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Abstract

The convexity assumptions for a minimax fractional programming problem of variational
type are relaxed to those of a generalised invexity situation. Sufficient optimality conditions
are established under some specific assumptions. Employing the existence of a solution
for the minimax variational fractional problem, three dual models, the Wolfe type dual,
the Mond-Weir type dual and a one parameter dual type, are constructed. Several duality
theorems concerning weak, strong and strict converse duality under the framework of
invexity are proved.

1. Introduction

Fractional programming is an interesting subject which features in several types of
optimisation problems. For example, it can be used in engineering and economics to
minimise a ratio of functions between a given period of time and a utilised resource in
order to measure the efficiency or productivity of a system. In these sorts of problems
the objective function is usually given as a ratio of functions in fractional programming
form (see Stancu-Minasion [20]).

The optimisation problem considered in this paper consists of minimising a max-
imum of several time-dependent ratios involving integral expressions. Many authors
have studied this type of variational programming (see for example [1,4,5,8,19,21,
22]). Other minimax programming problems involving generalised convexity are dis-
cussed in [12-15]. In this paper, the usual convexity assumptions are relaxed to those
of a generalised invexity situation. Since the model involves a state function x (t) in
the integrand of the integration, the results also relate to questions of optimal control.
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340 H. C. Lai and J. C. Liu [2]

We consider a minimax problem with a fractional objective in the form:

,D, . . fif'(t,x(t),x(t))dt
(P) v = mm max i£r

1I f ' (subject to x 6 PS(T, R"), x(a) = ex, x(b) = p,

hJ(t,x(t),x(t))dt<0,/
Ja

where the functions f',g',iep and hj ,j € m are continuous in t, x and x and have
continuous partial derivatives with respect to x and x, and where PS(T, R") is the
space of all piecewise smooth state functions x defined on the compact time set T in
R. The norm of x e PS(T, R") is defined by \\x\\ = ||JC||OO -I- Halloo, where D is the
differential operator on PS(T, Rn) defined by

y = Dx if and only if x(t) = x(a)+ I y(s)ds.
Ja

So D = rf/d/ except at the point of discontinuity. Throughout we assume that

f gi(t,x(t),x(t))dt>0, f f'(t,x(t),x(t))dt>0
Ja J a

for each i € p and any x € &P, the set of all feasible solutions of (P). For simplicity,
we write x (t) = x and x (t) = x.

In order to obtain necessary and sufficient optimality conditions for problem (P),
Bector et al. [1] considered an equivalent parametric problem for v € R in the
following form:

(EPV) minimise q

subject t o x e PS(T, R"), x(a) = a, x{b) = p,

[/'(/,x,x) - vg'(t,x,x)]dt < q,
"rb

h' {t,x,x)dt < 0, for / € p and j € m,

f
I
Jaand they established the following result.

LEMMA 1.1 ([1]). The function x* is an optimal solution of (P) with optimal
value v* if and only if the triple (x*, v", q*) is an optimal solution of (EPV) with
optimal value q* = 0. That is

v,_fa
bfi(t,x\x*)dt

fa
bg'(t,x*,x*)dt'
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Here all functions in (P) are assumed to exhibit some generalised convexity. In
[1], they also constructed various duality models for (EPV). In [16], Liu employed
the same approach as in [1] to establish optimality conditions and duality theorems
for (P) in the case of generalised (F, p)-convex functions.

In this paper, we will establish optimality conditions and duality theorems in the
case of generalised invexity in (P) as well as in (EPV). To this end, in Section 2
we introduce some notation and preliminary results. In Section 3, we give some
definitions on generalised invexity and derive some sufficient optimality conditions
for problem (P) in the case of generalised invexity. Employing these results, we
construct three dual problems in Sections 4-6. Here we investigate weak, strong and
strict converse duality theorems under the framework of generalised invex functions.

