contrast, the combined approach only uses simple equational reasoning

techniques, in the form of constructive induction on the syntax of the source

language.

Directness. The original approach was driven by the desire to define generalised

versions of the semantics for the source language, and the correctness of the

resulting compiler arose indirectly as a consequence of the use of defunctionalisation.

In contrast, the combined approach starts directly from the compiler correctness

equations, from which the goal is then to calculate definitions that satisfy these

equations. The use of equations of this form to express and then prove compiler

correctness can be traced back to the pioneering work on compiler verification by

McCarthy & Painter (1967).

Similarity. The calculations in the combined approach proceed in a very similar

manner to those in the original approach. Indeed, if we combine the original

steps that introduce a stack and continuation into a single step by means of the

specification

evalC x c s = c (eval x : s) (5)

then the calculations have precisely the same structure, except that in the original

approach, we introduce continuation combinators that are defunctionalised to code

constructors, whereas in the combined approach we introduce the code constructors

directly. The correspondence also becomes syntactically evident if we use an infix

operator, say $$, for the function exec. Then, the specification for comp ′ in the

combined approach becomes

comp ′ x c $$ s = c $$ (eval x : s) (6)

which has the same structure as specification (5) above for evalC, except that we

use $$ rather than function application (itself sometimes written as infix $), comp ′

rather than evalC and code rather than continuations. Using these specifications, the

two calculations then become essentially the same. To illustrate this point, the base

cases are shown side-by-side below; the inductive cases are just as similar.

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

14 P. Bahr and G. Hutton

evalC (Val n) c s
= { specification (5) }

c (eval (Val n) : s)
= { definition of eval }

c (n : s)
= { define: push n c s = c (n : s) }

push n c s

comp ′ (Val n) c $$ s
= { specification (6) }

c $$ (eval (Val n) : s)
= { definition of eval }

c $$ (n : s)
= { define: PUSH n c $$ s = c $$ (n : s) }

PUSH n c $$ s

Mechanisation. Eliminating the use of continuations is also important from the

point of view of mechanically verifying our calculations. In particular, when using

our original approach to calculate compilers for more sophisticated languages, we

sometimes needed to store continuations on the stack. For example, this arises when

considering languages that support exception handling as we shall do in Section 3.

However, this has the consequence that the stack type becomes non-strictly-

positive, and hence unsuitable for formalisation in proof assistants such as Coq

and Agda (Dybjer, 1994). In contrast, there is no such problem when mechanising

the calculations in our combined approach. All our compiler calculations have been

mechanically verified in the Coq system, and the proof scripts are available online as

supplementary material. The only difference between the calculations in the article

and their formalisation in Coq is that in the latter case, we define the virtual

machines as relations rather than as functions, because the termination checker for

Coq only accepts functions whose definitions are structurally recursive.

Partiality. Because the ADD instruction fails if the stack does not contain at least

two values, the function exec implements the virtual machine is partial. As remarked

by Ager et al. (2003a), such partiality is ‘inherent to programming abstract machines

in an ML-like language’. If desired, exec could be turned into a total function by

using a dependently- typed language to make the stack demands of each machine

instruction explicit in its type (McKinna & Wright, 2006). However, we do not

require such additional effort here as we are only interested in the behaviour of exec

for well-formed code produced by our compiler, as expressed in specifications (3)

and (4).

Exposition. Given the benefits of the combined approach, why didn’t we simply

present this straight off rather than first presenting a more complicated approach?

The primary reason is that the original, stepwise approach provides motivation and

explanation for the specifications and calculations that are used in the combined

approach. Moreover, starting off with the stepwise approach also facilities a com-

parison with related work (Section 6), which is traditionally based upon the use of

continuations and defunctionalisation.

Derivation versus proof. The purpose of our calculations is to derive definitions

that satisfy their specifications. In addition, the calculations can also be read as

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

Calculating correct compilers 15

proofs that the definitions satisfy their specifications. In particular, each of our

calculations starts off by applying a specification; if we remove this first step

from the calculation and add a new step at the end that applies the definition,

the calculation can then be read as a proof. For example, our calculation of the

definition comp ′ (Val n) c = PUSH n c from specification (4),

exec (comp ′ (Val n) c) s

= { specification (4) }
exec c (eval (Val n) : s)

= { definition of eval }
exec c (n : s)

= { define: exec (PUSH n c) s = c (n : s) }
exec (PUSH n c) s

can also be read as a proof that this definition satisfies the specification:

exec c (eval (Val n) : s)

= { definition of eval }
exec c (n : s)

= { define: exec (PUSH n c) s = c (n : s) }
exec (PUSH n c) s

= { definition of comp ′ }
exec (comp ′ (Val n) c) s

We could have performed all calculations in the article in this form instead. Indeed,

our calculations in Coq proceed in this way. However, from the point of view of

discovering definitions, as opposed to verifying them, we prefer the derivation-based

approach.

3 Exceptions

We now extend the language of arithmetic expressions from Section 2 with simple

primitives for throwing and catching an exception:

data Expr = Val Int | Add Expr Expr | Throw | Catch Expr Expr

Informally, Catch x h behaves as the expression x unless evaluation of x throws

an exception, in which case the catch behaves as the handler expression h . An

exception is thrown if evaluation of Throw is attempted. To define the semantics

for this extended language in the form of an evaluation function, we first recall the

Maybe type:

data Maybe a = Just a | Nothing

That is, a value of type Maybe a is either Nothing , which we view as an exceptional

value, or has the form Just x , which we view as a normal value (Spivey, 1990). Using

this type, our original evaluator can be rewritten to take account of exceptions as

follows:

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

16 P. Bahr and G. Hutton

eval :: Expr → Maybe Int

eval (Val n) = Just n

eval (Add x y) = case eval x of

Just n → case eval y of

Just m → Just (n + m)

Nothing → Nothing

Nothing → Nothing

eval Throw = Nothing

eval (Catch x h) = case eval x of

Just n → Just n

Nothing → eval h

This function could also be defined more concisely by exploiting the fact that the

Maybe type is monadic, but for calculation purposes, we prefer the above definition.

Monads are an excellent tool for abstraction, in particular, for hiding the underlying

‘plumbing’ of computations. However, when calculating compilers such low-level

details matter, in particular, how different language features interact, so we prefer

to use non-monadic definitions. The same comment applies to a number of other

functions in this article.

The next step is to define equations that specify the correctness of the compiler

for the extended language, by refining the equations for arithmetic expressions. As

the source language becomes more complex, the more reasonable alternatives there

are for how such a refinement is made. Because the calculation process is driven by

the form of the specification, its choice plays a key role in determining the resulting

implementations. We illustrate this idea by considering two alternative approaches

for exceptions.

Moreover, we will also see a refinement of the calculation process itself, in

particular, by starting with a partial specification for the compiler, including a

partial definition for the type of stack elements. The missing components in the

specification are then derived during the calculation process. We will also see an

example of a calculation that gets stuck, which requires us to go back and change

the specification accordingly.

3.1 First approach: one code continuation

The first approach simply extrapolates the specification from Section 2, in which

the compilation function comp ′ takes a single code continuation as an additional

argument. To this end, we use the same type for the new version of this function:

comp ′ :: Expr → Code → Code

However, rather than taking Stack = [Int] as before, we use an alternative

representation of stacks, in which the elements are wrapped up in a new datatype

Elem:

type Stack = [Elem]

data Elem = VAL Int

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

Calculating correct compilers 17

The reason for this change is that we will extend Elem with a new constructor during

the calculation process. We could also start with the original stack type and observe

during the calculation that we need to change the definition to make it extensible.

Indeed, this is precisely what happened when we did this calculation for the first time.

For arithmetic expressions, the desired behaviour of comp ′ was specified by the

equation exec (comp ′ x c) s = exec c (eval x : s). In the presence of exceptions, this

equation needs to be refined to take account of the fact that eval now returns a

value of type Maybe Int rather than Int . When eval succeeds, it is straightforward

to modify the specification:

exec (comp ′ x c) s = exec c (VAL n : s) if eval x = Just n

However, if eval fails it is not clear how comp ′ should behave, which we make

explicit by introducing a new, but as yet undefined, function fail to handle this case:

exec (comp ′ x c) s = fail x c s if eval x = Nothing

Just as with the function comp ′ itself, we aim to derive a definition for fail that

satisfies this equation during the calculation process. In summary, we now have the

following partial specification for the new compilation function comp ′ in terms of an

as yet undefined function fail :: Expr → Code → Stack → Stack :

exec (comp ′ x c) s = case eval x of (7)
Just n → exec c (VAL n : s)

Nothing → fail x c s

We could now start to calculate a definition for comp ′ from this equation by

constructive induction on x . However, the calculation would soon get stuck. In

particular, note that each of the variables x , c and s has two occurrences in the

case expression in specification (7). Consequently, in order to use the induction

hypotheses during the calculation, we have to make sure that the instantiations of

x , c and s are aligned. For example, during the calculation for addition, we would

encounter the following term:

case eval y of

Just m → exec (ADD c) (VAL m : VAL n : s)

Nothing → fail (Add x y) c s

To apply the induction hypothesis for y , this term would need to be rewritten to

match the form of specification (7). To this end, the use of the code ADD c and the

stack VAL m : VAL n : s in the Just case above means that the Nothing case needs

to be rewritten into the form fail y (ADD c) (VAL n : s). The natural way to achieve

this would be to introduce fail y (ADD c) (VAL n : s) = fail (Add x y) c s as a

new defining equation for fail . However, this is not a valid definition because the

expression x is unbound in the body. In conclusion, we get stuck trying to keep the

expression argument to fail aligned. A similar issue occurs with the code argument

when applying the induction hypothesis for x .

