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ON THE SQUARE-ROOT METHOD FOR CONTINUOUS-TIME
ALGEBRAIC RICCATI EQUATIONS
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Abstract

We give a simple and transparent proof for the square-root method of solving the continuous-
time algebraic Riccati equation. We examine some benefits of combining the square-root
method with other solution methods. The iterative square-root method is also discussed.
Finally, paradigm numerical examples are given to compare the square-root method with
the Schur method.

1. Introduction

Algebraic Riccati equations play a fundamental role in the analysis, synthesis and
design of linear-quadratic Gaussian control and estimation systems. A central question
is the efficient determination of the unique nonnegative-definite, symmetric solution
X of the continuous-time algebraic Riccati equation

ATX + XA -XBR~lBTX + Q= O. (1.1)

Here the matrices are real, A, X and Q are n x n, B is n x m and R is m x m. The
matrix R is positive definite and Q nonnegative-definite. Both are symmetric. For
convenience we shall also express this equation as

ATX + XA - XGX + Q = O.

There are no entirely satisfactory solution procedures. There are some efficient
ones, but they are not stable. Laub [5] proposed a Schur method based on the
associated Hamiltonian matrix
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A 2/i x In real matrix H is called (skew-) Hamiltonian if JH is (skew-) symmetric,
where

J =

Following Byers [1], there have been a number of methods for solving (1.1) in-
volving finding a basis for the stable invariant subspace of H. One approach is to use
a series of similarity transformations to reduce H to a block upper-triangular form

j T I with C containing only stable eigenvalues. As is observed in [1], it

is difficult to do this with a stable similarity transformation. However, as van Loan
[9] has shown, it is easy to reduce a skew-Hamiltonian matrix to such a form by
orthogonal and symplectic similarity transformations. We call a matrix S symplectic
if STJS = J. Here and subsequently the superscript T denotes 'transpose'.

Recently Hongguo Xu and Linzhang Lu [9] proposed a way of utilizing van Loan's
idea via a "square-root" technique. It is readily verified that JH2 is skew-symmetric,
so that H2 is skew-Hamiltonian and van Loan's algorithm is applicable. The main
task of the technique proposed in [9] is the computation of the principal square root
of//2.

The justification of the square-root technique in [9] turned out to be quite lengthy.
In Section 2 we present a very short and simple justification.

We then turn to the implementation of the square-root approach. It can be bene-
ficial to use it in combination with other techniques. In Section 3 we examine it in
conjunction with the sign-function method and show how the latter can be used to
prevent our having to solve an overdetermined system. In Section 4 we consider the
determination of the principal square root of H2 by iteration. We conclude in Section
5 with some numerical experiments which compare the square-root approach with a
Schur approach using benchmark examples given in Laub [5].

2. A simple proof of the square-root method

Let X = pe'e be a complex scalar, with p > 0 and \0\ < n. The principal square
root of X is defined as pl/2e'9/2. This definition may be extended to cover a general
square matrix as follows.

DEFINITION 2.1. Let A be a nonsingular matrix. A matrix Y is called the principal
square root of A if Y2 = A and ReX(F) > 0 for each eigenvalue \(Y) of Y.

It is well-known that if A is a real nonsingular matrix having no negative real
eigenvalues, then A has a unique principal square root (see, for example, Gantmacher
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[3]). We shall denote the principal square root of a matrix A by sqrt(A). It is obvious
that for any nonsingular matrix P,

sqrtG4) = P~' sqrt(PAp-')P. (2.1)

The matrix square-root technique for solving (1.1) is based on the following result
given in [9].

THEOREM 2.2. Let H be a In x In Hamiltonian matrix with no eigenvalues on
the imaginary axis. Then the first n columns, of H - sqrt(//2) span the invariant
subspace of H corresponding to its eigenvalues with negative real part, that is, the
stable invariant subspace.

Suppose that the coefficient matrices in (1.1) are such that (A, B) is stabilizable
and (C, A) detectable, where C arises from the full-rank factorization Q — CTC of
Q. It is well-known [5] that under these mild conditions we have that

(a) the Hamiltonian matrix H corresponding to (1.1) has no purely imaginary eigen-
values;
(b) a nonnegative-definite solution X exists, is unique and satisfies

ReX(A- GX) <0; (2.2)

(c) if [Zj, ZlY is a basis for the stable invariant subspace of H, then X = Z2Z\X.

In this paper we suppose these results hold, so that H2 has no zero or negative real
eigenvalues and sqrt(A/2) exists. Put W = H - sqrt(#2) and let W be partitioned as

(2.3)
"21 ^22 /

where each Wy; is an n x n matrix.
It was shown in [9] that the unique nonnegative-definite solution to (1.1) is

(2.4)

This we now derive in a much simpler and shorter way. We restate Theorem 2.2 in
the following direct form.