2. Notation and preliminary results

For x € PS(T, Rn), we let F'(x) = f*fl(t,x,x)dt, G'(x) = f* g'(t,x,x) dt
and Hj (x) = fa h' (t,x,x) dt, for i e p and; € m. Suppose that functions/', g' and
h> are continuous in t, x and x and have continuous partial derivatives with respect to
(w.r.t.) x andi. Then the functional F = (F\F2,... , Fp), G = (G1,G2,... , G")
and H = (H\H2,... , Hm) are (Frechet) differentiable on PS(T, R"). It follows
that the problem (P) may be rewritten in the form:

(P) min max I — — )

subject to x{a) — a, x(b) — 0 and H(x) < 0.

Here a and /? are fixed vectors in Rn. The equivalent parametric minimisation problem
(EPV) is then given by

(EPV) minimise q

subject to F'(x) - vG'(x) <q, i € p_, Hj (x) < 0, j e m,

x € PS(T, R") with fixed boundary conditions

x(a) = a and x(b) = p.

As in [4,5], it can be shown that if x e ^> , a feasible solution of (P), then

F'(x) (y,F(x))
4>(x) = max——• = max -—^-—r, (2.1)

iep G'(JC) (y.e)=\ (y, G(x))
Rl

where e is a vector of ones in /?+ and (•, •) denotes the inner product in Rp. For
convenience, henceafter we define / = [y € R+\(y, e) = 1}.

https://doi.org/10.1017/S1446181100008063 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100008063


342 H. C. Lai and J. C. Liu [4]

For simplicity, for x € PS(T, Rn), y e Rp+ and z 6 /?" we denote

/

b p

1=1

b P

*(x,y) = {y, G(x)) = f J^y* g> {t, x, x) dt and
1=1

Q(x,z) = (y,H(x)) = / Y,z?h'(t,x,x)dt.
J° 7=1

Evidently <J>(x, •), V(x, •) and £l(x, •) are linear functional.
From (2.1), if JC* is an optimal solution of (P), then

<p(x ) = max = max
/££ G'{x") yel

where y(:c*) = y*.
Problem (P) is actually equivalent to

4>(JC, y)
minmax : — subject to H(x) < 0, x e R" and y € /.

x y V(xy) ~

The concept used here for the solution of (£ Pv) coincides with finding the minimax
solution of the Lagrangian

L(x, y; v, z) = (y, F(x)) - v(y, G(x)) + (z, H(x))

= «D(JC, y) - V*(JC, y) + Q(x, z)

for multipliers v* e R, z e R+, and the solution is given by L'(x, y)% = 0 for any
§ € C([a, b], R"). Hence necessary optimality conditions for (P), as in Bector et al.
[2, Theorem 1] (see also Craven [7]) are actually Kuhn-Tucker type conditions which
we can rewrite as follows.

THEOREM 2.1 (Necessary conditions). Ifx* is an optimal solution of\P), thenthere
exist y* e / and multipliers v* € R and z* € R™ such that (JC*, V*, y*, z*) satisfies

*'(**, y*) - v*f'(x*, y*) + Q'(x% z*) = 0, (2.3)

4>(jc*,/)-w**(jc*,y') = 0, (2.4)

Q(x*,z*)=0, (2.5)

where <$>' and V are the gradients of <t> and W at (x*, y*) respectively and Q'(x*, z*) =

(z*,
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In order to construct parameter-free dual models for (P), using (2.4) we replace v*
by <f>(x*, y*)/vl/(;t*, y*), and then restate Theorem 2.1 as follows.

THEOREM 2.2 (Necessary condition). Ifx* is an optimal solution of(P), then there
exist y* € / and multipliers v* € R and z* € R™ such that (x*, y*, z*) satisfies

*(**, /)<*>',(**, y*) - 4>(x*. y*)V[(x*, y*) + *(**, y*)n\(x*, z*) = 0, (2.6)

n(jc*,z*) = 0, (2.7)

and obtain the optimal value by

. , „, <*>(x*,y*) *{x*,y) ( . F'(x)\
0(A:*) = — = max — = mm max —. . (2.8)

*(jc*,y*) ^ / * ( * * , y ) \ x \<i<P G'(x))J

3. Generalised invexity

For sufficient optimality conditions of the fractional variational problem (P), we
will relax the assumption of convexity to that of generalised invexity (see Mond and
Husain [19]). This approach will give a basic technique for constructing some duality
theorems for problem (P).