Fortunately, there is a simple solution to the problem of keeping the arguments

to fail aligned that allows the calculation to proceed: we remove the Expr and Code

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

18 P. Bahr and G. Hutton

arguments that caused problems, as these turn out to be unnecessary. This yields

the following revised specification, where fail has now the type Stack → Stack :

exec (comp ′ x c) s = case eval x of (8)
Just n → exec c (VAL n : s)

Nothing → fail s

We now calculate a definition for comp ′ from this equation by constructive

induction on x , aiming to rewrite the left-hand side exec (comp ′ x c) s into the form

exec c′ s for some code c′, from which we can then conclude that the definition

comp ′ x c = c′ satisfies the specification in this case. As in the previous section,

in order to do this, we will find that we need to introduce new constructors into

the code type, along with their interpretation by exec. Moreover, this time around

we will also need to add a new constructor to the stack type. To simplify the

presentation, we introduce these new components within the calculations as we go

along. The base cases for Val n and Throw are easy:

exec (comp ′ (Val n) c) s

= { specification (8) }
exec c (VAL n : s)

= { define: exec (PUSH n c) s = exec c (VAL n : s) }
exec (PUSH n c) s

and

exec (comp ′ Throw c) s

= { specification (8) }
fail s

= { define: exec FAIL s = fail s }
exec FAIL s

The inductive case for Add x y starts in the same manner as the language without

exceptions. First, we apply the specification, then we introduce a code constructor

ADD to bring the stack arguments into the form that we need to apply the induction

hypothesis:

exec (comp ′ (Add x y) c) s

= { specification (8) }
case eval x of

Just n → case eval y of

Just m → exec c (VAL (n + m) : s)

Nothing → fail s

Nothing → fail s

= { define: exec (ADD c) (VAL m : VAL n : s) = exec c (VAL (n + m) : s) }
case eval x of

Just n → case eval y of

Just m → exec (ADD c) (VAL m : VAL n : s)

Nothing → fail s

Nothing → fail s

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

Calculating correct compilers 19

However, transforming the stack in the Just case alone is not sufficient to allow us

to apply the induction hypothesis for y . In particular, for the inner case expression

above to match the form of specification (8), the use of the stack VAL m :VAL n :s in

the Just case means that the argument of fail in the Nothing case must be VAL n : s

rather than just s . This observation gives our first defining equation for fail , and we

continue as follows:

case eval x of

Just n → case eval y of

Just m → exec (ADD c) (VAL m : VAL n : s)

Nothing → fail s

Nothing → fail s

= { define: fail (VAL n : s) = fail s }
case eval x of

Just n → case eval y of

Just m → exec (ADD c) (VAL m : VAL n : s)

Nothing → fail (VAL n : s)

Nothing → fail s

= { induction hypothesis for y }
case eval x of

Just n → exec (comp ′ y (ADD c)) (VAL n : s)

Nothing → fail s

= { induction hypothesis for x }
exec (comp ′ x (comp ′ y (ADD c))) s

Finally, we consider the inductive case for Catch x h . For this case, getting to the

application of the induction hypothesis for h is straightforward:

exec (comp ′ (Catch x h) c) s

= { specification (8) }
case eval x of

Just n → exec c (VAL n : s)

Nothing → case eval h of

Just m → exec c (VAL m : s)

Nothing → fail s

= { induction hypothesis for h }
case eval x of

Just n → exec c (VAL n : s)

Nothing → exec (comp ′ h c) s

Now, we are in a similar position to the calculation for Add , i.e. the Nothing case

does not match the form of specification (8). In order for this to match, the Nothing

case needs to be of the form fail s . That is, we need to solve the equation

fail s = exec (comp ′ h c) s

Note that we can’t simply use this equation as a definition for fail , because h and

c are unbound in the body of the equation. As we only have the stack argument s

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

20 P. Bahr and G. Hutton

at our disposal, one approach would be to modify this argument. In particular, we

could assume that the handler h and its code continuation c are provided on the

stack by means of a new constructor HAN in the Elem datatype, and define a new

equation for fail as follows:

fail (HAN h c : s) = exec (comp ′ h c) s

However, this approach would result in the source language expression h being

stored on the stack by the compiler, whereas it is natural to expect all expressions

in the source language to be compiled away. An alternative approach that avoids

this problem is to assume that the entire handler code comp ′ h c is provided on the

stack by means of a HAN constructor with a single argument. In particular, if we

define

fail (HAN c′ : s) = exec c′ s

then by taking c′ = comp ′ h c, we obtain the equation

fail (HAN (comp ′ h c) : s) = exec (comp ′ h c) s

which is now close to the form that we need. Based upon this idea, we resume the

calculation, during which we introduce a code constructor UNMARK to bring the

stack argument in the Just case into the form that we need to apply the induction

hypothesis for x by removing the unused handler element, a process known as

‘unmarking’ the stack:

case eval x of

Just n → exec c (VAL n : s)

Nothing → exec (comp ′ h c) s

= { define: fail (HAN c′ : s) = exec c′ s }
case eval x of

Just n → exec c (VAL n : s)

Nothing → fail (HAN (comp ′ h c) : s)

= { define: exec (UNMARK c) (VAL n : HAN : s) = exec c (VAL n : s) }
case eval x of

Just n → exec (UNMARK c) (VAL n : HAN (comp ′ h c) : s)

Nothing → fail (HAN (comp ′ h c) : s)

= { induction hypothesis for x }
exec (comp ′ x (UNMARK c)) (HAN (comp ′ h c) : s)

= { define: exec (MARK c′ c) s = exec c (HAN c′ : s) }
exec (MARK (comp ′ h c) (comp ′ x (UNMARK c))) s

The final step above introduces a code constructor MARK that encapsulates the

process of pushing handler code onto the stack, similarly to the PUSH constructor

for values.

We complete the development of our compiler by considering the top-level

compilation function comp :: Expr → Code. For arithmetic expressions, the desired

behaviour of comp was specified by the equation exec (comp x) s = eval x : s .

Based upon our experience with comp ′, in the presence of exceptions we refine this

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

Calculating correct compilers 21

equation as follows:

exec (comp x) s = case eval x of (9)
Just n → VAL n : s

Nothing → fail s

To calculate a definition for comp from this equation, we aim to rewrite the left-hand

side exec (comp x) s into the form exec c′ s for some code c′, and hence define

comp x = c′. The calculation proceeds in the same manner as in Section 2.5, during

which we introduce a new code constructor HALT to bring the stack argument in

the Just case into the form that we need to apply the specification for comp ′:

exec (comp x) s

= { specification (9) }
case eval x of

Just n → VAL n : s

Nothing → fail s

= { define: exec HALT s = s }
case eval x of

Just n → exec HALT (VAL n : s)

Nothing → fail s

= { specification (8) }
exec (comp ′ x HALT) s

In conclusion, we have now calculated the target language, compiler and virtual

machine for our language with exceptions, as summarised below.

Target language:

data Code = HALT | PUSH Int Code | ADD Code |
FAIL | MARK Code Code | UNMARK Code

Compiler:

comp :: Expr → Code

comp x = comp ′ x HALT

comp ′ :: Expr → Code → Code

comp ′ (Val n) c = PUSH n c

comp ′ (Add x y) c = comp ′ x (comp ′ y (ADD c))

comp ′ Throw c = FAIL

comp ′ (Catch x h) c = MARK (comp ′ h c) (comp ′ x (UNMARK c))

Virtual machine:

type Stack = [Elem]

data Elem = VAL Int | HAN Code

exec :: Code → Stack → Stack

exec HALT s = s

exec (PUSH n c) s = exec c (VAL n : s)

exec (ADD c) (VAL m : VAL n : s) = exec c (VAL (n + m) : s)

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

22 P. Bahr and G. Hutton

exec FAIL s = fail s

exec (MARK c′ c) s = exec c (HAN c′ : s)

exec (UNMARK c) (VAL n : HAN : s) = exec c (VAL n : s)

fail :: Stack → Stack

fail [] = []

fail (VAL n : s) = fail s

fail (HAN c : s) = exec c s

Note that the two equations that we derived for the function fail do not yield a

total definition, because there is no equation for empty stack. In the definition above,

we have chosen to define fail [] = [] in this case. In principle, any choice would be

fine, because the calculation does not depend on it. Our choice is motivated by the

following observation: if we instantiate s = [] in specification (8), we then obtain

the empty stack as the result when evaluation fails, which is a natural representation

of an uncaught exception.

Note also that exec and fail are defined mutually recursively, and correspond

to two execution modes for the virtual machine, the first for when execution is

proceeding normally, and the second for when an exception has been thrown and a

handler is being sought. In the latter case, the function fail implements the process

known as ‘unwinding’ the stack (Chase, 1994a; Chase, 1994b), in which elements are

popped from the stack until an exception handler is found, at which point execution

then transfers to the handler code.