THEOREM 2.3. Let H as defined in (1.3) be a 2n x 2n Hamiltonian matrix corre-
sponding to (1.1) and let W = H - sqrt(//2) be partitioned as in (2.3). Then the
unique nonnegative-definite solution X to (1.2) is given by (2.4).
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PROOF. Let

where X is the unique nonnegative-definite solution to (1.1) and the symmetric matrix
Y satisfies the Lyapunov equation

(A - GX)Y+ Y(A - GX)T = -G. (2.5)

It is easy to verify from the symmetry of X and Y that 5 is a symplectic matrix.
Further, we have

From (1.2), (2.5) and the definition of G, we derive

0
{Q ) \ 0

so that

5/ / 25" ' = diag((A - GX)2, ((A - GX)T)2).

From (2.1), (2.2) and Definition 2.1, we must have that

sqrt(#2) = S'1 diag(-G4 - GX), -(A - GX)T)S.

Therefore

W = H - sqrt(#2) = 5"1 diag(2(A - GX), O)S

and

f 2(A - GX)(I - YX)
\2X{A -GX)(I - YX)

(2.6)

The matrix A — GX is nonsingular because of (2.2). Also / — YX is nonsingular
because 5 is symplectic and / — YX is a (1,1) block of 5 (see Laub [5]). Therefore
(A — GX){I — YX) is nonsingular. The desired result (2.4) follows directly from
(2.6).
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3. Utilization of other methods

The square-root technique can be sharpened by judicious combination with other
algorithms. For example, we may utilize van Loan's algorithm [8] when computing
sqrt(//2). Since H2 is skew-Hamiltonian, we can, as in [8], easily compute an
orthogonal symplectic matrix P such that

pTfi2p =

where U is upper Hessenberg and V skew-Hamiltonian.
By (2.1), we get

sqrt(//2) = Psqrt(PTH2P)PT = Psqrt(M)PT = P sqrt | ^ ^ . 1 PT.

To compute sqrt(M) we have only to compute sqrt((/) and then solve a special
Lyapunov equation

sqrt( U)Y+ r(sqrt( £/))T = V. (3.2)

Note that sqrt((/r) = (sqrt(f/))r and U is only half the size of H.
We may also use iteration to compute sqrt(M) directly, as discussed in the next

section. Either way we can save on operations and storage requirements.
We now analyze the relationship between the square-root method and the sign-

function method and exploit another advantage of the square-root approach.
Let A be a complex scalar with Re(X) ^ 0. Then the sign of k is defined by

f l ,
( -1 ,
fl, ifRe(A)>0,

sign(X) = <
( 1 if Re(A.) < 0 .

The scalar sign function can also be expressed as

This can be seen easily by taking X = pe'ie+nk) with p > 0 and |0| < n/2, where
k = 0 or 1 according as Re(X) > 0 or < 0. By squaring we have

Since sqrt(A.2) = pe'B, we obtain

Vsqrt(*2) = peHe+"k)/peie = eink = sign(X).
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To extend the scalar function definition to a general square matrix A, we use

sign(A) = A(sqrt(A2))-' = A-'(sqrt(A2)),

that is,

sqrt(A2) = A(sign(A)) = (sign(A))A. (3.3)

Note that once sign(//) is computed by the sign-function method (see Denman and
Beavers [2]), to obtain the unique nonnegative-definite solution X to (1.1) we have to
solve an overdetermined system

where

In terms of Theorem 2.3 and (3.3), solving the overdetermined system (3.4) can be
avoided. Only the first n columns of sign(H) are needed for the computation. Once

V,,'. is computed, premultiplication by H suffices to derive X.
"21

4. Iteration to compute sqrt(//2)

The Newton-Raphson algorithm for computing sqrt(//2) is based on

Yk+i = (Yk + Y^H2)/2, Y0 = I.

A faster and more stable algorithm proposed in [4] and [7] employs

Xk+l = akXk + faZ;1 (4.1a)

and

Zi+l = akZt + fax;1, (4.1b)

with Xo = H2 and Zo = I, where ak and fa are scale factors chosen for stability and
rapid convergence of the iteration. To be specific,

for*>0 h
I €k = 1 - 4akfa, p k + l -\-€k, q k + l =
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with p0 = 1/ H~2 , q0 = H2 . Either the 1 -norm or the 2-norm may be employed.
But it has been shown (see (3.3) and (3.4) in [6]) that the iteration (4.1) is equivalent

to the iteration

Yk+l =akYk + pk Y~lH2, Yo = I, (4.2a)

«o = PoqoPo' Pi = V(Po + <lo + 6-Jprt~o), (4.2b)

with p 0 , (j0 as before and

forit>l f "* = V(Pk + qk + 6^~k)' Pl^Prt&l' ( 4 2 c )
|eA_, = 1 - 4at_,$t_i, p k - \ - €k_u qk = \+ e w .

