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GREEN’S FUNCTIONS FOR POWERS
OF THE INVARIANT LAPLACIAN

MIROSLAV ENGLIS AND JAAK PEETRE

ABsTRACT. The aim of the present paper is the computation of Green's functions
for the powers A™ of the invariant Laplace operator on rank-one Hermitian symmetric
spaces. Starting with the noncompact case, the unit ball in CY, we obtain a complete
result for m = 1,2 in al dimensions. For m > 3 the formulas grow quite complicated
so werestrict ourselves to the case of the unit disc (d = 1) wherewe develop amethod,
possibly applicable also in other situations, for reducing the number of integrations by
half, and useit to give adescription of the boundary behaviour of these Green functions
and to obtain their (multi-valued) analytic continuation to the entire complex plane.
Next we discussthetype of special functionsthat turn up (hyperlogarithms of Kummer).
Finally we treat also the compact case of the complex projective space PY (for d = 1,
the Riemann sphere) and, as an application of our results, use eigenfunction expansions
to obtain some new identities involving sums of Legendre (d = 1) or Jacobi (d > 1)
polynomials and the polylogarithm function. The case of Green’ sfunctions of powers of
weighted (no longer invariant, but only covariant) Laplaciansis also briefly discussed.

0. Introduction. LetBY = {z € €% : |7 < 1} be the unit bal in the complex
d-space €Y. In [HK] Hayman and K orenblum obtained aformula for the Green function
of the polyharmonic operator A™ on B¢ with the Dirichlet boundary data (u = du /on =
oo =0™1u/on™ 1t = Q):

D" x2(+d—1)' (@ [ZH™ Q- jw)™

OD Ot = =D & G+l i

Their proof rests, more or less, on skillful explicit computations. Subsequently the pre-
sent authors gave another proof [EP] in the case of dimensiond = 1, based on Moebius-
invariance techniques (Bojarski’s theorem, which in this simple case essentially reduces
to Bol’s lemma). In short, their main idea was to use invariance to reduce to the case
w = 0, whichisessentially a problem in ordinary differential equations and, thus, much
easier to handle.

The latter approach is particularly suitable also for the invariant Green's functions
Gmg Of the invariant polyharmonic operator A™ on the unit ball BY. The operator A is
given by the formula (cf. [Ru], Theorem 4.1.3)
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Inthiscase, certain caremust be exercised with the boundary conditions, sincethe bound-
ary of B isacharacteristic for the operator A; for this reason, we shall mean by Green’s
function, informally, the function satisfying A™G = § and having the least possible
growth rate at the boundary. (It should be possible to show that this coincides with the
Green function of the operator obtained by defining A by (0.2) on C° functions and
taking the Friedrichs extension.) For d = 1 (the unit disc) and m = 1, 2, 3, the following
explicit formulas were obtained in [EP]:

1
G11 = Gy1 = —logt,
viv

G 1 logtlog(l —t) — 2Li (t)+7T—2
T 0% 3

ﬁlﬂ{logt' (% log(1— 1) +log(1 *“2“))

+2(Liz(®) log(L — t) + Ma(t) + Liz(t) — Lis(t))

7T2
- 2(¢9)+ (@) - T loatt 1)

0.3 Gar =

wheret = |22, ((s) = Lis(1) isthe Riemann’s zetafunction, Lis is the polylogarithm

00 tk
0.4 Lis(t) = >~ —,
0=
and M3 is Kummer’s function
~tlog?(1—x)
(0.5) Ma(t) = /O ——— dx
which can also be expressed as

(0.6) Ma(t) = 2¢(3) + logtlog?(1 —t) + 2Lix(1 — t) log(1 — t) — 2Lis(1 — t).

In the present paper we continue this program by calculating the invariant Green's
functions G g for m = 2 and arbitrary d (Section 1) and for the unit disc (d = 1) and
m = 4 (Section 2). For d = 1 we further develop a method for generating a rather
explicit formula for G, = Gy for general m, and use it to show that G (z,w) =
O((1 —t)log™ (1 —t)) ast = |Z%| — 1, and to obtain an analytic continuation

T—wz
for Gp; thistoo is donein Section 2. It also turns out that, in general, the functions G,

are given by formulasinvolving Kummer’s hyperlogarithms ([We] in [Le2], Chapter 8);
this is shown in Section 3, which further contains a brief overview of the transcenden-
tal functions which enter into the formulas for Gr,, m < 4. In Section 4, we carry out
a similar computation (for m = 1, 2) in the compact case of the Riemann sphere, and,
as an application of our formulae, use eigenfunction expansionsto prove two identities
involving sums of Legendre polynomials P,(x), for m = 1:

o 2n+1

0.7) n;lmPn(x) =log2—1—log(l—Xx)
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andform= 2
> 2n+1 1-—x 2 1 , 2 . 1-x
(0.8) Zian(x)_logm-logm—élog m+LI2(_1+x)+1'

n=1 (n(n+1))

In fact, formula (0.7) is nothing but the special casey = 1 of an analogous “bilin-
ear formula” (with the product P,(X)P,(Y) in place of just P,(x)) which can be found,
e.g., in [BE], Section 10.10, formula (53). On the contrary, up to our knowledge (0.8)
is new. In principle, similar formulas for higher hyperlogarithms which appear in the
expressions for the Green's functions G, can be obtained along these lines as well.
We observe aso that (0.7) and (0.8) can be interpreted as giving the value of a certain
Minakshisundaram-Pleijel type zeta function. In conclusion, we discuss (Remark 4.5)
also the case of weighted (no longer invariant, but only covariant) LaplaciansA, . onthe
sphere, and indicate still other generalizations of (0.7) and (0.8) that can be obtained in
this way.

1. Invariant Green functions on the ball. Let us put ourselvesinto the scenario
describedin the Introduction, i.e., let BY bethe unit ball in C and consider the differential
operator A given by (0.2). It iswell known that a great virtue of the latter operator isits
invariance under holomorphic mappings: for any holomorphic automorphism ¢ of B
one has

A(fo¢) = (Af)o¢.

A proof of this fact can be found, e.g., in Chapter IV of Rudin’s book [Ru]. Our main
goal in this section will be the identification of the Green functions (in the sense made
clear in the Introduction) Gp,q for the operators A™ wherem = 1 or 2. In view of the
invariance of A, these Green functions must satisfy

(1.2) Gmal(z W) = Gma(6(2), 6(W) Vo € Aut(BY.

Sincefor any point a € BY there exists an automorphism ¢, interchanging a and 0 ([Ru],
Proposition 2.2.2), it therefore sufficesto find the Green function G, 4(z, 0) with the pole
at theorigin. Further, in view of rotational symmetry, it isclear that thelast function must
actually depend only on the modulus |z| of z. Thus we may write

(1- 2) Gm,d(zv O) = /\m,d(t)

for some function A, g4, where we have introduced the variable |t = |z]?|. By (1.1) and
formula 2.2.2(iv) in [Ru], we will then have

Gm,d = Am,d(|¢W(Z)|2)

(L.3) N R B T
S (T GwE )
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In order to find Ang, let us first determine what is the action of A on radial functions.
Using (0.2), one has

Af(t) =4(1—t) Z (6ij — z7) 0°f /02,07

Ij—

= 4(1—1) z ©ij — 23)@; f' +Z7 ")

Ijl

— 4(1—t) Z (5|Jf/ |2i|2fl+ |Zi|2f"— |ZiZ|2f”)
i,j=1

=41 —-9[d—t)f +(t —t))f"]
_ 4(1 _ t)d+1 { td f’} ’

td-1 (1 _ t)dfl

wherethe prime’ standsfor the differentiation with respect to thet variable. Thissuggests
putting into play the ordinary differential operator

(1_ t)d+1 { td f’} ,

(1.4) L = 1 | T—p=

which representsthe radial part of %A. The function An 4 is asolution to the equation
(1.5) LI'Amg = 00n (0, 1).