The compiler derived above is essentially the same as that presented by Hutton

& Wright (2004), except that our compiler here uses code continuations, and has

been derived directly from a specification of its correctness, with all the compilation

machinery falling naturally out of the calculation process. There was little room

for alternative choices in the process: we could have compiled addition differently

using the fact that it is commutative, and we could have compiled exception

handlers dynamically as described above. Otherwise, the calculation process was

fully determined by the desire to apply the induction hypotheses and to arrive at a

term of the form exec c′ s . This observation underlines the systematic nature of our

approach, which only leaves a few design choices.

Finally, we note that the code produced by the above compiler is not fully linear,

because the MARK constructor takes two arguments of type Code. This branching

structure corresponds to the underlying branching in control flow in the semantics

of the Catch operation of the language. However, as demonstrated by Hutton &

Wright (2004), if desired we can systematically transform the compiler to produce

linear code, by modifying MARK to take a code pointer as its first argument rather

than code itself. Moreover, this transformation requires little additional effort to

establish its correctness (Bahr, 2014).

3.2 Second approach: two code continuations

The approach presented in the previous section started with the same type for

comp ′ as for simple arithmetic expressions in Section 2. In the context of exceptions,

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

Calculating correct compilers 23

however, this approach made it more difficult to formulate the specification for

comp ′, as the type for the function does not provide an explicit mechanism for

dealing with failure.

In this second approach, we modify the type for comp ′ to reflect the addition of

exceptions to the language. In particular, just as the evaluation function eval returns

a Maybe type to represent the two forms of results that can be produced, we refine

the type of comp to take two code continuations as arguments rather than just one:

comp ′ :: Expr → Code → Code → Code

The initial type for stacks is unchanged:

type Stack = [Elem]

data Elem = VAL Int

The idea behind the new type for comp ′ is that the first continuation argument

will be used if evaluation is successful and the second if evaluation fails, an approach

sometimes called double-barrelled continuations (Thielecke, 2002). This intuition is

formalised in the following specification for the intended behaviour of comp ′, in

which the arguments sc and fc are the success and failure code continuations, and

s is the stack:

exec (comp ′ x sc fc) s = case eval x of (10)
Just n → exec sc (VAL n : s)

Nothing → exec fc s

From this specification, we calculate the definition for comp ′ by constructive

induction on the expression x . The cases for Val and Throw are again easy:

exec (comp ′ (Val n) sc fc) s

= { specification (10) }
exec sc (VAL n : s)

= { define: exec (PUSH n c) s = exec c (VAL n : s) }
exec (PUSH n sc) s

and

exec (comp ′ Throw sc fc) s

= { specification (10) }
exec fc s

Because the failure continuation is built into comp ′, the calculation for Catch

now becomes much simpler. In particular, we don’t have to manipulate the Nothing

case into a form that uses fail , as the execution of any code sequence with a stack

of the appropriate shape suffices. Hence, we can immediately apply the induction

hypotheses:

exec (comp ′ (Catch x h) sc fc) s

= { specification (10) }
case eval x of

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

24 P. Bahr and G. Hutton

Just n → exec sc (VAL n : s)

Nothing → case h of

Just m → exec sc (VAL m : s)

Nothing → exec fc s

= { induction hypothesis for h }
case eval x of

Just n → exec sc (VAL n : s)

Nothing → exec (comp ′ h sc fc) s

= { induction hypothesis for x }
exec (comp ′ x sc (comp ′ h sc fc)) s

The calculation for Add also becomes simpler. However, we still need to bring

the stack arguments into the right form for the induction hypotheses. As before, we

introduce a code constructor ADD that does this for the Just case. Adjusting the

stack argument for the Nothing case is now simpler compared to the calculation in

Section 3.1 as we may use any code sequence, for which purpose we introduce a

POP constructor:

exec (comp ′ (Add x y) sc fc) s

= { specification (10) }
case eval x of

Just n → case eval y of

Just m → exec sc (VAL (n + m) : s)

Nothing → exec fc s

Nothing → exec fc s

= { define: exec (ADD c) (VAL m : VAL n : s) = exec c (VAL (n + m) : s) }
case eval x of

Just n → case eval y of

Just m → exec (ADD sc) (VAL m : VAL n : s)

Nothing → exec fc s

Nothing → exec fc s

= { define: exec (POP c) (VAL : s) = exec c s }
case eval x of

Just n → case eval y of

Just m → exec (ADD sc) (VAL m : VAL n : s)

Nothing → exec (POP fc) (VAL n : s)

Nothing → exec fc s

= { induction hypothesis for y }
case eval x of

Just n → exec (comp ′ y (ADD sc) (POP fc)) (VAL n : s)

Nothing → exec fc s

= { induction hypothesis for x }
exec (comp ′ x (comp ′ y (ADD sc) (POP fc)) fc) s

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

Calculating correct compilers 25

We complete the calculation by considering the top-level compilation function

comp :: Expr → Code. Starting from a specification of the desired behaviour,

exec (comp x) s = case eval x of (11)
Just n → VAL n : s

Nothing → s

we calculate a definition for comp as follows, during which we introduce a new code

constructor HALT that is used in both the success and failure cases:

exec (comp x) s

= { specification (11) }
case eval x of

Just n → VAL n : s

Nothing → s

= { define: exec HALT s = s }
case eval x of

Just n → exec HALT (VAL n : s)

Nothing → exec HALT s

= { specification (10) }
exec (comp ′ x HALT HALT) s

We could also have introduced a special-purpose code constructor for the failure

case, say exec CRASH s = s , but for our simple exception language, it suffices to

use HALT for both cases. However, for a more sophisticated source language that

features different kinds of exceptions, using such an additional constructor may be

important.

In conclusion, we have now calculated an alternative target language, compiler

and virtual machine for our language with exceptions, as summarised below.

Target language:

data Code = HALT | PUSH Int Code | ADD Code | POP Code

Compiler:

comp :: Expr → Code

comp x = comp ′ x HALT HALT

comp ′ :: Expr → Code → Code → Code

comp ′ (Val n) sc fc = PUSH n sc

comp ′ (Add x y) sc fc = comp ′ x (comp ′ y (ADD sc) (POP fc)) fc

comp ′ Throw sc fc = fc

comp ′ (Catch x h) sc fc = comp ′ x sc (comp ′ h sc fc)

Virtual machine:

exec :: Code → Stack → Stack

exec HALT s = s

exec (PUSH n c) s = exec c (VAL n : s)

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

26 P. Bahr and G. Hutton

exec (ADD c) (VAL m : VAL n : s) = exec c (VAL (n + m) : s)

exec (POP c) (VAL : s) = exec c s

3.3 Reflection

We conclude this section with some comments on the two approaches to calculate

a compiler for exceptions, concerning scalability and partiality.

Scalability. In the approach using a single code continuation, the partial specification

for comp ′ in terms of an undefined function fail means that additional effort is

required to derive a definition for fail . However, the benefit of this approach is that

we obtained a compiler that implements exceptions using the idea of stack unwinding

by purely calculational methods, with all the required compilation techniques arising

naturally during the calculation process, driven once again by the desire to apply

the induction hypotheses. This approach scales well to more sophisticated languages

as it does not require static knowledge about the scope in which an exception is

thrown. Such knowledge is not available if we consider, for example, a higher-order

language, as we shall do in Section 5. In contrast, the approach using two code

continuations exploited that we do have such static knowledge, in the form of the

failure continuation.

We can also identify a third approach, which combines the benefits of the first

two. This ‘hybrid’ approach is based upon a function comp ′ with separate code

continuations for success and failure as in the second approach, whose behaviour in

the case when evaluation fails is specified in terms of an undefined function fail as

in the first:

exec (comp ′ x sc fc) s = case eval x of
Just n → exec sc (VAL n : s)

Nothing → fail fc s

The compiler that results from this specification avoids the explicit cleaning up of

the stack with POP instructions of the second approach, but instead relies on stack

unwinding in a similar manner to the first. In the course of the calculation, a new

stack element constructor similar to HAN is introduced but no handler argument

is necessary as we have an explicit failure code continuation as part of comp ′.

Partiality. The calculations in this section followed the general approach from

Section 2. However, we used two additional techniques to make the approach more

powerful:

• We used a partial specification for the comp ′ function. The specification for

comp ′ is effectively the induction hypothesis for the calculation of its definition.

For the simple expression language in Section 2, determining the appropriate

induction hypothesis was straightforward. However, the more sophisticated

the source language grows, the more difficult this becomes. The technique

of using a partial specification leaves some of the details of the induction

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

Calculating correct compilers 27

hypothesis open and allows us to derive these during the calculation itself.

Part of the difficulty of determining an appropriate induction hypothesis lies

in the fact that it may need to explicitly refer to details of the virtual machine

implementation. By using a partial specification, these details are left open

and are instead derived during the calculation, such as the function fail that

defines the behaviour of the virtual machine when an exception is thrown.

• We used a partial definition for the Stack type. This technique is crucial for

more sophisticated languages. While our approach is targetted at deriving

stack machines, the actual details of the stack type are difficult to anticipate

as they will only become apparent as we calculate the definition for comp ′.

Both of the above techniques are measures to reduce the amount of required

prior knowledge of the result. The calculations in this section start with very few

assumptions about the final outcome. Indeed, these assumptions, expressed in the

specification for comp ′, can be summarised as ‘if evaluation is successful put the

resulting value on the stack and continue execution, otherwise do something else’.