Under our assumption that H has no eigenvalues on the imaginary axis, H2 has
no zero or negative real eigenvalues and (Yk) will converge to sqrt(//2). Since Yk

commutes with H, (4.2a) can be rewritten as

Yk+l =akYk + pkH Y~lH, Yo = I, (4.3)

where ak, fik are as in (4.2b-c).
On premultiplication by J in (4.3), we derive

JY0 = J,

since JTJ — I. Let Zk = JYk and C = JH. Then we obtain

Zk+l = akZk + pk CZ;1 C, Zo = J. (4.4)

Because H is Hamiltonian, C is symmetric. There exists an orthogonal matrix U
and a diagonal matrix D such that UCUT = D. Let Pk = UZk U

T, so (4.4) becomes

Pt+i = «kPk + PkDP~xD, Po = UJUT. (4.5)

Because D is diagonal, (4.5) provides a very simple iteration. Furthermore, we
claim that Pk is skew-symmetric. In fact, since J is skew-symmetric, so is Po and so
also Pk from the recurrence (4.5). Thus the symmetric structure of the Hamiltonian
H is exploited in iteration (4.5) to save some computation and storage. Clearly (Pk)
converges to J T UT sqrt(//2) U.

With M defined by (3.1), we can compute sqrt(M) by the iteration

7i+I =akTk + fc T-]M, To = I. (4.6)

https://doi.org/10.1017/S0334270000010547 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010547


466 Linzhang Lu and C. E. M. Pearce

TABLE 1. Comparison of the Schur method and the square-root method.

[8]

Example
1

2

4 (N=5)

4 (N=10)

4 (N=20)

5

6(n,q,r = 11, 1, 1)

6 (q = 104)

6(n, q, r = 21, 1, 1)
6 (9 = 104)

CPU time (seconds)

Schur

0.01

0.01

0.09

0.72

29.05

531.63

0.04
0.05

0.15
0.15

sqrt method

0.01

0.01

0.02

0.08

0.70

2.59

0.04
0.05

0.15
0.78

max{|L|,y}

Schur
3.0 x 10"15

3.3 x 10"13

9.2 x 10-'4

9.6 x lO"14

8.5 x 10"13

3.8 x lO"15

5.5 x 10-8

2.6 x 10-2

4.6 x 10+2

5.4 x 10+9

sqrt method

2.3 x lO"13

3.8 x 10-'3

8.0 x 10-'5

2.0 x 10-'4

6.4 x 10-'4

2.1 x 10-15

1.4 x 10"4

2.1 x 10-'

1.3 x 10+6

1.1 x 10+9

Let

T
k

Tl2(k)l

It is easy to verify that

T21(k) = 0, T22(k) = T*(k)

and that T\2(k) is skew-symmetric. So iteration (4.6) can be reduced to

r , , ( * + 1) = akTn(k) + PkT\ 7i,(0) = /, (4.7)

Tn{k + 1) = ctkTl2(k) + pkT~\k)(V- T,2{k)T~T{k)UT), T12(0) = O. (4.8)

In fact (4.7) computes sqrt(f/) and (4.8) Y in (3.2).

5. Numerical examples

We now test our square-root method against the Schur method of Laub [5], using
a set of benchmark paradigm examples from [5]. MatLab programs were written
for the two algorithms. The code hqr5.m (by Richard Y. Chiang) to produce an
ordered Complex Schur Form was downloaded from http://www.mathworks.com.
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TABLE 2. Estimated condition number of Un or Wn-

467

Example
6(n,q,r = 11, 1, 1)

6 (q = 104)

6 (n,q,r = 21, 1,1)

6(q= 104)

cond(C/n)(Schur)

2.9 x 10+4

5.7 x 10+6

2.4 x 10+9

3.5 x 10+"

cond( Wn) (sqrt method)

8.0 x 10+8

5.5 x 10+9

6.6 x 10+15

3.6 x 10+16

The algorithm used to compute sqrt(//2) is described in (4.2). The computations are
carried out on an Ultra-1 Sun workstation.

We compare CPU times for the two methods using Examples 1, 2 and 4-6 in [5].
(Example 3 is a discrete-time problem.) Chiang's code did not lend itself to a storage
comparison. The results are listed in Table 1, in which

L = ATX* + X*A - X*(BR~lBT)X* + Q,

where X* is the solution obtained by applying the algorithms. Clearly max{|L|y} is a
measure of the accuracy of the solution.

Observations

(1) Both methods give a satisfactorily accurate solution to all the problems other
than Example 6. The square-root method was comparable or significantly faster than
the Schur method except in the rather small problem of Example 1.
(2) Both methods failed to solve Example 6 due to the ill-conditioned nature of Ux x

or Wn.
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