Moreover, at the origin it must have the same singularity as the fundamental solution
of the ordinary polyharmonic operator A™. Our approach to finding G, g will be very
simple-minded: we construct a basis of the solutions of equation (1.5) and then seek a
linear combination of the basis elements which has the required singularity at the origin
and the required boundary behavior.

Let usstart with m = 1. The general solution to the equation Lyu = v is given by the

integral
(1_ t)d 1 td 1
(1.6) u_/ //(1 g Vet
Taking in particular v = 0 we seethat a basis of solutions for the equation Lqu = Qs
given by
1—t)4?
(1.7) fo=1 g :/%dt

Theintegral can be evaluated using the binomial theorem:

dzlu( 1)“ ~ (“1)1ogt.
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At the boundary pointt = 1 we have

dld—1(—1)7
L8) go() = 3 D
=1 J ]
The function A, 4 must therefore be of the form Ay 4 = V4(go — Cq), for some constant
Y4 Yet to be determined. To that end, observe that the behavior of g, at the originis
logt ifd=1,
(1.9) 90’“{— ifd> 1.

On the other hand, the fundamental solution for the Laplace operator A iswell known to
be

=Cy.

1
(d—1)td-1

+ logt ford=1,
—@2 -4 ford> 1.
Thus we conclude that

Aa(t) = igo (trivial!),

(1.10) ( d )

and A q(t) = (g0 —Cy) ford>1

with the constant C4 given by (1.8). Since C; = 0, the second formula actually works
for all valuesof d.

Now we take m = 2. An obvious choice for the basis elementsf;, g; which together
with fo and go would span the vector space of the solutionsto Liu = Ois

1_td—l td_l
f1=‘/( d) /‘/(1_t)d+lf0dt>dt’

_/(1_t)d 1 // (1td ;d+1 Qod > dt.

Integration gives
C1lp@-nt 1 1
/ Ao T g9
_1)d
o= ( dl) (2Lia(t) + logtlog(1 — t))

d-1d—1(—1)% [log(1l—1) t

+ - +2log—— —2 .
=1 J Jd t g Z

The sought function A, 4 will be alinear combination
Noq = Afp + Bgo + Cfy + Dy,

with constants A, B, C, D yet to be determined from the boundary conditionsatt = 0
andt = 1. Letuslook firstat t = 0. One has

el o~ é, do ~ isgivenby (L 9),
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and it is not difficult to seethat

tlogt ford=1
01 —logt ford=2
W ford > 2.
On the other hand, the fundamental solution for A? is
Klﬂtlogt ford=1
16”2 -(—logt) ford=2
L (8-3 y2—d ford > 2.

By comparison we thus infer that

(d— 1)
B=0 and D= .
16nd
Let us now investigate the situation at t = 1. This time one has

1 1
fo—l, fl_alogﬁ’
Qo isirrelevant, and
01 = Ca- 3 log = + Ay +o(1),

where Cq is the constant from (1.8) and A4 is given by

dld 1( l)dj{jl

Ag = .
J:l J Jd k=1

Therefore we conclude that

(d—21)!
1674

for al d > 1. Supplying all the constants et cetera, we can summarize our resultsin this

section as the following theorem.

Nog = (91 — Cyfr — Agfo)

THEOREM 1.1. The Green functions G1 4 and G, 4 for the operators A and A2 are
given by the formulas (1.3) where
d 1(—1)%
j

(d—1)!
4rd

A1d(t) = G14(z 0) = {( 1)% tlogt + Z (- )} ,

_ _1)d 2
Nog(t) = Gou(z,0) = (d167j)! {( dl) (2 Lio(t) +logtlog(l —t) — §>

+,—_11d1 1 Jléd_ ((1—t J)|og—+2|ogt+221_kt_ ﬂ
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COROLLARY 1.2.  For m= 1and2, Gmg(z 0) = O((1—1t)log™ *(1—1)) as|z> =t
approaches 1.

COROLLARY 1.3.  For m = 1 and 2, the functions A4 extend to multi-valued an-
alytic functionson C \ {0, 1} with logarithmic singularities at the exceptional points 0
and 1.

Already from thesetwo casesm = 1, 2 one getsafeeling what might be happeningfor
general m. By repeated applications of theintegral operator (1.6) we create two chains of
functionsfo, f1, f1, ... and go, g1, G2, . . . which satisfy L% fy = fo and L5 g« = go; hence,
they are linearly independent and

f01f11"'1fW11 gOagly"'ngl

is a basis of solutions for LJ'u = 0. The function A g is a certain linear combination
of these basis elements, and one expects to recover the coefficients at the f; from the
behavior near the point t = 0 and the coefficients at the g; from the behavior at the
boundary (t = 1). Due to the increasing complexity of the calculations involved, there
seemsto be little hope of pursuing this program much further than m = 2 in the general
case; however, we shall seein the next section that, to a certain extent, this can be done
for d = 1, and it turns out that all the observations above come out to be true for al m,
and, moreover, so do even Corollaries 1.2 and 1.3.

2. Thecase of theunit disc. With our simple-minded method from the preceding
section, solving the equation Lqu = v involves two integrations, so the construction of
abasis of solutionsto L' = 0 requires 4mintegrations. It turns out that there is a more
refined approach by which the number of integrations can be reduced by half, and more-
over the functions being integrated will be of simpler form. This device, unfortunately,
seems to work only in the case of the unit disc, d = 1, and so we restrict ourselves to
this situation throughout the present section. The radial part of the invariant Laplacian
A takesthen the simple form

2.1) Af(t) = 41— 0t (t= [z

We denote this ordinary differential operator by 4L (omitting the subscript d = 1) and
(likewise) abbreviate the Green functions G, 1 to G,

PrROPOSITION 2.1.  Assume that two sequences of functions Ng, Nz, No, ... and No,
Nz, N, ... are given which satisfy, respectively,

No=1
1
(2.2) Noe = TN

Nowo = -0 Nak+1
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and
No=1

(2.3) R, = —1 R

- 1 -

Nop = ﬁN2k+l
Definealso
(2.4) Ki = Nieq — Niea.
Then
(2.5) LNJ' =N-1+N (withN_; = N_, = 0),

LN = N_1 +N_,  (withN_; =RN_, = 0),

(2.6) LIN; = LIN; = No(= 1),
(2.7) LI, = LR = o,
and
(2. 8) LK]' = Kj_l + Kj_z (K_l =K., = 0),
(2.9) LIK; = Ko,
(2.10) Li*K; = 0.

Moreover, for each n, the 2n functions
(2.11) No,N1,...,Nn—1, Ko, Kq,...,Kn1,

are a complete system of fundamental solutions of the equation L"f = 0.

ProoOF. Onehas

[ 1 ! 1 t
= — 2 P — — p— 2 + /
LNyer = (1 — 1) i 1_tN2k} (1—1) { T 1_tN2k}

1
= N + (1 —t) - ————=Na—1 = No + Na_1,

1-1
[ 1 ! 1 1
LNyso = (1 —t)?[t- ———N }: 1—t2[ Nowsq + N, }
2k+2 ( ) | t(l—t) 2k+1 ( ) (1—t)2 2k+1 1—t 2k+1
1
= Nars + (1= 1)+ 77N = Nawa + Nax,
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and (2.5) follows; the proof for N,- is completely similar. Iterating (2.5) gives

K k /k> o
(2.12) L N = Z i N ki (Nj =0ifj <0)
i=0

\

and similarly for NJ-. Takingk = j andk = j + 1 gives(2.6) and (2.7). The formulas (2.8)
and (2.10) areimmediate consequencesof (2.5) and (2.7), respectively, and the definition
of K;. Finally, by (2.12)

LINj+1 = Ny +jNo

and similarly for LJ Nj+1. Subtracting, we get
LIK; = (Ny — Np) +j(No — No) = Ny — Ny = Ko,

which proves (2.9).