The calculation process then fills out the details of how this is achieved and what

‘something else’ means.

4 State

In this section, we extend our source language further, with primitives for reading
and writing a mutable reference cell that stores an integer value:

type State = Int

data Expr = Val Int | Add Expr Expr | Throw | Catch Expr Expr | Get | Put Expr Expr

Informally, Get returns the current value of the reference cell, while Put x y sets

the cell to the value of the expression x and then behaves as the expression y .

Alternatively, we could have chosen Put to take one argument and instead have an

additional sequencing operator Seq that takes two arguments. However, we prefer

to keep the source language small in order to focus on the essence of the problem.

The addition of state is particularly interesting as it interacts with the exception

handling mechanism of the language. In particular, there are two different ways of

combining exceptions and state from a semantic perspective, depending on whether

the current state is retained or discarded when an exception is thrown. If the state is

retained then an exception handler sees the state as it was when the exception was

thrown. If the state is discarded then the handler sees the state as it was when the

enclosing Catch was entered. For brevity, we refer to the former case as global state,

and the latter as local state.

We shall calculate a compiler for the global state semantics. The calculation for

the local state semantics is similar and can be found in the appendix that forms

part of the online supplementary material. Our calculations are based upon the ‘one

continuation’ approach from Section 3.1, but we could just as well use any other

approach from Section 3.

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

28 P. Bahr and G. Hutton

4.1 Specification

The global state semantics retains the current state in case of an exception, which is

reflected in the new type for the evaluation function as follows:

eval :: Expr → State → (Maybe Int , State)

That is, no matter whether an exception is thrown or not, eval always returns a

new state. Using this type, the evaluation function from Section 3.1 can be refined

to take account of state by simply threading through the current state. We write the

state as q , reserving the use of the symbol s for stacks throughout the article for

consistency:

eval (Val n) q = (Just n , q)

eval (Add x y) q = case eval x q of

(Just n , q ′) → case eval y q ′ of

(Just m , q ′′) → (Just (n + m), q ′′)

(Nothing , q ′′) → (Nothing , q ′′)

(Nothing , q ′) → (Nothing , q ′)

eval Throw q = (Nothing , q)

eval (Catch x h) q = case eval x q of

(Just n , q ′) → (Just n , q ′)

(Nothing , q ′) → eval h q ′

eval Get q = (Just q , q)

eval (Put x y) q = case eval x q of

(Just n , q ′) → eval y n

(Nothing , q ′) → (Nothing , q ′)

Note that in the case for Catch , when the handler h is invoked, it uses the state

q ′ from when the exception was thrown, which formalises our earlier intuition for

global state. Extending the specification of the compilation function comp ′ from

Section 3.1 to state is straightforward. First of all, the type for comp ′ itself remains

the same,

comp ′ :: Expr → Code → Code

but we refine the type of the execution function exec to transform pairs comprising

a stack and a state, which we term configurations, rather than just transforming a

stack:

exec :: Code → Conf → Conf

type Conf = (Stack , State)

More generally, the same principle also applies to semantics that utilise environments

or heaps: all additional data structures required for the semantics are combined with

the stack to form a configuration of type Conf , and the execution function exec

transforms such configurations. The previous type for exec was just the special case

where no additional data structures were required. The initial type for stacks is the

same as before:

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

Calculating correct compilers 29

type Stack = [Elem]

data Elem = VAL Int

The specification for the desired behaviour of comp ′ is similar to the case without

state, except that we now have to thread through the current state:

exec (comp ′ x c) (s , q) = case eval x q of (12)
(Just n , q ′) → exec c (VAL n : s , q ′)

(Nothing , q ′) → fail (s , q ′)

This is again a partial specification in terms of an as yet undefined function fail for

the case when evaluation fails, this time of type Conf → Conf . In a similar manner

to Section 3.1, if fail took x and c as additional arguments, our calculation would

get stuck.

4.2 Calculation

We now calculate a definition for comp ′ from the specification by constructive

induction on x , during which we also derive fail . The cases for Val and Throw are

easy as usual:

exec (comp ′ (Val n) c) (s , q)

= { specification (12) }
exec c (VAL n : s , q)

= { define: exec (PUSH n c) (s , q) = exec c (VAL n : s , q) }
exec (PUSH n c) (s , q)

and

exec (comp ′ Throw c) (s , q)

= { specification (12) }
fail (s , q)

= { define: exec FAIL (s , q) = fail (s , q) }
exec FAIL (s , q)

The cases for Add and Catch proceed along similar lines to Section 3.1. The

calculations can be found in the appendix in the online supplementary material.

Finally, we come to the calculations for the new language features. The case for

Get is straightforward, and introduces a code constructor LOAD that encapsulates

the process of pushing the current value of the state onto the top of the stack:

exec (comp ′ Get c) (s , q)

= { specification (12) }
exec c (VAL q : s , q)

= { define: exec (LOAD c) (s , q) = exec c (VAL q : s , q) }
exec (LOAD c) (s , q)

The case for Put is more interesting. However, it follows a common pattern that

we have seen a number of times now: we introduce a code constructor SAVE

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

30 P. Bahr and G. Hutton

to bring the stack argument into the form that we need to apply an induction

hypothesis, in this case by popping the top value from the stack and setting the state

to this value:

exec (comp ′ (Put x y) c) (s , q)

= { specification (12) }
case eval x q of

(Just n , q ′) → case eval y n of

(Just m , q ′′) → exec c (VAL m : s , q ′′)

(Nothing , q ′′) → fail (s , q ′′)

(Nothing , q ′) → fail (s , q ′)

= { induction hypothesis for y }
case eval x q of

(Just n , q ′) → exec (comp ′ y c) (s , n)

(Nothing , q ′) → fail (s , q ′)

= { define: exec (SAVE c′) (VAL n : s , q ′) = exec c′ (s , n) }
case eval x q of

(Just n , q ′) → exec (SAVE (comp ′ y c)) (VAL n : s , q ′)

(Nothing , q ′) → fail (s , q ′)

= { induction hypothesis for x }
exec (comp ′ x (SAVE (comp ′ y c))) (s , q)

In summary, we have calculated the definitions shown below. As in Section 3.1,

we make fail into a total function by adding an equation for the case when the stack

is empty, and define the top-level compilation function comp by simply applying

comp ′ to HALT .

Target language:

data Code = HALT | PUSH Int Code | ADD Code |
FAIL | MARK Code Code | UNMARK Code |
LOAD Code | SAVE Code

Compiler:

comp :: Expr → Code

comp x = comp ′ x HALT

comp ′ :: Expr → Code → Code

comp ′ (Val n) c = PUSH n c

comp ′ (Add x y) c = comp ′ x (comp ′ y (ADD c))

comp ′ Throw c = FAIL

comp ′ (Catch x h) c = MARK (comp ′ h c) (comp ′ x (UNMARK c))

comp ′ Get c = LOAD c

comp ′ (Put x y) c = comp ′ x (SAVE (comp ′ y c))

Virtual machine:

data Elem = VAL Int | HAN Code

exec :: Code → Conf → Conf

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

Calculating correct compilers 31

exec HALT (s , q) = (s , q)

exec (PUSH n c) (s , q) = exec c (VAL n : s , q)

exec (ADD c) (VAL m : VAL n : s , q) = exec c (VAL (n + m) : s , q)

exec FAIL (s , q) = fail (s , q)

exec (MARK h c) (s , q) = exec c (HAN h : s , q)

exec (UNMARK c) (VAL n : HAN : s , q) = exec c (VAL n : s , q)

exec (LOAD c) (s , q) = exec c (VAL q : s , q)

exec (SAVE c) (VAL n : s , q) = exec c (s , n)

fail :: Conf → Conf

fail ([], q) = ([], q)

fail (VAL n : s , q) = fail (s , q)

fail (HAN h : s , q) = exec h (s , q)

4.3 Reflection

Configurations. The introduction of state only required a single refinement to our

approach: instead of operating on a stack, the virtual machine exec now operates

on a configurations comprising a stack and a state. This generalisation from stacks

to configurations arose from the type of the evaluation function eval for global

state, which takes an input state and produces an output state. However, this is an

instance of a more general principle, in which all additional data structures on which

eval depends are packaged up in the type of configurations alongside the stack. This

also includes the state in the case of the local state semantics, even though an

output state is not always returned. Similarly, in other cases where eval takes a data

structure as an argument without returning an updated version, we include it in the

configuration type. For example, in a language with variable binding, as we shall

consider in Section 5, eval takes an environment as input but does not return an

updated version, but we include the environment in the configuration type.

Global versus local. The calculation for the local state semantics is very similar to

the calculation for the global state semantics presented in this section. In fact the

compilers that result from the two semantics for state are precisely the same, with

the difference being reflected in the virtual machines. In particular, in the case of

local state the machine operation that marks that stack with handler code also

stores the current state, which is subsequently restored if the handler is invoked,

while for global state, the current state is used when a handler is invoked. As in all

our calculations, these behaviours arose naturally from the desire to apply induction

hypotheses during the calculation process, and didn’t require any prior knowledge

of how the two forms of state can or should be implemented.

5 Lambda calculus

For our final example, we consider a call-by-value variant of the lambda calculus.

