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TWISTED ALEXANDER POLYNOMIAL FOR THE
LAWRENCE-KRAMMER REPRESENTATION

MASAAKI SUZUKI

In this paper, we prove that the twisted Alexander polynomial for the Lawrence-
Krammer representation of the braid group B4 is trivial. This gives an answer to the
problem of whether the twisted Alexander polynomial for given faithful representa-
tions is always non-trivial.

1. INTRODUCTION

The twisted Alexander polynomial for finitely presentable groups was introduced
by Wada in [5]. As a notable application, it was shown that the twisted Alexander
polynomial can tell Kinoshita-Terasaka knot from Conway's 11-crossing knot.

In [4], the twisted Alexander polynomial for Jones representations of the braid group
Bn (n ^ 3) is studied. One of the main results of [4] is that the twisted Alexander
polynomial for the Burau representation is not trivial for n = 3 and trivial for n ^ 4. We
know that the Burau representation is faithful for n = 3, not faithful for n ^ 5 and the
faithfulness is still open for the case n = 4. Then it is mentioned in [4] that it would be
interesting to study a relation between the faithfulness of the Burau representation and
the twisted Alexander polynomial. In other words,

PROBLEM 1.1. If a given representation is faithful, is the twisted Alexander polynomial
non-trivial?

In this paper, we present the answer to this question.

Krammer constructed in [2] a representation of the braid group, which is now called
the Lawrence-Krammer representation, and showed that it is faithful for n = 4. More-
over, Bigelow [1] and Krammer [3] proved that the Lawrence-Krammer representation
is faithful for all n. Then we may show a relation between the faithfulness of a represen-
tation and the twisted Alexander polynomial as a consequence of an explicit calculation
of the twisted Alexander polynomial for the Lawrence-Krammer representation.

In this paper, we show the following. (See Section 3 for the precise statement.)
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THEOREM 1 . 2 . The twisted Alexander polynomial for the Lawrence-Krammer
representation of the braid group B4 is trivial.

This gives the negative answer to Problem 1.1.

In Section 2, we briefly recall the definition of the Lawrence-Krammer representation
of the braid group B\. In Section 3, the twisted Alexander polynomial of B4 is computed
and we prove Theorem 1.2.

2. LAWRENCE-KRAMMER REPRESENTATION OF B4

Let Bn be the braid group of n strings, Bn -> Z ~ (x) the Abelianisation and LK
the Lawrence-Krammer representation

GL(n(n - q±l

In this paper, we treat the case n = 4, and we discuss the definition of the braid group
and the Lawrence-Krammer representation for only this case. The braid group B4 admits
the presentation:

The Lawrence-Krammer representation of B4 is defined as follows (see [1, 2, 3] for
general cases):
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3. T W I S T E D A L E X A N D E R POLYNOMIAL

In this section, we compute the twisted Alexander polynomial. All notations are the
same as ones used in [4], unless we state otherwise.

First, we obtain a denominator in the twisted Alexander polynomial by an explicit
calculation.

LEMMA 3 . 1 .

det(/6 - xLK{a3)) = (1 - xf (1 + qx)2 (1 - q2tx).

Next, we calculate a numerator in the twisted Alexander polynomial. In our case, we
have the 18 x 12-matrix M3 which is obtained from the Alexander matrix removing the
third column. The numerator which we need is the greatest common divisor of det M{
for all the choices of the indices / . Here / = (ii, i2,..., iu) and M3 denotes the square
matrix consisting of the z*-th rows of the matrix M3, where 1 ^ i\ < • • • < il2 ^ 18.

LEMMA 3 . 2 . For any index I, det M/ Las a common divisor (1 — x)3(l + qx)2

(1 - qHx).

PROOF: For a given 18 x 12-matrix A, we denote by A(i;ai,... ,ai2) the matrix
obtained from A adding a,j times the j-th column to the i-th column. We note that

det A(i; 0 1 , . . . , au)1 = (1 + Cj) det A1.

1. First, we consider

M^ = M 3 ( 4 ; - l + g
2 t , p , p , 0,1,0,0,0,0,0,0,0),

where p = — 1 — qt + q2t. Then we can take a term 1 — x as a common divisor from the
fourth column. Next, we observe

M(2) = M(1)(12; 0,0,0,0,0,0, q2,pq, (1 - q)2qt, - 1 + qH,p, 0)

and
M<3> - M(2>(8; - 1 + q2t, ( - 1 + q)qt, ( -1 + q)qt, 0,0,0, -q, 0,0,0,0,0).

Therefore the eighth and the twelfth columns have common divisors 1 — x and det M3

has a divisor (1 — x)3 for any index / .

2. Similarly, it can be considered

M<4> = M3(12; 0,0,0, 0,0,0, q2,pq2, - 1 + qH- qH + pq, -<?2(1 + qt), -pq, 0)

and

Then the fifth and the twelfth columns have common divisors 1 + qx and det M{ has a
divisor (1 + qx)2 for any index / .
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3. Finally, we set

q2t(-l + q)(l - qH + qH2 +pq), qH(l - q)(l - q2t),

qt(-l + q)(l - qH + qH2+pq), (1 + qt)(l - qH)2,

(1 - q)q% ( - 1 + q)qH2,qH(-l + q)(l - q - qt + qH2),

0, q(l + qt- qH){\ - qH2), (1 - q - qH)(l - qH2)).

The twelfth column of M^6' has a common divisor 1 — q2tx. We need to note that the
determinant of this matrix M^1 is different from that of M%. More precisely,

det Af<6>7 = (1 + (1 - q - qH){\ - qH2)) det M3'.

However, the greatest common divisor of two polynomials 1 + (1 — q — q2t){\ — q3t2) and
1 — q2tx is a unit, that is, they are relatively prime. This deduces that det Mj has a
divisor 1 — q2tx for any index / . Then it completes the proof. D

LEMMA 3 . 3 . Tiere exist indices 71( /2 such that

gcd(det Ml1, det M3
/2) = (1 - z)3(l + qx)2(l - qHx).

P R O O F : We select

h = (1,2,3,4,5,6,7,8,9,10,11,12),

h = (2,3,4,5,6,7,9,10,11,12,15,17)

and calculate det M^1, det M32 explicitly, then we get the conclusion. D

The above two lemmas deduce that detM/ has a common divisor (1 — x)3

(1 + qx)2(l — q2tx) and does not have any other common divisor, then the numerator is

settled. It follows by the definition that

THEOREM 3 . 4 . The twisted Alexander polynomial ^B4ILK(^) for the Lawrence-
Krammer representation with the Abelianisation B4 —> Z ~ (x) is given by

A B 4 ,LA-(X) = 1.

REMARK 3 . 5 . The twisted Alexander polynomial for the Lawrence-Krammer

representation is not always trivial for n. In fact, we get AB3ILK(X) = 1 + qHx3 by an

easy calculation.
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