The functions (2.11) belong to the kernel of L", by (2.7) and (2.10); in order to prove
that they are a complete system of fundamental solutions, it suffices to show that they
are linearly independent. So suppose that for some constants a, and by

an—1Nn—1 + bn_1Kn_1 + a@n—2Nn—2 + bn_oKn_2 + - - - + @Np + bgKp = 0.
Applying L™ to both sides gives
(2.13) an-1Ng + bn_1Ko =0
by (2.6) and (2.9). On the other hand, from (2.2) and (2.3) we have

1 - 1
N; = Iogm +7v1, Ni= Iogt+logﬁ +72,

Ko = logt+7

and (2.13) reads
an-1+bn1(logt+7) =0

implying that a,—1 = b,—1 = 0. Proceeding by induction showsthat a1 = b1 =

a2 = bpp = -+ = & = by = 0, which proves the linear independence of the
functions (2.11) and finishes the proof. ]
A general solution to the system (2.2) is given recursively by
Na (1)
N + = ’
e (1) /32k+1 1-—t
Naier1(t)
N - t e ,
pr®= [ o0y

for some points & < [0, 1] for which the integrals exist, and similarly for NJ-. Here we
have madethe convention (to be observed throughout therest of this paper) of introducing
the shorthand |, to denote the primitive which vanishesat a; that is,

) isan abbreviation for /tf(x)dx.
a a
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In practice, with the view on constructing the invariant Green’sfunctions G, it is conve-
nient to choosethe integral limits & so asto have control of the behavior of the functions
N; and N at the boundary. We achievethis by takinga; = 0% > 0and&; = 1/2,% = 0
Vi > 1

Thus, we define

No = 1,
(2.18)
o Nx _f Noe
Nor1 = /OE’ Nos2 = /o -0 fork >0,
and
- ~ 1
No = 1, lelogt+logm,
@19 Nogs1 = / Nax fork>1, Nyup= / Naca fork >0
21 = T 21 Nawe= | 7= > 0.

It is clear that these functions satisfy the conditions (2.2) and (2.3), granted we show
that they are well-defined, i.e., that the integrals above exist. This is contained in the
following proposition.

ProposITION2.2.  ThefunctionsN; and Nj in(2.18) and (2.19) are correctly defined

and satisfy
(2.20) Nirr = N logt + tgis,
(2.21) Nak = t“ha,  Naker = t" Mg

for any k > 0, where g; and h; are functions holomor phic on the unit disc.

For brevity, we shall employ the notation Og for a general function (not necessarily
the same one at each occurrence) holomorphic on the unit disc D. The formula (2.20) can
then be written as

N1 = Ny logt +tOp,

and similarly for (2.21).
PROOF. By definition, (2.20) holds for N;. Assume that it holds for Ny for some

k. Then by (2.19) _
~ N Ny logt
Ripeep = /0 kil /O ( 2 log +t00) _

1—t 1t
Observe that for any function h holomorphic on asimply connected domain containing
the origin
_ Joh
(2.22) /0h~logt_(f0h)logt— ==
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by integration by parts. Consequently,

Nok
1—t

which is (2.20) for N». Further,

< N2 Nok+1 logt )
Noxs+3 = = == 2 +0
243 = hhia—1 /o( t(1—1 0

oo = logt - /0 — tOg + t20p = logt - Ny +tOp,

and by (2.22) again

Nok+1

— + =logt- Ny +
b=y tOp +tOp = logt - Nas2 + tOg,

N3 = logt -

whichiis (2.20) for Ny3. By induction, formula (2.20) follows for each k > 0.
Similarly, (2.21) trivially holdsfor Np. Assumethat it holds for Ny for somek. Then

— Nak _ t“Og — [+kO). — tk+1
Nor1 = Ol—t_.ol—t_./otoo_t 0o
and N Nower / t<*10g _ / #On = £410
227 hoy@a—1  Jora—t S 0T VO
which is (2.21) for Nyw1 and Nap, respectively. By induction, (2.21) holds for all
k> 0. [

REMARK. Itiseasy to seethat
ha(0) = 1/K1%,  hpus(0) = 1/Ki(k + 1),
so the formulas (2.21) are, in fact, the best possible.
COROLLARY 2.3. For eachk > 0,

Ko = Ny logt + Oy = t“logt - Og + Op,

(2.23)
Kae1 = Nagq logt + O = th+l logt - Op + Og.

PrROPOSITION 2.4.  For eachn > 0, the functions Ko, Ky, ...,Kn—1 arelinearly in-
dependent modulo t" logt - Og + Og. That is, for any complex numbersay, ..., an_1,

n—-1

> aKy =t"logt - Og + Og
k=0

isonly possiblewhen all a, = 0.

PROCOF. Aiming at a contradiction, assume that

n—1
S Ky =t"logt-f +0g, f e Oy,
k=0

https://doi.org/10.4153/CJM-1998-004-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-004-8

GREEN’'S FUNCTIONS FOR POWERS OF THE INVARIANT LAPLACIAN 51

wherem > nand f(0) # 0. By (2.21), we then also have

n-1
> aNirr = t"logt - f + Op.
k=0

Apply to both sides the operator L". By (2.6) and (2.7), the right-hand side reduces to
an—1No = a,—11. On the left-hand side, we can use the formulas

L(Flogt) = logt - L(F) + Og

and _ _ _
L({t'F) = j?FO)t'~* +t'Og
valid for any F € Op. Thuswe arrive at
an_11=t""F-logt+ Qg
where F € Op and F # 0since F(0) = % f(0). Thisisimpossible. ]

COROLLARY 2.5.  For eachn > 0, thereisa uniquelinear combination 23*1 aKy
of the functions Ko, .. ., K,—1 such that

n—1
> aKy = t"logt +t"logt - Og + O,
k=0

i.e., which has precisely the singularity ~ t"~1 logt at the origin.

Our next objectiveisto get control of the behavior of the functions N, ..., Nn—; and
Ko, ..., Kn_1 a theboundary pointt = 1.

PropPosITION 2.6.  For eachk > 0, one has

2.24) Nk = Py (Iog ﬁ) +0((1 - tlog* ﬁ)
(2.25) R = By (Iog %) +0((1 - log? %)
(2.26) Ky = Re 1 (log %_t) +o((1—t)|ogkli_t)

ast /1, whereP, Py and R4 are polynomials of degreesk, k and k — 1, respectively,
which satisfy

Pl1 = P |5L+1 =P, Rei1=Pu1—Pa,
1
Pod=1 Pi@d=2z P2= 522+<(2),

Pl =1 Pi@=2z Ps2= :—lez — ().
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In particular, the leading terms of Py(2), Pu(@ and Rc_1(2) are Z/k!, Z/k! and
—2((2)Z/(k — 1)!, respectively.

ProOOF. Assumefirst that the assertion (2.24) holdsfor Ny for somek > 1:

Noy = Py (Iog i) +(1-1)f@), f=0 (Iogz"*1 %) .

Then

N
Nokr1 = /0 1 2 — (JoPx) ('09 —) +‘/0f-

Itiswell known (and easily verified by partial integration) that for eachj > Otheintegral
/ Iog' — dt
is finite, and moreover

1.1 1-t 1
i~ gt = i ~(1— = -
/tlog 1—tdt ’/o log! sds| ~ (1 —t)log 11 ast— 1.

Consequently, ast — 1,
1 _
No1 = (JoP2x) ('09 E) +Cox — O((1 — ) log™* (1 — 1))
where Cy = fc} f (t) dt, which gives the required assertion for N1, with

Pa1 = Cx + /0 Pa.