Letx ePS(T,R")mdf€Cl(TxRnxR"). Define a functional J:PS(T, R")\-+R
by J(x) = fif{t,x,x)dt.

We assume that the boundary points x (a) and x (b) are fixed. Consider the admis-
sible vectors x + w with admissible variations w € C([a, b], R") vanishing at the
boundary points. Then the differential of J is a linear functional on C([a, b], R"),

d f
J (x)w = — / f(t,x+ aw, x + aw) dt

da Ja a=0

= / [fx(t,x,x)w(t) + fi(t,x,x)w(t)]dt
Ja

f" "
= / [fAt,x,x)-Dfi(t,x,x)]w(t)dt+fAt,x,x)w(t)

Ja a

rb

= [fAt,x,x)-Dfi(t,x,x)]w(t)dt.
Ja

That is,
Cb

J'(x)w= [fx0,x,x)-DfAt,x,x)]w(t)dt (3.1)
Ja

for all w e C([a, b], Rn), w(a) = 0 = w(b), where D = d/dt.
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This concept allows us to define a function t] : PS(T, R") x PS(T, R") i-»-
C(T, R") with condition r){x, u) = 0 if x = u. Using this function r\, we will give
the following definitions for generalised invexity.

DEFINITION 3.1. For any u e PS(T, R"),

(i) a differentiable function J is said to be invex w.r.t. t) if

J(x) - J(u) > J'(uMx, u); (3.2)

(ii) J is said to be pseudoinvex w.r.t. r) if J'(u)r)(x, u) > 0 => •/(*) > J(u), or
equivalently /(*) < J(u) =» y'(«)'?(^, ") < 0;

(iii) J is said to be strictly pseudoinvex w.r.t. rj if, for x ^ u,

J'(u)r)(x, u) > 0 => 7(x) > 7(M),

or equivalently 7(J:) < 7(M) => J'(u)r](x, u) < 0;
(iv) 7 is said to be quasi-invex w.r.t. >; if

/'(!<)»;(*, II) >0=»y(;c) >./(«), (3.3)

or equivalently J(x) < J(u) => J\u)r){x, u) < 0.

REMARK 3.1. If x, u € «̂ "/», then x(a) = w(a) = a, x(b) = u(b) = fi and so
r)(x(a), u(a)) = 0, r)(x(b), u(b)) = 0. This shows that the function r)(x, u) on T
satisfies the zero boundary condition. It follows that in (3.2) of Definition 3.1 if
x, u € &P we always have the representation (3.1):

J'(uMx,u)= / [/,(/, u,u)-Dfi(t,u,u)]ri(x,u)(t)dt,
J a

where rj(x, u) € C(T, R").

This shows that the concept of generalised invexity used here actually coincides
with the original concept of invexity given by Hanson and Mond [9]. For details,
consult Craven [8].

For convenience, we denote by <$>\(x,y) = <&x(x, v), Vt(x, y) = tyx(x,y) the
partial Frechet derivative with respect to the feasible variable x.

Now we can state sufficient optimality conditions for (P) in the case of generalised
invexity as follows.

THEOREM 3.1 (Sufficient conditions). Let x*€&P, y*el, z*eR™ and (x*,y*,z*)
satisfy (2.6H2.8). Define A(x) = *(**, y*)<t>(x, y*) - V(x, y*)4>(x*, y*) and
B(x) = A(x) + V(x*,y*)n(x,z*). If, for the given y* and z*, any one of the
following conditions holds:
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(a) 4>(-, y*), —*(•, y*) and$l(-, z*) are invex w.r.t. the function rj;
(b) A is pseudoinvex and £2(-, z*) is quasi-invex w.r.t. t)\
(c) A is quasi-invex and S2(-, z*) is strictly pseudoinvex w.r.t. rj;
(d) B is pseudoinvex w.r.t. r\,

then x* is an optimal solution of(P).