To simplify the presentation, we base our language on simple arithmetic expressions,

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

32 P. Bahr and G. Hutton

but the same techniques apply if the language is extended with other features such as

exceptions and state, and if the evaluation strategy is changed to other approaches

such as call-by-name or call-by-need. We will also see two further refinements of the

calculation process: the use of defunctionalisation to transform the semantics into a

first-order form, and the use of relational semantics rather than functional semantics.

5.1 Syntax

We extend our language of arithmetic expressions with the three basic primitives

of the lambda calculus: variables, abstraction and application. To avoid having to

consider issues of variable capture and renaming, which are not difficult but would

be distracting to the presentation, we represent variables using de Bruijn indices:

data Expr = Val Int | Add Expr Expr | Var Int | Abs Expr | App Expr Expr

Informally, Var i is the variable with de Bruijn index i � 0, Abs x constructs an

abstraction over the expression x , and App x y applies the abstraction that results

from evaluating the expression x to the value of the expression y . For example, the

function λn → (λm → n + m) that adds two integer values is represented as follows:

add :: Expr

add = Abs (Abs (Add (Var 1) (Var 0)))

5.2 Semantics

Because the language now has first-class functions, it no longer suffices to use

integers as the value domain for the semantics, and we also need to consider

functional values:

data Value = Num Int | Fun (Value → Value)

Moreover, the semantics also requires an environment to interpret free variables.

Using de Bruijn indices, we can represent an environment e simply as a list of values,

with the value of variable i given by indexing into the list at position i , written as

e !! i :

type Env = [Value]

It is now straightforward to define a function that evaluates an expression to a

value in the context of a given environment:

eval :: Expr → Env → Value

eval (Val n) e = Num n

eval (Add x y) e = case eval x e of

Num n → case eval y e of

Num m → Num (n + m)

eval (Var i) e = e !! i

eval (Abs x) e = Fun (λv → eval x (v : e))

eval (App x y) e = case eval x e of

Fun f → f (eval y e)

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

Calculating correct compilers 33

For example, applying eval to the expression App (App add (Val 1)) (Val 2) and

the empty environment [] gives the result Num 3, as expected. Note that because

expressions in our source language may be badly formed or fail to terminate,

eval is now a partial function. We will return to this issue at the end of this

section.

We could now attempt to calculate a compiler based upon the above semantics.

However, we would get stuck in the Abs case, at least if we used a straightforward

specification for the compiler, due to the fact that eval is now a higher-order function,

by virtue of the fact that abstractions denote functions of type Value → Value.

However, this problem is easily addressed using defunctionalisation, which introduces

a new data type Lam for lambda abstractions. Within the definition for eval , there

is only one form of such functions that is actually used, namely in the case for Abs

when we return λv → eval x (v : e). We represent functions of this form by means

of a single constructor Clo for the Lam type, which takes the expression x and

environment e as arguments:

data Lam = Clo Expr Env

The name of the constructor corresponds to the fact that an expression combined

with an environment that captures its free variables is known as a closure. The

fact that values of type Lam represent functions of type Value → Value can be

formalised by defining a function that maps from one to the other:

apply :: Lam → (Value → Value)

apply (Clo x e) = λv → eval x (v : e)

The name of this function derives from the fact that when its type is written in curried

form as Lam → Value → Value, it can be viewed as applying the representation of

a lambda expression to an argument value to give a result value. Using these ideas,

we can now apply defunctionalisation to rewrite the semantics for our language in

first-order form by replacing functions of type Value → Value by values of type

Lam . This changes the definition of eval for the Abs and App cases as follows:

eval (Abs x) e = Fun (Clo x e)

eval (App x y) e = case eval x e of

Fun c → apply c (eval y e)

The other cases for the function eval remain unchanged. Moreover, the definition

of the Value type uses the type Lam instead of Value → Value:

data Value = Num Int | Fun Lam

Because the definitions for Lam and apply are each just single equations, we inline

them to simplify the definitions, resulting in the following semantics:

data Value = Num Int | Clo Expr Env

eval :: Expr → Env → Value

eval (Val n) e = Num n

eval (Add x y) e = case eval x e of

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

34 P. Bahr and G. Hutton

Num n → case eval y e of

Num m → Num (n + m)

eval (Var i) e = e !! i

eval (Abs x) e = Clo x e

eval (App x y) e = case eval x e of

Clo x ′ e′ → eval x ′ (eval y e : e′)

However, in rewriting eval in first-order form we have now introduced another

problem: the semantics is no longer compositional, i.e. structurally recursive, because

in the case for App x y , we make a recursive call eval x ′ on the auxiliary expression x ′

that results from evaluating the argument expression x . Hence, when calculating

a compiler based upon this semantics we can no longer use simple structural

induction as in our previous examples, but must use the more general approach of

rule induction (Winskel, 1993).

The use of rule induction is another refinement of our calculation methodology.

In order to make this use of rule induction explicit, we reformulate the functional

evaluation semantics eval in a relational manner as a big-step operational (or natural)

semantics, writing x ⇓e v to mean that the expression x can evaluate to the value v

within the environment e. Formally, the evaluation relation ⇓ ⊆ Expr ×Env ×Value

is defined by the following set of inference rules, which are obtained simply by

rewriting the above definition for the eval function in relational style:

Val n ⇓e Num n

x ⇓e Num n y ⇓e Num m

Add x y ⇓e Num (n + m)

e !! i is defined

Var i ⇓e e !! i

Abs x ⇓e Clo x e

x ⇓e Clo x ′ e′ y ⇓e v x ′ ⇓v :e′ w

App x y ⇓e w

5.3 Specification

For the purposes of calculating a compiler based upon the above semantics, the

types for the compilation function and virtual machine remain the same as for state:

comp ′ :: Expr → Code → Code

exec :: Code → Conf → Conf

However, because the semantics now requires the use of an environment, this is

included in the type for configurations, following the advice from Section 4.3:

type Conf = (Stack ,Env)

As with previous examples, a stack is initially defined as a list of values, with the

element type being extended as and when required during the calculation process:

type Stack = [Elem]

data Elem = VAL Value

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

Calculating correct compilers 35

The specification for comp ′ is similar to the original case for simple arithmetic

expressions, except that our semantics is now defined as an evaluation relation ⇓,

and the virtual machine now operates on configurations that comprise a stack and

an environment:

exec (comp ′ x c) (s , e) = exec c (VAL v : s , e) if x ⇓e v

Note that the precondition x ⇓e v means that the specification only applies

to lambda expressions whose evaluation terminates; we will return to this issue in

Section 5.5. It is straightforward to calculate a compiler from the above specification.

However, the result is not satisfactory. In particular, the fact that a value can be

a closure that includes an unevaluated expression means that such expressions will

be manipulated by the resulting virtual machine, whereas as we already noted with

exceptions, it is natural to expect all expressions in the source language to be

compiled away. The solution is the same as for exceptions: we simply replace the

expression component of a closure by compiled code for the expression, by means

of the following new type definitions:

data Value′ = Num ′ Int | Clo ′ Code Env ′

type Env ′ = [Value′]

In turn, these new types are then used to redefine the other basic types:

type Conf = (Stack ,Env ′)

type Stack = [Elem]

data Elem = VAL Value′

Changing these definitions means that the above specification for comp ′ is no

longer type correct, because eval and exec now operate on different versions of the

value type, namely Value and Value′, respectively. We therefore need a conversion

function between the two types. The case for Num is trivial, while we leave the case

for Clo undefined at present, and aim to derive a definition for this case during the

calculation process:

conv :: Value → Value′

conv (Num n) = Num ′ n

conv (Clo x e) = ???

We lift conv to environments by mapping the function over the list of values:

convE :: Env → Env ′

convE e = map conv e

Using these ideas, it is now straightforward to modify the specification for the

compilation function comp ′ to take care of the necessary type conversions:

exec (comp ′ x c) (s , convE e) = exec c (VAL (conv v) : s , convE e) if x ⇓e v (13)

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

36 P. Bahr and G. Hutton

5.4 Calculation

Based upon specification (13), we now calculate definitions for the compiler and

the virtual machine by constructive rule induction on the assumption x ⇓e v . In

each case, we aim to rewrite the left-hand side exec (comp ′ x c) (s , convE e) of the

equation into the form exec c′ (s , convE e) for some code c′, from which we can

then conclude that the definition comp ′ x c = c′ satisfies the specification in this

case. As with previous examples, along the way we will introduce new constructors

into the code and stack types, and new equations for exec. Moreover, as part of the

calculation we will also complete the definition for the conversion function conv .

The cases for Val and Var are straightforward:

exec (comp ′ (Val n) c) (s , convE e)

= { specification (13) }
exec c (VAL (conv (Num n)) : s , convE e)

= { definition of conv }
exec c (VAL (Num ′ n) : s , convE e)

= { define: exec (PUSH n c) (s , e) = exec c (VAL (Num ′ n) : s , e) }
exec (PUSH n c) (s , convE e)

and

exec (comp ′ (Var i) c) (s , convE e)

= { specification (13) }
exec c (VAL (conv (e !! i)) : s , convE e)

= { indexing lemma }
exec c (VAL (map conv e !! i) : s , convE e)

= { definition of convE }
exec c (VAL (convE e !! i) : s , convE e)

= { define: exec (LOOKUP i c) (s , e) = exec c (VAL (e !! i) : s , e) }
exec (LOOKUP i c) (s , convE e)

The indexing lemma used above is that f (xs !! i) = (map f xs) !! i , for any strict

function f , list xs , and index i of the appropriate types. This lemma, which arises

as the free theorem (Wadler, 1989) for the type of !!, allows us to generalise over

convE e when defining the behaviour of exec for the new code constructor LOOKUP

that encapsulates the process of looking up a variable in the environment. Strictness

of the function conv follows from the fact that it is defined by pattern matching on

its argument value. Alternatively, we could have avoided reasoning about strictness

by using a list indexing operator that makes the possibility of failure explicit by

returning a Maybe type.