Now, similarly, assumethat (2.24) holds for Nk, for somek. Then

Nok+1 Nows1 Nok+1
2.27 Nopsor = - + _
(2.27) -~ /Ot(l_t) b T
The second integral is susceptible to the same treatment as in the case of Ny, above,
yielding

Nok+1 1 " k-1

e (JoP2k+1) ('09 E) + Chr — O((1 — B log™ (1 — 1))

for some constant C,,,; and thefirst integral in (2.27)—for which there are no problems
with the existenceatt = 0, owing to Proposition 2.2—is, likewise, susceptibleto the same
treatment asthe integral f, f above, yielding

N + +
f = = Coia — O(@—9log™ (1 - ).

Therefore

N2 = Pas2 (Iog i) +0 ((l t) log?*? it) ast—1,
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with
Pauz = Cour + Copur + /0 Po1.

Summing up, we see that if (2.24) holds for some Ny, then it holds also for Ny, and,

MOreover,
P/k+]_:Pk'
On the other hand,
1 1
2.28 No=1 Ni= /- =log——,
( ) o ) 091_,[
and
1 1 1 1, ., 1 .
(2.29) N, /O(t t—l) log 7= = 510g” 7= +Liz()
where Li isthe familiar dilogarithm:
. 1 1 oo th
L|2(t)_/OIIog—1_t _ngln—.

Fort = 1, Liz(1) = ¢(2) = 7?/6 (the Riemann ¢-function). Using the formula (due to
Euler; cf. [Lel], p. 5)

(2.30) Lio(t) + Lio(1 —t) = logtlog 1i—t +((2),

we see that

1 1
N, = E|og21_t+<(2)+o((1—t)|ogl—_t).

Thus, by induction, it follows that (2.24) holdstrue for all k > 0, and for k > 2 we even
have a more detailed formula

1 2 o
(2.31) Pk(z)—ﬁzk+(k_2)!zk +ooe,
% 1 1 (2 1 1
_ = k__ = k=2 = k=3 _—~
Nk(t) = ” log 1 + k-2 log 11 +O(Iog 1—t) .
The proof for Ny runs along completely similar lines. This time, for k = 0,1,2 we
obtain
(2.32) No=1, N;=logt+log %
. . 1, , 1
(2.33) Np = Lio(1 —t) + = log” —— — ((2),
2 1-t
so (by induction as above) the required assertion (2.25) holds with
2o 1, 2 4o
(2.34) P2 = k!zk - 2)!2" T

https://doi.org/10.4153/CJM-1998-004-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-004-8

54 MIROSLAV ENGLISAND JAAK PEETRE

Finally, asKy = Ni+1 — Ny, the assertions concerning Ky and R,_; follow from those
for Ny, Ny, P and Py by subtraction. .

With the information at hand it is now easy to obtain an expression for the invariant
Green function G, with the pole at the origin in terms of the functions N; and K. Since
the highest order part of the operator A" is (1—t)2"A", the behavior of the Green function
Gn(-, 0) at the origin must be the same as that of the fundamental solution of the operator
A"; the latter is given by

cnlZ*2log |z = cit" logt,

wherec, = 1/[4"(n— 1)!?7]. By Corollary 2.5, there exists a unique linear combination
> 0-1aK; whichis ~ t"logt at the origin. By Proposition 2.6,

n—-1

K. — 1 . n—1 1
j;) aK; = Qn—2 (Iog T3 t) +0 ((1 t)log 1% t)
ast — 1, where Q,_, isapolynomial of degreen— 2 defined by Qn—2(2) = >§ *aR_1,
with Ri_; the polynomials from (2.26). Again by Proposition 2.6, there exist (unique)
constants by such that the linear combination "5 by Ny hasthe same boundary behavior
ast — 1 (infact, b,_; = 0, i.e., Nn_1 will be absent!). Since the Ny are holomorphic at
the origin (Proposition 2.2), the function

n—1 n—1

2 aKi— > BN

j=0 k=0
will still have the correct type of singularity at the origin, will vanish at the boundary
t = 1, and will be annihilated by the operator L". Thus we conclude that

n—1 n—1
(2.35) cn[g aKj — kZ biNk | = Ana(®)
j= =0

must be the sought Green function for A" with pole at the origin.
COROLLARY 2.7.  Gp(z,0) = O((1 —t)log™ (1 — 1)) ast = |7 — 1.

As an illustration of this machinery, we compute the Green functions G, for m up
to 4. Let us start by identifying the asymptotics at the origin (Proposition 2.2). One has

N; =lo ! —t+t2+t3+
e A
Consequently,
Ny 3, 1, 25,
= =t+ -1+ —1+ —t"+...:
Na /ot(l—t) LT UL ’
N, 1, 7., 8, 835
2. N3= [ —2 = 224+ —t3+ —t*+ —to+...:
(2.36) s /ol—t 2 U T rad ’

= Ns =—t2+—t3+ﬁt4+-u.
Jot(l—t) 4 36 576

Ny
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The asymptoticsat t = 1-that is, the polynomials P, and Py from Proposition 2.6-are,
unfortunately, more difficult to obtain, since to that end it seems to be unavoidable to

computethe functions Ny and Ny quite explicitly and then work things out. Fork = 0,1, 2
we already know from (2.28)—(2.34) that

Po=Po=1 P =P =2 PZ:%ZZ+§(2), ﬁ>2=:—2Lz2—<(2).

Taking next k = 3 we have from (2.29)

(2.37) Ng,:/i (%Iogz +Lix(t) log %—Mg(t)

. 1 4
e +L|2(t)) = élog

1-t 1-t

where M3(t) is the Kummer function

log?(1 —t)
—

It can be shown that M3(1) = 2¢(3) (see the next section). Thus

(2.39) Ma(t) = /0

(2.39) Ps:(2 = %23 +((2)z— 2((3).

Asfor N3, we have from (2.33)

R = [ (% + %) (% log? ﬁ Lip(1—1)— g(z))
(2.40) - % log® ﬁ CLis(1—1)+ %Mg(t) +Lip(1— t)logt
+ Ms(1— )~ (2)log = — () logt — (3
and
(2.41) Ps(2) = %23 -z
Here Lia(t) is the trilogarithm

Co o Lip) &t
Lia(t) = /0 t k;@
and we have used the fact that Li3(1) = ¢(3) and M3(1) = 2((3).
Finally, for k = 4 we have by Proposition 2.6

2

1
2.42 Py= 2+
(2.42) 4= o >

Z—2@Q)z+A Py= 2i4z4— aTz)i+B,

for some constants A and B whose determination is deferred to the next section. Sub-
tracting, we also get
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R1=0 Ro=-22), Ri=-22z+2(3),

(2.43) Ry = —((2Z +2(3)z+ (B —A).

L et us now proceed to the respective casesm = 1to 4.

THE cASE m = 1. Thisis of course trivial, but let us make the computation for
completeness. We have
Ko = N; — N; = logt

soag = 1and
pKo=0(1—-1t) ast— 1L
Thus
1
(2 44) G]_(,O) =cKog= — |Ogt,
4
asit should be.

THECASEm= 2. Now in addition to Ko we have
Ky = No — Ny = Lia(1 —t) — Lia(t) — ¢(2).
By (2.28) and Corollary 2.3,
Ki = Nplogt+ Qg ~ tlogt ast— 0,
soay = 0and gy = 1, and by (2.43)
1 1
> aK; =Ky = —2((2) +O((1—t)log ﬁ) ast— 1.
5 _
Thus

G, 0) = o[ + 2(ANo] = 1 [Liall — ) — Lio) + ()]

Using formula (2.30) we can rewrite this as

(2.45) Gy(-,0) = %ﬂ

logtlog ﬁ —2Liy(t) + 2§(2)}

which is in agreement with the result obtained in [EP] (Theorem 1 in Section 3), aswell
aswith our Theorem 1.1.

THEcAsE m= 3. Thistimewe add K, = N3 — N3. By (2.36) and Proposition 2.2,
Ki = N1|Ogt+00 ~ |ogt. (t+ %t2+...)’
3
Ko = Nplogt+Og ~ logt - (t + 21t2+~~-).