PROOF. If x* is not an optimal solution of (P), then there is a feasible solution
M 6 &P such that

<t>(x*) > 0 ( H ) . (3.4)

By (2.1) and (2.2),

<*>(x\y*) <S>(u,y) ̂  <t>(u,y*) t= <p(x ) > 0(M) = max > , y € I.
V(x*y*) et * («y) ~ V(uy*)

It follows that

A(u) = <&(u, y*)V(x*, y*) - $(x*, / ) * ( « , y*) < 0 = A(**) (3.5)

and so by rearranging the above inequality, we get

¥(**, y*)[*(n, y*) - <P(x*, y*)} - 4>(x*, y*)[*(«, y*) - *(**, y*)] < 0. (3.6)

Since u € &P, by condition (2.6), we have

z*). (3.7)

Consequently, (3.5) and (3.7) yield B(u) < B(x*). Now if condition (a) holds, for
y* € /, z* e /?", employing the invexity of <t>(-, y*), — *(•, y*) and J2(-, z*), we then
have the inequalities

y*) > «!>',(*•, y*)r?(«, JC*), (3.8)

/ / ) ] > - * ; ( j c * , / ) f ? ( H , * * ) , ' (3.9)

Q(u, z*) - Q{x\ z*) > «',(**, z*)ij(«, x*). (3.10)

Here for each y* and z*, <I>'i, *J and £2', are partial Frechet derivatives of 4>(-, y*),
- * ( - , y*) and S2(-, z*) at JC*, respectively. Since *(x*, y*) > 0 and 4>(x*, y*) > 0,
we multiply (3.8) by *(x*, y*), (3.9) by <t>(x*, y*) and (3.10) by *(.**, y*). Adding
up the resulting inequalities, it follows from (3.6) and (3.7) that

0 > [¥(*•, /)*',(**, y*) -
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This contradicts (2.6). Hence (3.4) does not hold, and so x* must be optimal for (P).
For condition (b), A is pseudoinvex and so from (3.5),

A(u) < A(x*) => A'(x'Mu,x*) < 0,
that is,

[*(**, y*)<t>\(**,;y*)-<J>(x*,y*)*;(**, y*))n(u, x*) < 0 . (3.11)

The identity (2.6) and inequality (3.11) yield S2',(JC*, z*)V(x*, y*)r)(u, x*) > 0. Since
*(**, j* ) > 0, it follows that

n'1(jc*,z*)ij(ii,jc*)>0. (3.12)

On the other hand, the function Q in condition (b) is assumed to be quasi-invex w.r.t. rj.
Thus inequality (3.12) implies S2\(x*, z*)r)(u,x*) < 0, (by (3.3)), which contradicts
(3.12). Hence (3.4) does not hold. This shows that x* is optimal for (P).

If conditions (c) or (d) hold, the optimality of x* can be proved using the same
argument as that for condition (b). Hence the proof is complete.

In the next sections, we will construct some dual models.

4. The first dual model—the Wolfe type dual

Employing Theorem 2.2, we will construct two parametric-free dual models. Con-
sider the Wolfe type dual problem given by

(Dl) Maximise

subject to (M, Z) 6 PS(T, Rn) x R™ and y e / C R™,

u(a) = ct, u(b) = p,

, yWx{u, y) - [<D(ii, y) + £2(II, z)]%(u, y)

ii,z) = 0. (4.1)

Denote by Kx the set of all feasible solutions of problem (£>1). We assume throughout
this section that

<t>(u,y) + S2(u,z) > 0 and V(u,y)>0 for all (M, y , z) € KX. (4.2)

In what follows, we shall establish weak, strong and strict converse duality theorems
for(P)-(Dl).
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THEOREM 4.1 (Weak duality). Letx e &P,(u,y,z) e Kx and let

C(x) = *(« , y)[<t>(x, y) + Q(x, z)] - [*(«, y) + «(«, z)]*0r, y).

y anrf z, either one of the following conditions holds:

(a) 4>(-, y*), —*(•, y*) and J2(-, z*) are invex w.r.t. the Junction rj (defined as in
Definition 3.1);
(b) C is pseudoinvex w.r.t. rj,

then

*(M,y)

vv/iere 0(x) w defined by (2.1).