In the case for Add , we can assume x ⇓e Num n and y ⇓e Num m by

the inference rule that defines the behaviour of Add x y , together with induction

hypotheses for the expressions x and y . The calculation then follows the same

pattern as for simple arithmetic expressions, with the minor addition of applying

the conversion function conv :

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

Calculating correct compilers 37

exec (comp ′ (Add x y) c) (s , convE e)

= { specification (13) }
exec c (VAL (conv (Num (n + m))) : s , convE e)

= { definition of conv }
exec c (VAL (Num ′ (n + m)) : s , convE e)

=

{
define: exec (ADD c) (VAL (Num ′ m) :VAL (Num ′ n) : s , e)

= exec c (VAL (Num ′ (n + m)) : s , e)

}

exec (ADD c) (VAL (Num ′ m) : VAL (Num ′ n) : s , convE e)

= { definition of conv }
exec (ADD c) (VAL (conv (Num m)) : VAL (conv (Num n)) : s , convE e)

= { induction hypothesis for y }
exec (comp ′ y (ADD c)) (VAL (conv (Num n)) : s , convE e)

= { induction hypothesis for x }
exec (comp ′ x (comp ′ y (ADD c))) (s , convE e)

In a similar manner, in the case for App we can assume that x ⇓e Clo x ′ e′,

y ⇓e v , and x ′ ⇓v :e′ w by the rule that defines the behaviour of App x y , together

with the induction hypotheses for x , y and x ′. The calculation then proceeds in

the now familiar way, by introducing code and stack constructors as necessary in

order to bring the configuration arguments into the right form for the induction

hypotheses. First of all, in order to apply the induction hypothesis for x ′, we save

and restore an environment on the stack by means of a new stack constructor ENV

and code constructor RET :

exec (comp ′ (App x y) c) (s , convE e)

= { specification (13) }
exec c (VAL (conv w) : s , convE e)

= { define: exec (RET c) (VAL u : ENV d : s ,) = exec c (VAL u : s , d) }
exec (RET c) (VAL (conv w) : ENV (convE e) : s , conv v : convE e′)

= { induction hypothesis for x ′ }
exec (comp ′ x ′ (RET c)) (ENV (convE e) : s , conv v : convE e′)

In turn, to apply the induction hypothesis for y , we introduce a new code constructor

APP that encapsulates the idea of applying a closure to an argument value, with

both the closure and the argument being supplied on the stack:

= { define: exec APP (VAL v : VAL (Clo ′ c ′ e ′) : s , e) = exec c ′ (ENV e : s , v : e ′) }
exec APP (VAL (conv v) : VAL (Clo ′ (comp ′ x ′ (RET c)) (convE e ′)) : s , convE e)

= { induction hypothesis for y }
exec (comp ′ y APP) (VAL (Clo ′ (comp ′ x ′ (RET c)) (convE e ′)) : s , convE e)

To complete the calculation, we would now like to apply the induction hypothesis

for x . For the above expression to have the required form, we need to solve the

equation

conv (Clo x ′ e′) = Clo ′ (comp ′ x ′ (RET c)) (convE e′)

However, we can’t simply use this equation as a definition for conv in the case of

closures, because the code variable c is unbound in the body of the equation. We

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

38 P. Bahr and G. Hutton

now see that our earlier choice for defining the behaviour of the RET instruction was

incorrect. In particular, this instruction should not take the code c as an argument,

but rather take it from the stack. That is, we replace the earlier definition

exec (RET c) (VAL u : ENV d : s ,) = exec c (VAL u : s , d)

by the following new version, in which the stack constructor ENV is replaced by

a more general constructor CLO that takes both code and an environment as

arguments:

exec RET (VAL u : CLO c d : s ,) = exec c (VAL u : s , d)

Using this idea we restart the calculation for the App case, which now proceeds

to completion in a straightforward manner, including the definition of conv for

closures:

exec (comp ′ (App x y) c) (s , convE e)

= { specification (13) }
exec c (VAL (conv w) : s , convE e)

= { define: exec RET (VAL u : CLO c d : s ,) = exec c (VAL u : s , d) }
exec RET (VAL (conv w) : CLO c (convE e) : s , conv v : convE e ′)

= { induction hypothesis for x ′ }
exec (comp ′ x ′ RET) (CLO c (convE e) : s , conv v : convE e ′)

= { define: exec (APP c) (VAL v : VAL (Clo ′ c ′ e ′) : s , e) = exec c ′ (CLO c e : s , v : e ′) }
exec (APP c) (VAL (conv v) : VAL (Clo ′ (comp ′ x ′ RET) (convE e ′)) : s , convE e)

= { induction hypothesis for y }
exec (comp ′ y (APP c)) (VAL (Clo ′ (comp ′ x ′ RET) (convE e ′)) : s , convE e)

= { define: conv (Clo x e) = Clo ′ (comp ′ x RET) (convE e) }
exec (comp ′ y (APP c)) (VAL (conv (Clo x ′ e ′)) : s , convE e)

= { induction hypothesis for x }
exec (comp ′ x (comp ′ y (APP c))) (s , convE e)

Finally, using the new equation for conv , the case for Abs simply introduces a

code constructor ABS that encapsulates the process of putting a closure onto the

stack:

exec (comp ′ (Abs x) c) (s , convE e)

= { specification (13) }
exec c (VAL (conv (Clo x e)) : s , convE e)

= { definition for conv }
exec c (VAL (Clo ′ (comp ′ x RET) (convE e)) : s , convE e)

= { define: exec (ABS c′ c) (s , e) = exec c (VAL (Clo ′ c′ e) : s , e) }
exec (ABS (comp ′ x RET) c) (s , convE e)

In summary, we have calculated the definitions below. As with a number of earlier

examples, the top-level compilation function comp is defined simply by applying

comp ′ to a nullary code constructor HALT that returns the current configuration.

Target language:

data Code = HALT | PUSH Int Code | ADD Code | LOOKUP Int Code |
ABS Code Code | RET | APP Code

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

Calculating correct compilers 39

Compiler:

comp :: Expr → Code

comp x = comp ′ x HALT

comp ′ :: Expr → Code → Code

comp ′ (Val n) c = PUSH n c

comp ′ (Add x y) c = comp ′ x (comp ′ y (ADD c))

comp ′ (Var i) c = LOOKUP i c

comp ′ (Abs x) c = ABS (comp ′ x RET) c

comp ′ (App x y) c = comp ′ x (comp ′ y (APP c))

Virtual machine:

data Elem = VAL Value ′ | CLO Code Env ′

exec :: Code → Conf → Conf

exec HALT (s , e) = (s , e)

exec (PUSH n c) (s , e) = exec c (VAL (Num ′ n) : s , e)

exec (ADD c) (VAL (Num ′ m) : VAL (Num ′ n) : s , e) = exec c (VAL (Num ′ (n + m)) : s , e)

exec (LOOKUP i c) (s , e) = exec c (VAL (e !! i) : s , e)

exec (ABS c ′ c) (s , e) = exec c (VAL (Clo ′ c ′ e) : s , e)

exec RET (VAL v : CLO c e : s ,) = exec c (VAL v : s , e)

exec (APP c) (VAL v : VAL (Clo ′ c ′ e ′) : s , e) = exec c ′ (CLO c e : s , v : e ′)

Conversion function:

conv :: Value → Value′

conv (Num n) = Num ′ n

conv (Clo x e) = Clo ′ (comp ′ x RET) (map conv e)

The above compiler is essentially the same as that presented in Day & Hutton

(2014), except that it has now been calculated directly from a specification of its

correctness.

Note that the code produced by the compiler is not fully linear. Similarly to the

MARK instruction in the compiler for exceptions that we calculated earlier, the

ABS instruction takes two arguments of type Code. However, if desired we can

transform the compiler to produce linear code in a similar manner to that described

in Section 3.1.

5.5 Reflection

Defunctionalisation. The key idea that facilitates a simple calculation in this section

is the use of defunctionalisation to transform the semantics into first-order form.

Without this initial step, formulating an appropriate specification for the lambda

calculus compiler becomes significantly more complicated, as in Meijer (1992), due

to the presence of a function type in the value domain. The same idea was also used

in the work of Ager et al. (2003a) to simplify the derivation of abstract machines.

Relational semantics. The use of a relational rather than functional semantics arose

from the shift to rule rather than structural induction as the basis for the calculation.