It follows that
4Ky — Ky) ~ t?logt  ast— 0,
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soag = 0, ap = —a; = 4. At the boundary we have from (2.43)

Ko — Ky = ~2(Dlog = +2(((3) +((2) + o) ast—1

Also 1
N = |Og m,
SO
(2. 46) Gal, 0) = 4cs[ Kz — Ky + 20N — 2(¢(3) + )|

Inserting the expressionsfor N, N3 and K; obtained above and using the formula (2.30)
and the formulas below in Section 3, it can be shown that this agrees with the formula
for Gz in [EP], Theorem 1 in Section 4.

THE CASEm = 4. Proceeding as above we see from (2.36) that
1 1
Ky ~logt- [t+ 2+ 3+,
1 d ( > 3 )

3, 11
K2~|ogt~(t+—t2+—t3+-~),

4 18
12 [ 3
~ . — + — +...
Kz ~ logt ( t t )

ast— 0, so
36(Ks — 2(K; —Ky)) ~ t’logt  ast— 0.

Thusaz =36, a1 = —a, = 72. Ast — 1,

Ka — 2K+ 2Ky = ~(2) og? 7 + (2(3) + 4(2)) log
+(B— A 4(3) — 4(2) +o(1).
On the other hand,

1 1
N]_: |Ogl—_t, NZZ Elogz

T (@) o),

sowe arrive at

Gal:, 0) = 3604 Ks — 2Kz + 2Ky + 2U(@2N: — (%(3) + 4(2)Ny

— (227 +B—A—4(3) - 4)].

The expressions for the function K3 and the constants A, B will be derived in the next
section; inserting them into the last right-hand side yields an explicit formula for the
Green function G4. (It is rather unwieldy, so we do not reproduceit here.)

We conclude this section by proving an improved version of Proposition 2.6 which
can be used to obtain an analytic continuation of the Green’sfunctions past the boundary
circle |z = 1 (Corollary 2.10).

(2.47)
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THEOREM 2.8. For eachk > 0, one has

1
N = 1 log

1kl 1
) . |
1—t+2f”(t) oo Tt
(2.48) .
Nk = i Iog +ka1(t) log'

wherefy and fkj are functions holomor phic in the right half-plane.

ProoF. Aswedid before with Og, we introduce the notation O.. for ageneral func-
tion, not necessarily the same one on each occurrence, holomorphic in the right half-
plane. For each g € O. we have, by integration by parts,

1 1, k(h9) |, k1 1
k— = k—' _— I a— K 1—
[a®log T dt=log 37— - (h9) — | 7 log*™ T dt.

Since the function 1; J; gis also O., we seethat
1 k -
K~ dt= .- logl ———
‘/g(t)log T jE:OO log —

Combining this with the elementary equal ity

_ 1 k+1 1
/1—t —tdt_k+1|09 -t

wefinally obtain

gt . 1 9@ i 1 K j_ 1
1_tlog 1_tdt_k+1log 1_t+j§)0+ log -

Consequently, if (2. 48) holdsfor somek, then

Nis1 = / - gka (g = 1/tfor k odd, g« = 1 for k even)

—// — log —+ZO+ IogJ t) (by assumption)
_ gk(l) k+ j
=CH e l1—t+20*"c’gjl—
1
= G logk +J¥O+ IogJ

as gk(1) = 1 and the constant of integration C can be absorbed into the summand j = O.

Since Np = 1, it follows by induction that (2.48) holds true for all k > 0. The proof for

N is quite similar and hence omitted. .
Splitting off the constant term from each i,

fig ) = (D) + (1 — iV

(and similarly for ﬁq-) and then comparing our last result with Proposition 2.6, we imme-
diately obtain:
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COROLLARY 2.9. For eachk > 0,
1 k=1 ;1
Ny = Py (Iog E) + (1—t)j§gkj(t)log 17
. . 1 k_l~ j 1
Ny = Py (Iog E) + (1—t)j§gkj(t)log 17
1 k 1
Ki = Rz (Iog ﬁ) +(1—1)>" hyg(t)log 11
_ & _

where Py, Py and R_; arethe polynomials from Proposition 2.6 and gy, G and hy; are
functions holomor phic in the right half-plane.

As a consequencewe have also the following amplification of Corollary 2.7.
COROLLARY 2.10. Theinvariant Green functions satisfy
m—1 i 1
Gm=({1—-1 > Gy(t)log —,
=0 1-—t

where G are functions holomorphic in the right half-plane.

3. Some transcendental functions. Hyperlogarithms. In this section we discuss
in more detail the transcendental functions which appear in connection with the Ny and
Nx. Perhaps the most conspicuous among them are the polylogarithms

ootk

Lis(t) = —
{0 i1 ke

which can be defined recursively by

. _ o Lis(®) . 1
Lisea(t) —/0 T Lia(t) = |09m-
Fort=1,
Lis(1) = ¢(s)
the Riemann ¢-function. Another important chain are the Kummer functions
log“=}(1 — 1)
(3.2) Mt) = [ —=———

of which we have seen Mj to enter into the formulas for N3 and N3, and My arises if we
calculate N4 or Na:

No= [ (% " %) (é log® 7 + Lia(9)log 7 — Mg(t)) (by (2.37))
B2 = —§M4(t) + % Lia(t)? — M;(0) + 2i4 log* %

1 1 1
+ = Lia(t) log? —— — Ma(t) log ——.
5 Liz()log” T— — Ms(f)log -—
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Here we have denoted by M} another transcendental function

(3.3) M) = [ Mi(t).

Similarly, for N, we have by (2.40)
) 1 (1, 51 1 .
N, = /O ﬁ(é log® 7= — Lia(1 — ) + 5Ms(t) + Liz(1 — 1) logt

#Ms(1- 1) ~ (log 1 ~ (Dlogt—(3)|

1 _ 1
(3.4) =2 log* *Lis(1 -1+ 5Ms()log

1
1t 1t M
¢

1. 2 * OME(1 1) 2\ 2 i

+ > Lio(1 —t)* +M;(1) — M;(1 —1t) 5 log 11
. 1 2)?

@ Lia1 ) ~ (@) log @) + &8,

and we see that N, too can be expressed in terms of the functions M4, M}, M3, Lio, Lis

and Li4.

There are numerous relations between the various functions just mentioned. An ex-
ample is Euler’s formula (2.30), which we have already used several times and which
can be verified easily by differentiation. Another important formula, essentially due to
Kummer ([Lel], p. 159), connects M3(t) with Liz(1 — t):

(3.5) Mas(t) = M3(1) + logtlog? % —2Lix(1—t)log % —2Lis(1—1).
Setting t = 0in (3.5) we obtain the important equality

(3.6) Ms(1) = 2((3).

In general one hasthe formula ([Lel], p. 203)

B K (k— 1)!
3.7 Mi(t) — Mk(2) = (—1)kj; &=7)!

which is ageneralization of (2.30) and (3.5), and

. o1
Lij(1 —t) log™ T

(3.8) Mk(1) = (1) (k — 1)1 ¢(K).

The function M} is more evasive. Using again integration by parts shows that it sat-
isfiesthe formula

M;(t) + M;(1— t) = M;(1) + Ma(1 — t) log(1 — t) + Ma(t) logt — % log?tlog?(1 — t)
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which can be regarded as a higher-order analog of (2.30). An explicit expression for M}
can be obtained from the formula (7.65) in [Lel], p. 204; theresult is

(2

1 1
i — — 3_ — —
(3.9) +2Lis(t)log I t+ 3Iogtlog " log

My(t) = 2

m ) + Lia(t) — LisL — t) +((4)

1 1
2 —— —
+¢(2)log 1% 24(3)Iogl_t.
The number M}(1) is best evaluated directly. To that end, use (2.30) to rewrite the for-
mula (3.5) as

Ms(t) = M3(1) — 2Lis(1 —t) — logtlog? ﬁ —2((2)log ﬁ +2Liy(t) log %

Dividing by t and using (3.6) gives

le(t) 563 —Lis(1—1)

+logt - M3(t)’ = n

— 22 Lia(t) +2Lia(t) - Lia(t)'.