PROOF. If (4.3) were not true, then

(M,y) + n(H,z)
77 : • (4.4)
( y )

It follows from (2.2) that for any y e I,

or
*(JC, y)*(«, y) - [4>(M, y) + «(«, Z)]*(JC, y) < 0. (4.5)

Rewriting the above inequality, we get

(ii,y). (4.6)

Since f2(x,z) < 0, if x € ^,», z € /?" and *(«,y) > 0, S2(JC, z)*(w,y) < 0. It
follows from (4.6) that

C(x) < 0 = C(«). (4.7)

Now if condition (a) holds, for each y 6 / , z 6 /?", the invexity of <!>(•, y*),
- * ( • , y*) and S2(-, z*) implies that

, y) - <D(M, y) > <&',(«, y)^(jc, M), (4.8)

, y) - * ( « , y)] > - * ; ( « , y)i?(jc, u), (4.9)

JC, z) - J2(M, Z) > n',(«, Z)»7(JC, u),
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or

From (4.2), *(M, y) and <!>(«, y) + £2(u, z) are nonnegative. Multiplying (4.8) by
*(« , y), (4.9) by <t>(u,y) + ft(u, z) and (4.10) by ty(u,y), and summing up the
resulting inequalities, then from (4.5) we eventually obtain that

«, y) - [4>(M, y) + fi(«, z)]*J(«. y) + *(«, y W " , z)}»?(*, «) < 0.

This contradicts (4.1). So (4.4) does not hold and (4.2) does hold.
From condition (b), C is pseudoinvex and (4.7) implies that C'(u)r)(x, u) < 0, that

is, {*(«, y)4>',(ii, y) - [4>(«, y) + «(« , z)]*J(«, y) + *(«, y)n',(«, Z)}I?(JC, «) < 0.
This contradicts (4.1). Hence (4.3) does not hold and the proof is complete.

THEOREM 4.2 (Strong duality). If x* is an optimal solution of (P) satisfying the
conditions of Theorems 2.2 and 4.1, then there exist y* € / and z* € /?+ such that
(x*, y*, z*) is an optimal solution of (D\) and the optimal values of (P) and (Dl)
are equal; that is, min(P) = max(Dl).

PROOF. If x* is an optimal solution of (P), then by Theorem 2.2, there exist
y* e / and z* € R+ which satisfy the constraints of (Dl), so that (x*, y*, z*) e #i-
Furthermore

=

since fi(jr*, z*) = 0. Hence (x*, y*, z*) is an optimal solution of (Dl). Consequently,
(4.3) demonstrates that (P) and (Dl) have the same optimal values.

THEOREM 4.3 (Strict converse duality). Let xx and (x*, y0, Zo) be optimal solutions
for (P) and (Dl), respectively. Assume that the assumptions of Theorem 4.2 are
fulfilled, and that

C(-) = tf (**, yo)[4>(-, y0) + «(-, zo)l - [*(**, yo) + aOc*. zo)]*(-, y0)

w a strictly pseudoinvex function w.r.t. r). Then X\ = x* is an optimal solution of(P),
and (P) and (Dl) have the same optimal value

<t>(xx) =
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PROOF. Suppose on the contrary that Xi ^ x*. Then by Theorem 4.2, there exist
y{ € / and z\ € R"l such that (JCI, ylt zi) is an optimal solution of (£>1) and

As in the proof given in Theorem 4.1, we replaces by*i, and (u, y, z) by (**, yo, Zo),
to derive the inequality

This contradicts the fact that

Hence we conclude that

xi=x and

5. The second dual model—the Mond-Weir type dual

We introduce the Mond-Weir type dual problem as follows:

(Z>2) Maximise y

*(«, y)
subject to («, y) e PS(T, R") x /, «(a) = a, u(b) = p,

',(ii, y) - *(«, y)*i(u, y) + *(M, y)n',(«, z) = 0, (5.1)

> 0 , z € /?+. (5.2)

Denote by K2 the set of all feasible solutions of problem (D2). We still assume
throughout that <!>(«, y) > 0 and *(w, y) > 0 for all (M, y, z) e A"2- We will establish
weak, strong and strict converse duality theorems for (P)-(D2).