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

40 P. Bahr and G. Hutton

In addition, the relational semantics serves another purpose: it expresses the partiality

of the semantics in a natural way. We can calculate the same compiler using the final

functional semantics in Section 5.2, but the calculation is complicated by the need

to pay careful attention to the partiality of the evaluation function. Alternatively,

we could have made the partiality explicit by rewriting the functional semantics in

monadic style using the Maybe monad. However, using a relational semantics allowed

the calculation to proceed in the same straightforward manner as our previous

examples, except that we used the more general technique of constructive rule

induction on the evaluation relation, rather than constructive structural induction

on the syntax for the source language. In this manner, starting from a relational

semantics is a natural generalisation of our previous functional approach.

Soundness and completeness. Specification (13) was sufficient for the purposes of

calculating the compiler. However, due to the partiality of the underlying semantics,

the specification only explicitly captures one half of compiler correctness for the

lambda calculus, namely completeness. In particular, the specification states that

compiled code can produce every result value that is permitted by our semantics.

The dual property of soundness is just as important, to ensure that compiled code

can only produce results that are permitted by the semantics. The example languages

that we considered prior to this section all had a total (and deterministic) semantics,

for which the resulting calculations also established soundness. Similarly, if we

restrict the lambda calculus to a fragment for which the semantics is total, such as

simply typed lambda terms, we immediately obtain the soundness property from

specification (13) as well. In general, however, if we have a relational semantics that

is genuinely partial or non-deterministic, we need to explicitly consider both aspects

of compiler correctness, as in Hutton & Wright (2007).

Partial specification. In the definition for the conversion function conv , we initially

left the case for closures undefined, as it was not yet clear how it should behave in

this case. As such, equation (13) is a partial specification in terms of an incomplete

definition for the function conv . In a similar manner to the fail function for

exceptions, we derived the missing parts of the definition for conv during the

calculation of the compiler. Once again, this approach is part of our desire to avoid

predetermining implementation decisions, but rather letting these emerge naturally

from the calculation process.

Design decisions. During the calculation for expressions of the form App x y , we

made a design decision concerning the management of the stack that we subsequently

had to revise because the calculation got stuck. This kind of behaviour is again

characteristic of our approach, in which we try to make as few assumptions as

possible, and let ourselves be guided by the desire to complete calculations by

applying induction hypotheses. However, sometimes we then become stuck, and

need to revisit our assumptions and decisions. In this way, we try to minimise the

amount of foresight that is required.

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

Calculating correct compilers 41

Scalability. The approach presented in this section also applies to call-by-name

and call-by-need semantics. In the case of call-by-need, the semantics introduces

a heap, which then becomes a component of the virtual machine’s configuration

type, similarly to a state or environment. Our approach also scales to languages

that combine lambda calculi with effects such as state and exceptions. However,

when reformulating the functional semantics for lambda calculi with additional

effects, some care is required. In particular, each equation in the original functional

semantics should be translated to precisely one rule in the relational semantics. For

a language with exceptions, the resulting semantics may not be the most natural

formulation. But it is important that there is only one rule per language construct.

Recall that in the calculation for exceptions, we needed to keep the Just and the

Nothing cases aligned. If we were to decompose the semantics into different rules to

deal with the different cases, we would lose this crucial interaction.

We have included calculations for call-by-name and call-by-need semantics as well

as a call-by-value lambda calculus with exceptions in the supplementary material.

6 Related work

As noted at the start of this article, the ability to calculate compilers from semantics

has been a key objective in the field of program transformation for many years.

In this section, we review a range of related work, and explain how our approach

compares.

Definitional interpreters for higher-order programming languages (Reynolds, 1972).

Many of the techniques used to derive compilers are due to the seminal work

of Reynolds (1972). In particular, he introduced three key ideas. First of all, the

notion of a ‘definitional interpreter’, to express the semantics for a language as an

interpreter written in compositional style. Secondly, the idea of transforming such

a semantics into CP, to make control flow explicit in a manner that is independent

of the evaluation order of the semantic meta-language. And finally, the concept

of defunctionalisation, to transform higher-order programs into first-order form by

representing functions as data structures. Using these techniques, Reynolds showed

how to transform a definitional interpreter for a higher-order language into an

equivalent abstract machine.

Deriving target code as a representation of continuation semantics (Wand, 1982a).

The derivation of compilers was first considered by Wand (1982a). Starting from a

continuation semantics for the source language, Wand derives a compiler in a series

of steps. Firstly, he reformulates the semantics in an equivalent point-free form

using a generalised composition operator for functions with multiple arguments.

During this process, he also introduces combinators that capture particular forms of

argument manipulation. The resulting semantics is then defunctionalised to produce

a compiler and a virtual machine. However, the machine code that results from this

process is tree-shaped rather than linear. In order to rectify this, Wand exploits the

fact that the generalised composition operator can always be associated to the right

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

42 P. Bahr and G. Hutton

to augment the compiler with on-the-fly ‘rotation’ operations that transform the

resulting code into linear form.

The first difference from our approach is that Wand begins with a semantics that

is already rather operational in style, in the form of a continuation semantics. The

use of continuations can make semantic definitions more complicated, which in turn

makes it more difficult to argue that they are ‘obviously correct’. Secondly, while

rewriting the semantics using generalised composition leads to the introduction of

a stack in the virtual machine, it requires the use of rotation to produce linear

code. In contrast, our approach starts from a compiler specification that explicitly

includes a stack, and does not require the use of rotation. Moreover, whereas Wand

introduces continuation combinators that are defunctionalised to code constructors,

in our approach, we introduce the code constructors directly during the calculation,

without the need to go via a continuation semantics. The third important difference is

the role of correctness proofs. While the original article did not consider correctness

proofs, in a later article, (Wand, 1982b) does sketch an argument to prove his

compilers correct. By contrast, in our approach the correctness property is the

starting point for the derivation process: the derivation of the compiler and proof

of its correctness proceed simultaneously so that each informs the other.

From interpreter to compiler and virtual machine: a functional derivation (Ager et al.,

2003b). Another approach to deriving compilers from semantics has been developed

by Ager et al. (2003b). In this approach, one begins with a definitional interpreter,

from which an abstract machine is derived by first rewriting the semantics in CPS

and then defunctionalising. One then ‘factorises’ the resulting abstract machine into

a compiler and virtual machine, by introducing a term model that implements a

non-standard interpretation of the operations of the machine. This process involves

transformation steps such as ‘make the definition compositional’ and ‘factorize into

a composition of combinators and recursive calls’. While the authors show how

these transformation can be performed for particular examples, how they may be

applied more generally is not considered. Moreover, there is no argument about

the correctness of the resulting compiler, apart from the statement that all the

transformations are semantics preserving. But the goals of the authors are different

to ours: they want to provide more insight into existing abstract/virtual machines

and interpreters for lambda calculi, study relationships between them and synthesise

new machines and interpreters.

The fundamental difference to our work is best understood by looking at the

derivation of abstract machines in Ager et al. (2003a), on which their later work

(Ager et al., 2003b) is based. We formulated our original calculational approach

in Sections 2.1 to 2.4 as the combination of three transformations steps that first

introduce a stack, then a continuation, and finally defunctionalise. If we omit the

introduction of a stack, we obtain the method of Ager et al. (2003a) to derive abstract

machines. From this observation, we can also conclude that the approach presented

by Ager et al. (2003a) can be simplified by combining the two transformation steps

together in the manner of Section 2.5.

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

Calculating correct compilers 43

Calculating compilers (Meijer, 1992). In his PhD dissertation, (Meijer, 1992) devel-

ops a number of techniques to calculate compilers from semantics for a variety of

languages including a call-by-name lambda calculus, an imperative language with if

statements and while loops, and a simple non-deterministic language.

In his lambda calculus calculation, Meijer starts with a higher-order functional

semantics, in which compositionality is made explicit by defining the semantics using

a fold operator on the syntax for the language. He then specifies an equivalent stack-

based semantics, for which an implementation is calculated using algebraic properties

of folds such as fusion and universality. The resulting stack-based semantics is then

defunctionalised to produce a compiler and virtual machine. While Meijer emphasises

the idea of calculating compilers as we do, his approach of starting with a higher-

order semantics defined as a fold significantly complicates the methodology. In

particular, the specification for the stack-semantics has the form of an adjunction

rather than a simple equation as in our approach, which results in a much more

complicated calculation process.

Meijer’s calculation for the imperative language is impressive. As in our original

stepwise approach in Section 2, he calculates a semantics in CPS, but instead of a

stack machine, he targets a register machine. The main calculation proceeds using

structural induction, but the presence of unbounded loops leads to an auxiliary

use of fix-point induction in which we are required to ‘guess’ the correct induction

hypothesis. The use of explicit (register) names in order to target a register machine

also makes the calculation much more cumbersome. But the result is a compiler

and virtual machine that is more closely aligned with typical hardware architectures.

Our approach can also be applied to a language with unbounded loops. In contrast

to Meijer’s work, however, we do not need to use fix-point induction or guess an

induction hypothesis.

In his calculation for the non-deterministic language, Meijer also uses CPS.

Moreover, as in our second approach to exceptions in Section 3.2, he uses two

continuations to distinguish between success and failure. However, in order to

deal with non-determinism, he begins with a semantics expressed as a set-valued

function. The same idea can also be used to adapt our approach to non-deterministic

languages.

Meijer is able to calculate fairly realistic compilers by also considering optimis-

ing transformations that improve the quality of the compiled code. However, in

general, his approach requires more upfront knowledge about the desired compiler,

whereas we aimed to reduce such knowledge as much as possible by using partial

specifications.