Integrating from O to 1, the |left-hand side vanishes, and we obtain

1¢(3) — Lis(1—1)
(3.10) 2 /0 S dt= (2
Thelast integral can be evaluated by power series expansion:
1¢(3) — Lis() al(a
ew O a- s L —Z—a@ﬂ

On the other hand, from the Taylor series for log?(1 — t)

n /n-1
o1 - =23° (Z%)

=2 k=1

it follows that

Ms(t) = 22 tnz (nzl 1) o M) = 22 rt:g (nZl i)

n=2 I k=1

> (3 ) M) + (@)

o \k—lk

Substituting this back into (3.11) and (3.10) yields

3.12) Mi(1) = (2 ~ 24(4) = 504

(since¢(2) = 7% /6 and ((4) = n*/90).
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This equality, as well as (3.6), have an interesting interpretation as sums of series:
(3.6) can berestated as

o 1 /nfl 1>
o Ll = 4(3)1
n;z n2 \kZ::l k
and (3.12) means that *
o 1 /n 11 1
= —((4).
n¥2 n3 \k—l > 44( )
We finish this discussion by evaluating the constants A, B in (2.42). From (3.2) we
have 1 @@, 1 1
N; — o log 1—_t—— 0g’ 7 *+ 2(3)log T
2 . . Lio(t) — §(2) 1
= —3Ma(®) + 5 L2 — My + =2 5 log?

— (Ma(t) — M3(1)) log %_t

Inview of (2.30) and (3.5) thelast two terms are of order (1—t) log® 1; ast — 1. Letting
t tend to 1 we therefore get

2 1 19
(3. 13) A= —zMy(D)+ 54(2)2 — M) = 5¢4).
Similarly from (3.4)
.1 1 @ 1
Ne—ogl00 T+ 108 1
_ 1 11 1 ,
=Lis(1-1)+ E(Ms(t) — M3(1)) log Tt §M4(t) + - Li(1—1)

+M;(1) — M3(1 — 1) = () Lio(1 — 1) — ((4) + =5~ 4(2)2

The second term on the right-hand side is again of order (1 — t)log® 11 by (3.5), so
lettingt — 1vyields

(3.1 B = ZMa(1) + Mj(1) — C(4) + 20(2F° = —5¢(4).

Thus
B — A= —8((4) + 2M;(1) = —7((4)

1 More generally,
m-—1

(2 %) e G R

ﬁMg

and also
o0 1 n 1 12m—2 K
2 w1 <Z —> =3 2 (DKM —-K).
n=1M =1 k 2 (=

These formulas are due to N. Nielsen (see [Ni], p. 198).
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and the constant term in the square brackets in the formula (2.47) for G, isequal to
(3.19) —(¢(2)* — 4(4) + M3(1) — 2(3) — 24(2)) = ¢(4) + 2(3) + %(2).

The formulas above can be used to obtain—as we have promised near the end of the

preceding section—various expressions for the functions K;, j < 4. For instance, we
have

Ko = logt;

Ky = Lino(1—t) — Li(t) — ¢(2) = logtlog ﬁ — 2Lin(0);

Ko, = —4Lig(1 —1t) — 2Lis(t) + % logtlog? %_t
— 2[Lix(1— 1) +(2)] log % + Lin(t) logt + 4C(3);

Kz = 8Lig(1—t) + Mj(t) — Mi(1 —t) + 4Lis(1 —t)log %

1. , 1 1 . , 1 1. 5
+ = — - = =+ —
Lio(1 —t)log Lio(t) log T Lio(1—1)

1-t
1. ., 1 5 1 .
~3 Lio(t)” + 3 logtlog 1% —((2Lix(1—1)
1 5 1 25

In particular, feeding thisinformation into the formulas for G,, Gz and G4 in Section 2,
one obtains explicit formulas for the latter in terms of the polylogarithms Li», Liz and
Lig.

In principle, the Green functions G,, can be computed by the method of Section 2 for
any m, but for m > 5 the results become immensely complicated and also new transcen-
dental functions pop up; for this reason, we won't pursue these matters any further and,
instead, will be content with stating a simple result of general nature.

Recall that, for a 2n-tuple of complex numbersay, ..., an, by, ..., b, the hyperloga-
rithm of Kummer is defined as

a & - @& - 1 1 . 1
Fn(bl by --- bn)(t)_-/bnt—an/bn—lt—anA /blt_al.

Thisisin general a multi-valued analytic function on C which may have (and usually
has) various logarithmic singularities at the points ag, ay, . . ., an. It is, however, easy to
see (by considerations akin to our proof of Proposition 2.2 above) that a single-valued
holomorphic branch can always be selected on any simply connected domain Q aslong
as, for each k, either a, = by_1, or ax ¢ Q and by # a. Asarather straightforward
application of the discussion in the preceding section, we then have the following result.
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THEOREM 3.1. For each k > 1 the function Ny is a linear combination of the hy-
perlogarithms

al a2 o ak
(3.16) Fk(o 5 0),

wherea = 1for j odd and g € {0, 1} for j even. Smilarly, the functions Ny are linear
combinations of

0 a az -+ & 1 a a3 -+ &

whereg; = 1for j evenanda; € {0, 1} for j odd, j # 1. Consequently, the Greenfunction
Gk(+,0) too isalinear combination of the functions (3.16) and (3.17).

Hyperlogarithms werefirst studied by Kummer in the third part of his paper [Ku]. For
arecent exposition, see, e.g., G. Wechsung'sarticle [We] in Lewin's book [Le2].

4. Thedual spaces. In this section we consider the compact duals of the previous
symmetric domains (ball, disc).

In the first place let us examine the case of the Riemann sphere S (x the complex
projective line PY). We let its diameter be 1 (radius %). Removing a base point denoted
oo (the point at infinity) we map the remainder of S onto the complex plane C. We can
thus use the generic point zof € asalocal coordinateon $\ {oo}. We put also, as before,
t=r2=7>°

Below we present in table form some relevant quantities associated with S along
with, for comparison, their counterpartsin the dual case of the disk D; for bookkeeping
reasons the former are equipped with a subscript in the form of a star x.

sphere disc
. d d
metric ds, = 1‘T§|\2 ds= 1‘,|ZZ|‘2
__ _dxdy _ dxdy
area element dA, = T dA = (=rod
total area T S

Laplaceoperator | A, = 41+ [Z22Z- | A = 41— |79?%,

radial part- 1 |L. = @+t2[td + 2] |L =@ -2 [t& + 4]

TABLE 1.
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The main difference is thus that everywherethe factor 1 — |zJ? (respectively 1 —t) in
the previous situation has been replaced by 1 + |zJ? (respectively 1 +t).
There is a simple connection between the operators L., and L. Indeed, let us set for
f = f(t), any radial function,
f* = f*(t) = f(-t).

Then we have
(4.1) L(f) = —(L,f)".
PrROOF OF (4.1). We have by definition (see Table 1)
L(F) = @— 0[tf"(—) = F'(-0)];
L.f = @+ty?[tf" () + F'(t)].
The second of these relations gives
(Lo f)" = (L)1) = (L — [t (=) + (1)
= —(L—t?[tf"(—) — f'(=t)| = —L().

This proves the desired equality. ]
Iterating (4.1) gives
4.2 L™(f*) = (=1)™(LIf)".

From (4.2) we may draw the following conclusion.

LEMmA 4.1. Letfy,...,fm 01, .., 0mbethebasisfor the solutionsof the differential
equation L™ = Oindicated in Section 1 (cf. also [EP], Section 4). Then a basis for the
solutions of L™ = 0 is constituted by the functions

fi(=t), ..., fm(—1), Ga (1), ..., Om(—1).