THEOREM 5.1 (Weak duality). Letx € &P, (u, y, z) e K2 and define

D(x) = vI/(M, y)<t(jc, y) - * (* , y)*(u, y)

E{x) = D{x) + * ( I I , y)£2(jc, z).

If, for each y € /, z € /?", a/zy one of the following conditions holds:

(a) <!>(•, y), —*(-, y) and S2(-, z) are iravex w.r.t. rj;

https://doi.org/10.1017/S1446181100008063 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100008063
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(b) D ispseudoinvex and Q(-, z) is quasi-invex w.r.t. rj;
(c) D is quasi-invex and £2(-, z) is strictly pseudoinvex w.r.t. r\;
(d) E is pseudoinvex w.r.t. t),

then

PROOF. Suppose the result of (5.3) were not true. Then

> <p(x) = m a x >
*(«,y) net

This implies that

D(x) = <t>(x, y)*(«, y) - <&(M, y)V(x, y) < 0 = D(u). (5.4)

As x e &P, z € R% and f2(x, z) < 0, the constraint inequality (5.2) of (D2) yields

«(Jt,z) <0<Q(u,z). (5.5)

Consequently, (5.4) and (5.5) yield

E(x) < £ ( I I ) . (5.6)

If condition (a) holds, then by the invexity of <t>, —* and £2, we have

<t>(x, y) - 4>(u,y) > V^yMx,^, (5.7)

- [ * ( * , y) - *(« , y)] > - * ; ( « , >)»?(*, «), (5.8)

, z) - «(« , z) > fi'(«, z),»j(*, M). (5.9)

Since *(« , y) and <P(u, y) are nonnegative, we multiply (5.7) by *(« , y), (5.8) by
<i>(u, y) and (5.9) by *(« , y), and sum up the resulting inequalities. Eventually, from
(5.4) and (5.5), we obtain the inequality

0 > [*(«, y)<J>',(u, y) - 4>(K, y)*J(«, y) + V(n, y)n',(M, Z)]»?(JC, M).

This contradicts (5.1) in the constraint of (D2). Hence (5.3) holds.
In condition (b), D is pseudoinvex. Thus (5.4) implies D'(u)r)(x, u) < 0, that is,

[*(«, y)*',(M, y) - 4>(II, y)V\(u, y)]r,(x, u) < 0. (5.10)

It follows from (5.1) and (5.10) that

H) <0 or n'1(u,z)ri(x,u)>0
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since ty(u, y) > 0. But £2 is quasi-invex, so the above inequality implies

fi(jc,z) > Q(u,z)

which contradicts (5.5). So (5.3) holds.
The proof for the cases when conditions (c) or (d) hold is similar. Hence the proof

is complete.

THEOREM 5.2 (Strong duality). If x* is an optimal solution of (P) satisfying the
conditions of Theorems 2.2 and 5.1, then there exist y* € / and z* € R™ such that
(x*, y*, z*) is an optimal solution of(D2), and (P) and (D2) have the same optimal
values.

PROOF. If x* is an optimal solution of (P), then by Theorem 2.2, there exist y* e /
and z* e R™ such that (x*, y*, z*) € K2, the feasible solution of (D2), and

. , „ *(x*,y*) <t>(x*,y)
<b(x ) = — = max

V(x*y*) ei

It follows from Theorem 5.1 that (x*,y*,z*) is an optimal solution of (D2) and
min(P) = max(Z)2).