Deriving a lazy abstract machine (Sestoft, 1997). In this work, the author derives

an abstract machine for a call-by-need lambda calculus from a big-step operational

semantics. While Sestoft’s article derives an abstract machine rather than a compiler,

it is still valuable to compare with our approach. His work is also noteworthy as it

does not rely on the use of continuations or defunctionalisation, in contrast to the

other related work above. Instead, the author presents a derivation that is guided

by his insight into the source language.

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

44 P. Bahr and G. Hutton

Fig. 1. General methodology for calculating correct compilers.

The derivation given by Sestoft (1997) specifically targets the call-by-need lambda

calculus, rather than being more generally applicable. He analyses the characteristics

of the semantics, such as how laziness is handled and substitutions are represented,

and presents techniques to reflect these characteristics in an efficient manner in an

abstract machine. The correctness of the resulting machine is established separately.

In contrast, our approach tries to minimise the insight that is necessary to transform

a semantics into a compiler. Moreover, in our approach the derivation is the

correctness proof. However, in return for the added effort in Sestoft (1997)’s

derivation, the resulting abstract machine implementation is able to perform a

number of optimisations that improve its performance.

7 Conclusion and further work

In this article, we presented a new approach to the problem of calculating compilers.

Our approach builds upon previous work in the field, and was developed and refined

by considering a series of languages of increasing complexity. Figure 1 summarises

the general methodology, which can then be adapted as necessary depending on

the nature of the source language. For example, as we have seen, for a number

of language features and their combination, it suffices to use the initial functional

semantics as the basis for the compiler specification, and to calculate the compiler by

structural induction on the language syntax. Moreover, it is advantageous to define

the semantics in a compositional style, because the use of rule induction places

additional restrictions on the format of the semantics as discussed in Section 5.5.

The key attributes of our approach are as follows:

• Directness – it is based upon the idea of calculating compilers directly from

high-level specifications of their correctness, rather than indirectly by applying

a series of transformations to a semantics for the source language;

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

Calculating correct compilers 45

• Simplicity – it only requires simple equational reasoning techniques in the form

of constructive induction, and avoids the need for more sophisticated concepts

such as continuations and defunctionalisation during the calculation phase;

• Partiality – it uses partial (incomplete) specifications and definitions when

necessary to avoid predetermining implementation decisions, with the missing

components also being derived as part of the calculation process;

• Goal driven – it avoids the need for ‘Eureka steps’ by using the desire to apply

induction hypotheses as the clear goal for the calculation process, from which

the compilation machinery then arises in a natural manner;

• Flexible – it considers alternative design choices, and revisits assumptions when

calculations get stuck, to emphasise that calculating compilers is usually not a

purely deterministic process but still requires flexibility and creativity;

• Formalisation – it is readily amenable to mechanised formalisation, and all

the calculations in the article have been mechanically verified using the Coq

system, with the proofs being available online as supplementary material.

Note that the formalisation in Coq is not restricted to post-hoc verification of

calculations that have been performed by hand. The calculation style presented in

this article can be emulated in Coq by using partial definitions, and in this way Coq

can be used as an interactive tool to derive correct-by-construction compilers. The

Coq system not only guides the user through the calculation process, but also checks

its correctness. Moreover, using Coq’s code extraction facility (Letouzey, 2008), we

can extract the compiler and the virtual machine implementation fully automatically

if so desired.

There are many possible avenues for developing the approach further. Interesting

topics for further work include: providing mechanical support for the calculation

process in an equational reasoning system such as HERMIT (Sculthorpe et al., 2013);

adapting the approach to different forms of virtual machines, such as register-based

machines or machines with specific instruction sets; considering how to exploit

additional algebraic structure during the calculation process, such as folds and

monads; extending the approach to source languages that are typed; considering

further language features such as (delimited) continuations and concurrency; ex-

ploring additional compilation concepts such as optimisation and modularity and

applying the technique to larger languages.

Acknowledgements

Discussions with Ralf Hinze at the IFIP Working Group 2.1 meeting in Zeegse led

to the idea of combining the transformations in our original stepwise approach

and greatly simplified the methodology. We would also like to thank Jeremy

Gibbons, Colin Runciman, Neil Sculthorpe, Arjan Boeijink, the JFP referees and

the Functional Programming lab in Nottingham for many useful comments and

suggestions. This work has been partially funded by the Danish Council for

Independent Research, Grant 12-132365.

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

46 P. Bahr and G. Hutton

References

Adams, N., Kranz, D., Kelsey, R., Rees, J., Hudak, P. & Philbin, J. (1986) ORBIT: An

optimizing compiler for scheme. In Proceedings of the 1986 SIGPLAN Symposium on

Compiler Construction. New York, NY, USA: ACM, pp. 219–233.

Ager, M. S., Biernacki, D., Danvy, O. & Midtgaard, J. (2003a) A functional correspondence

between evaluators and abstract machines. In Proceedings of the 5th ACM SIGPLAN

International Conference on Principles and Practice of Declarative Programming. New

York, NY, USA: ACM, pp. 8–19.

Ager, M. S., Biernacki, D., Danvy, O. & Midtgaard, J. (2003b) From Interpreter to Compiler and

Virtual Machine: A Functional Derivation. Technical Report RS-03-14. BRICS, Department

of Computer Science, Aarhus, Denmark: University of Aarhus.

Appel, A. (1991) Compiling with Continuations. New York, NY, USA: Cambridge University

Press.

Backhouse, R. (2003) Program Construction: Calculating Implementations from Specifications.

West Sussex, UK: John Wiley and Sons, Inc.

Bahr, P. (2014) Proving correctness of compilers using structured graphs. Functional and

Logic Programming, Lecture Notes in Computer Science, vol. 8475. Springer International

Publishing, pp. 221–237.

Chase, D. (1994a) Implementation of exception handling, Part I. J. C Lang. Transl. 5(4),

229–240.

Chase, D. (1994b) Implementation of exception handling, Part II. J. C Lang. Transl. 6(1),

20–32.

Day, L. E. & Hutton, G. (2014) Compilation à la Carte. In Proceedings of the 25th Symposium

on Implementation and Application of Functional Languages. New York, NY, USA: ACM,

pp. 13–24.

Dybjer, P. (1994) Inductive families. Formal Asp. Comput. 6(4), 440–465.

Hutton, G. (2007) Programming in Haskell. New York, NY, USA: Cambridge University Press.

Hutton, G. & Wright, J. (2004) Compiling exceptions correctly. Mathematics of Program

Construction, Lecture Notes in Computer Science, vol. 3125. Berlin/Heidelberg: Springer,

pp. 211–227.

Hutton, G. & Wright, J. (2007) What is the meaning of these constant interruptions? J. Funct.

Program. 17(06), 777–792.

Letouzey, P. (2008) Extraction in Coq: An overview. Logic and Theory of Algorithms: 4th

Conference on Computability in Europe, Lecture Notes in Computer Science, vol. 5028.

Berlin, Germany: Springer-Verlag.

McCarthy, J. & Painter, J. (1967) Correctness of a compiler for arithmetic expressions.

Mathematical Aspects of Computer Science, Proceedings of Symposia in Applied

Mathematics, vol. 19. American Mathematical Society, Providence, RI, USA: pp. 33–41.

McKinna, J. & Wright, J. (2006) A Type-Correct, Stack-Safe, Provably Correct Expression

Compiler in Epigram. Unpublished manuscript.

Meijer, E. (1992) Calculating Compilers. Ph.D. thesis, Katholieke Universiteit Nijmegen.

Reynolds, J. C. (1972) Definitional interpreters for higher-order programming languages. In

Proceedings of the ACM Annual Conference. New York, NY, USA: ACM, pp. 717–740.

Sculthorpe, N., Farmer, A. & Gill, A. (2013) The HERMIT in the tree: Mechanizing program

transformations in the GHC Core language. Implementation and Application of Functional

Languages 2012, Lecture Notes in Computer Science, vol. 8241. New York, NY, USA:

Springer.

Sestoft, P. (1997) Deriving a lazy abstract machine. J. Funct. Program. 7(03), 231–264.

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

Calculating correct compilers 47

Spivey, M. (1990) A functional theory of exceptions. Sci. Comput. Program. 14(1), 25–42.

Steele, Jr., G. L. (1978) Rabbit: A Compiler for Scheme. Technical Report AI-TR-474.

Cambridge, MA, USA: MIT AI Lab.

Thielecke, H. (2002) Comparing control constructs by double-barrelled CPS. Higher-Order

Symb. Comput. 15(2–3), 141–160.

Wadler, P. (1989) Theorems for free! In Proceedings of the 4th International Conference on

Functional Programming Languages and Computer Architecture. New York, NY, USA:

ACM Press.

Wand, M. (1982a) Deriving target code as a representation of continuation semantics. ACM

Trans. Program. Lang. Syst. 4(3), 496–517.

Wand, M. (1982b) Semantics-directed machine architecture. In Proceedings of the 9th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages. New York,

NY, USA: ACM, pp. 234–241.

Winskel, G. (1993) The Formal Semantics of Programming Languages – An Introduction,

Foundation of Computing Series. Cambridge, MA, USA: MIT Press.

https://doi.org/10.1017/S0956796815000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000180