We now turn our attention to the Green’s functions of the iterated operators A™. First
we must, however, make precise what is meant by Green’s function in the present com-
pact situation.

Consider quite generally theinhomogeneousequation A™u = von . Let usmultiply
by dA. and integrate, yielding

‘/32 ATudA, = ./szvdA*.

If we use the fact that the operator A™ is selfadjoint and that, in addition, A™1 = 0, it
follows that the left-hand sideis zero so we obtain the following necessary condition for
the existence of a (global) solution:

4.3 (ém&zo
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It may be proved? that, conversely, (4.3) implies the existence of asolution. Finally, we
obtain a unique solution u if we impose the additional hypothesis

(4. 4) ./gudA*zo.

Accordingly, we define the m-th order invariant Green's function on S with pole at

the point w to be the unique function G, = Gm.(2) = Gm«(z, W) such that
1° A"Gy. = by — % where d, is the Dirac delta function at w;
2° [ GmdA, = 0.

The constant % appearsbecausein view of our normalization of the area (see Table 1)
precisely then the condition (4.3) is formally satisfied.

Asusual, we may takew = 0.

Let us begin with the case . Then there are two independent radial solutions:
the functions 1 and logt. Furthermore, the equation L, f = 1 is satisfied by the function
log(1 + t) (this follows from (4.1) and (2.28), or also from Lemma 4.1 and the results
of [EP]; see Scholium 1, Section 4 there). This leadsthe following expression for Ga,:

Gu.(t) = 4—1ﬂ(logt —log(1+1t) +A),

where the constant A has to be chosen in such a way that condition 2° is met. Observe
that the sign in front of the second term helps us to take care of the singularity at oo
which otherwise would have occurred.

Before passing to the actual computation of A it is handy to collect some salient facts
about integration of radial functions, which we do as alemma.

LEMMA 4.2. Letf = f(t) beany radial function on $*. Then we have

f(t)
/ fdA. = (1 + t)2

T+ isinvariant if we makethesubstitutiont — ¢ (inversion).

Moreover, the differential
In particular, we have

(1+t

/oo f(3) f(t)
(1+ t)2 (1 + t)2

ProOF. All thereisto doisto observethat if z = re?, t = r? then it follows that
dtde
dA,‘< (Z) = ﬂ'm . | |
From the first half of Lemma4.2 it follows that we must have
Iogt log(1 + t)
1+ t)2 /W 1+ t)2
Using the symmetry property in the second half we seethat thefirst integral must vanish.
On the other hand, a direct computation reveals that the second integral has the value 1.
Thus we conclude that . In summary, we have now proved the following result.

+A=0.

2 For ingtance, using the spectral resolution for A.,.

https://doi.org/10.4153/CJM-1998-004-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-004-8

GREEN’'S FUNCTIONS FOR POWERS OF THE INVARIANT LAPLACIAN 67

THEOREM 4.3. Theradial part of the invariant Green's function G, is given by the
formula

(4.5) G (t) = —4—17T(Iogt—log(1+t)+1).

We can combine this with the expression for G, obtained by using the eigenfunction
expansionof A,. Werecall that the n-th eigenvalue of A, is —4n(n+ 1) and occurs with
multiplicity 2n+1 (n = 0,1,2,...). So choosing for each n an orthonormal basis of
eigenfunctions (spherical harmonics) Y., (o« = 1,...,2n+ 1) we seethat we must also

have o 1 ot
Gz w) = nzl D) 2 Z Yna(2) Yne (W).

Becauseof theinvariancetheinner sum dependsonly of the distance between the pointsz
andw (with respect to the metric ds,). In other words, it must be proportional to P,(cos6),
where P, standsfor the n-th L egendrepolynomial and 6 isthe angle betweenzandw. The
proportionality constant can be found using that, in view of the normalization P,(1) = 1,
it must equal the integral of the expression obtained by putting z = w, divided by the
integral of thefunction 1; that is, using also the orthonormalization of the eigenfunctions,
it turns out to be

2n+1 1 2n+l 2 1 2n+l on+1
= / 3l (Yne(@) dA. = = (,;1/52 (V@) oA = 23 1= T2
So we end up with the formula
1 X 2n+1
(4.6) Gz, w) = Zl AN+ ) Pn(cos#).

REMARK 4.1. Alternatively, we could have used the fact that the sum

2n+1

Zl Yna(2) Yne (W)

is nothing but the reproducing kernel of the n-th eigenspace. In this way we could have
stayed entirely inthe complex domain without having to passto thereal (cf. [PZ], p. 231,
the last remark in Section 2).

Let us now recall the relation between the angle 6 and the parameter t: Astheinverse
image (pullback) of z under stereographic projection is the point with coordinates

([ Rez Imz 11-—|7?
\1+]z2" 1422 2 1+]72

inR3 andt = |2, we must have

cosf = ——.
+
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This again shows that, putting x = cos#,

1—x 2 t 1—x
= ) 1+ = y =
1+X 1+x 1+t 2

Finally, juxtaposing (4.5) and (4.6) we see that

t

x 2n+1
4.7 n§1mPn(x) =log2—1—1log(1—x)

which formulais formally valid for —1 < x < 1.2
Formula (4.7) is however not new. Indeed, it is the special case of a result which
appearsin [BE], Section 10.10, as the bilinear formula (53) on p. 183:

X 2n+1

(4.8) n;lmPn(x)Pn(y) =2log2—1—log(l —x)(1+Y)

with -1 <x<y< 1l

REMARK 4.2.  Actually, (4.8) can be obtained from its special case (4.7) by invoking
the multiplication theorem for Legendre polynomials, which we found in [V], p. 141:

2—17T /:; Po(xy — V1 —32/1—y?c0s¢) dp = Pn(X)Py(y).

Indeed, if we replace x by xy — v/1— x2,/1 —y2cos¢ in (4.7) and integrate, then the
left-hand side of the resulting formula agreeswith the left-hand side of (4.8). In order to
be able to reduce the right-hand side into the right-hand side of (4.8) we must therefore
show that

4.9 2—17r/_w_log (1—xy+ \/1—x2\/1—y2005¢) d¢ = —log2+log(1 — x)(1 +Y),
or, upon setting z = —v/1 —x2,/1 — y2/(1 — xy),

T /1 — 72
1 / log(1 — zcos¢) do = log ﬁ
2 J—r 2

which is easily done by power series expansion.

Encouraged by this partial success we next make an assault on the case .
Looking again at (2.45) and (2.29), or at the formulae in [EP], especially Scholium 1 in
Section 4 there, and using our Lemma 4.1, we see that the radial part of G, must be of
theform

(4.10) Go(t) = % logt-log(l+t) — %Iogz(lﬂ) +Lix(—t)+B
U

3 Wedo not enter hereinto the subtleties connected with convergence but we assure the reader that everything
can be fixed up with ease.
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where B is a constant. Alternatively, it is easy to see directly that the expression within
brackets in the last formula satisfies the differential equation L2f = —1. Moreover, the
singularity at t = O clearly isthe right one and there is no singularity at t = oo. Thelast
fact follows from the following result for the dilogarithm (see[Lel], formula(1.7), p. 4):

. 1 . 1 2
(4.11) Lio(—t) = ~5 log“t — Li> (_Y) - %
valid for t € (0,00) (all the log-terms cancel). So what remains is the determination
of the constant B in (4.10) so as to meet the requirement that the integral of G, be
zero (see Condition 2° ultra). To this end we invoke once more Lemma 4.2. Let the
expression within brackets in (4.10) be denoted by x. If we replace there t by % we
obtain the expression

% = —logt- (log(1+1) — logt) — %(Iog(lﬂ) — Iogt)2+ Lio (—%) +B.