THEOREM 5.3 (Strict converse duality). Letx\ and (x*, y0, zo) be optimal solutions
of(P) and (D2), respectively. Assume that the conditions of Theorem 5.2 are fulfilled,
and that D() — ty(x*, yo^O. yo) — *(•, yo)*(^*. ^o) is strictly pseudoinvex and
Q(-, Zo) is quasi-invex w.r.t. t]. Then x\ = x* is an optimal solution of(P), and (P)
and (D2) have the same optimal values </>(jt|) = *(**,

PROOF. Since X\ is an optimal solution of (P), by Theorem 5.2, there exist y\ € I
and Z\ 6 R" such that (x\,yu Z\) is an optimal solution of (D2) and

On the other hand, (**, y0, Zo) is an optimal solution of (D2), with optimal value equal
to0(x,), that is,

= = <*>(**, yo)

If X\ ^ x ' , we could deduce

*,yo)
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which would contradict (5.11).
Suppose (5.12) does not hold, then 0(*i) < <t>(x*, yo)/W(x*, y0), that is,

= m a x

or D(JCI) = <J>(*i. yo)V(**, yo) - *(**,yo)*(xi, yo) < 0 = D(x*)t that is,

£>(*•) < D(x*). (5.13)

Since £> is strictly pseudoinvex, (5.13) implies D'(x*)ri(xi,x*) < 0, or

' , yo)fl>',(jc*,yo) - fl>(jc*,yo)*;(jc*,yo)]»?(*i,jc*) < 0. (5.14)

By (5.1) and (5.14), we get - * ( * * , yo)fi',(j:*, zb)»?(*i, **) < 0, that is,

n\(x*,zoMxux
t)>0, (5.15)

since *(**, y0) > 0- By the quasi-invexity of £2, (5.15) implies

Q(xuZo)> n(**,zb). (5.16)

On the other hand, JC, 6 ^ > , zo e /?" and Q(xu zo) < 0. By (5.2), Q(x*, zo) > 0.
Thus Q(xt,zo) < ^(^*,Zo) which contradicts (5.16). Hence (5.12) holds under
JCI ^x*. Therefore x{ =x*.

6. The third dual model

In this section, we employ Theorems 2.2 and 3.1 to construct a one-parameter dual
problem for (P), and consider

(D3) Maximise v

subject to (M, v, y, z) € PS(T, R") x R+ x I x R™,

u(a) = a, u(b) = p,

<&',(«, y) - W*;(M, y) + «',(«, z) = 0,

*(M,y) -u*(K,y) > 0 , Q(u, z) > 0.

Denote by Â 3 the set of all feasible solutions of problem (D3). Then by a proof
similar to that for Theorems 5.1-5.3, we can obtain the following theorems relating
(P) and (D3).
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THEOREM 6.1 (Weak duality). Letx e &P, (u, v, y, z) e K3. Define

)-vV(x,y) and M(x) = N(x) + Sl(x, z).

If, for y 6 /, z e /?+, any one of the following conditions holds:

(a) <£(•, v), —^C-, y) a«rf fi(-, z) are invex w.r.t. the function n;
(b) N is pseudoinvex and Q(-,z) is quasi-invex w.r.t. n;
(c) N is quasi-invex and ft (•, z) is strictly pseudoinvex w.r.t. rj;
(d) M is pseudoinvex w.r.t. r),

then (j>{x) > u.

THEOREM 6.2 (Strong duality). If x* is an optimal solution of (P) satisfying the
conditions of Theorems 2.1 and 6.1, then there exist y* e I, zl* € /?" and u* € /?+,
such that (x*, y*, z*, v*) is an optimal solution o/(D3), and (P) and (D3) have the
same optimal values.

THEOREM 6.3 (Strict converse duality). Let xt and (x*, y0, Zo, v0) be optimal solu-
tions of(P) and (D3), respectively, and let the conditions of Theorem 6.2 be fulfilled.
IfL(-) = 4>(-, y0) — i>o*(-. Jo) is strictly pseudoinvex and Q (-, Zo) is quasi-invex w.r.t.
the function r\, then xx = x* is an optimal solution of(P), and (P) and (D3) have the
same optimal values <}>(x\) = v0.

It is remarkable that most of the fractional objectives other than the integral expres-
sion can also be employed technically as demonstrated in this paper.
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