Adding up gives after various simplifications, invoking especially (4.11),

2
* +x% = logt - log(1 +1t) — log?(1 +t) — % +2B

1 2
= log(1+1t) - Iog(l— m) % +2B.

According to Lemma 4.2 the integral of this quantity has to vanish. In other words, we

must have

7F2

)dt—€+ZB:0.

s log(1+1)-log (1 — 74
./o (1+1)2

Thevalue of the last integral is lg — 2. (To see this we make the substitution t = % -1
Then we obtain the integral

1
—/0 logp - log(1 — p) dp.

Again, using the power seriesexpansion of thefunctionlog(1—p) wearelead to summing

the series L
Rrana

which is easily achieved.) Thus we find that . Summing up, we have now found
the following resuilt.

THEOREM 4.4. Theradial part of the invariant Green’s function G is given by the
formula

4.12) Ga(t) = L [Iogt “log(1+1t) — EIogz(1+t) +Li(—t)+1].
167 2
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If we now use the spectral resolution of A, in a similar way as in connection with
Theorem 4.3 we are led to the following analog of formula (4.7):

> 2n+1l —X 2 1 2 1-x
T P = log—=— — Zlog? ——— +Lip | — +1
r;_(n(n_'_l)) ) Og1+x D1k 2% 1+x |2( 1+x)

where—1 <x < 1.

REMARK 4.3. Using the multiplication theorem for Legendre polynomials one can
also formally write down abilinear formula analogousto (4.8), thusinvolving the sum

5° PGP

1(n(n+ ))
However, so far we have not been able to evaluate the integrals arising in the right-hand
side so there is o point in writing it down here.

We have now discussed in detail the casesm = 1 and m = 2. It is clear that in
principle the previous analysis carries over to the case of any integer m. (For instance,
using (2.46) and (2.37), one can after some work produce the result for m = 3, and
from (2.47) and (3.4) for m = 4.) In particular, we are thus led to consider the sums

> 2n+1 00 on+1
2 g @ 2 P )

and we arrive at the conviction that at least the former can be expressed in closed form
in terms of hyperlogarithmic functions.

REMARK 4.4. The above can aso interpreted in terms of zeta values. Indeed, let us
write

©  2n+1 o 2n+1
A0 =2 et ® @ Asx) =0 cres
where s is a complex variable. The functions Z(s,x) and Z(s,x,y) are related to the
Minakshisundaram-Pleijel zeta function (see [MP]) for the operator A, Our results can
thus be expressed by saying that we have computed the values of these functionsfor the
two integer argumentss=m= lands=m= 2.

We seethat it is of considerable interest to extend this investigation also to the case
of other compact Hermitean symmetric spaces. We limit ourselves to pointing out that
in the rank one case, namely, the complex d-dimensional projective space P9, which is
the dual of the complex unit ball BY, one has, instead of the Legendre polynomials Py(x),
the Jacobi polynomials PIU-19(x) (see [BE], Section 10.8), and the formula (for m = 1)

Pn(X)Pn(y),

> 2n+d (n+d—1 “lii+x) A1 — X
PO-10/() — ( )_ 2 o
nZ::ln(n+d)\ n ) 09 = 12;] 1—x 12;] g
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of which (4.7) isaspecial case (d = 1).

REMARK 4.5 (ON THE CASE OF WEIGHTED GROUP ACTIONS). Throughout this pa-
per, up to this moment, we have been concerned with unweighted group actions, that
is, functions f are acted upon by composition: f +— f o ¢ if ¢ is an automorphism of
the manifold under consideration. Now we say also a few words on the case when also
aweight (multiplier) isinvolved. For simplicity, let us fix our attention to the present
situation of the sphere . Recall that the isometries ¢ of S are induced by unimodular

unitary 2 x 2 matrices (f; ?),Wherethusw = —5,5 =aq,a—-py=Llfze

thenitsimage under ¢ isgivenby ¢(2) =
according to therule

ozt
YzZ+§

. Accordingly welet functionsf transform

az+ 3
vZ+6

t@) — ( ) Oz+e) (=1(o@)(¢'@) 7).

where v is afixed integer, v = 0,1, 2,.... (Such objects should really not be viewed as
functionsbut asforms of negative degree —3, and written asf (2)(d2)~2.) Theexpression
for the corresponding Laplacian can be found in [PZ] (p. 226, beginning of Section 1):4

62

_0
_ 2\2 _ 250
A =41+|Z°) P 4u(1+ |7 )zaz

(= A, — vZ.where Z, isthe Zhang correction).

(4.13)

The corresponding radial operator is

> d d d d
= 2+ 2| = = — 2+y 2 - Y
L.=@1+%) {t et dt} v+t = L+ 5 |1+ dt} .
The operator A, is selfadjoint with respect to the metric
dA
2 _ 2 bk
(4.14) 1112 = 1P gy

The kernel of A, consists precisely of the analytic functions with finite || - ||, -norm,
that is, of polynomials of degree not exceeding v (see [PZ], p. 226); in view of self-
adjointness, the closure of the range of A, is the orthogonal complement (with respect
to (4.14)) of this kernel. Also, the total area of the Riemann sphere with respect to the
measurein (4.14) isnow 7 /(v +1). Thuswe are led to postulate the following definition
of the corresponding Green’s functions G7,:

1° For any w,

+
A,.GLzw) = szw) — 2@+ amy,
™
whereit is assumed that the differential operator acts on the z-variable.

4 Followi ng [EP], Section 3, we ought to consider such objects not as invariant differential operators, but
covariant ones.
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2° Orthogonality relations:

dA.(2)
/SZ (Z W)_k(l + |Z|2)1/ =0

for al monomialsZ withk = 0,1,...,v
(Here the index 1 is intended as a reminder of the fact that it is a first order Green's
function.)

In order to determine the Green’sfunction G, we haveto solvethe ordinary differen-
tial equationL,. f = —(v +1). It isseen, in one way or other, that we have the particular
solution f = log(1 +t) — logt. This function has the right behavior both att = 0 and
t = oo. Thuswe end up the following formula (generalizing (4.5)) for the radial Green's
function:

(4.15) L) = 4—17'T(Iogt— log(1+1) +A,).

where the constant A, hasto be determined so that G, has a vanishing mean value with
respect to the measure ﬁ)— Using Lemma 4.2 we thus obtain

oo logt Iog(1+t) B
Jo (1 + t)1/+2 (1 + t)1/+2 AV =0
whichyields
v+l 1
(4.16) =) =
j=1 J

Itisnow also easy to state the expression for the Green’s function when the poleis at
an arbitrary point w € S

|z—w?
T+ 2P+ WP

Lzw) = 1 Iog A -(Q+2w)”

with A, again given by (4.16); from this formula the covarianceis clearly visible.

Next, in order to determine the spectral expansion of G}, we observe that, instead of
the Legendre polynomials Py, in the case v = 0, we shall now have the hypergeometric
functionsoF1 (v +n+1, —n; 1; ti7), that i, the Jacobi polynomials PO (31). Indeed, the
n-th eigenvalueis —4n(v + n+ 1), and occurswith multiplicity v + 2n+ 1 (cf. [PZ]), so
if we make the change of variable x = m ! the equation for radial eigenfunctions

L.f+nw+n+1)f=0

transforms into

(1—x2)ﬁ + {1/—(y+2)x]ﬁ+n(n+u+1)f =0
dx? dx ’
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which isthe defining equation for the Jacobi polynomials PO*)(x) (cf. [BE], formula (14)
in Section 10.8). Proceeding as before, it follows that
1 (v+2n+1)PO(EL

4.17 V)= — i
( ) l*() A = n(l/ +n+ 1)

Thus if we eguate the right hand members of (4.15) and (4.17), using the value of A,
given by (4.16), we end up with the following formula generalizing (4.7):

X (2n+v+1)_, 1] 1-—x
4.18 ATV T b0 ) = — S = — | _
( ) ngln(n+u+1) n () J-:le 9 2
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