
COMPLETIONS OF QUADRANGLES IN 
PROJECTIVE PLANES II 

RAYMOND B. KILLGROVE 

1. Introduction. This viewpoint of studying projective planes was given 
in my previous paper (12). It is discussed in other papers: Hall (4, 6, 7), 
Maisano (16), Lombardo-Radice (14, 15), Wagner (19). In particular, we 
consider how to make identifications in the free plane, or how identifications 
are forced when one begins with a non-degenerate quadrangle and makes free 
extensions of this quadrangle of a known plane. We shall continue to develop 
this topic using the notations and definitions of the previous paper (12). We 
consider the number of subplanes of certain planes, finding exact values in the 
cases of the known order-nine planes, and deriving a lower bound in a general 
case. We prove a theorem concerning the structure of all singly generated 
planes. We give an example to show that this structure is not definitive. 
Finally, we prove that a specific Walker-Knuth plane is singly generated. 

2. Subplanes of geometries of order nine. A routine was written for 
the IBM 7090 which finds all the subplanes of a given plane of order nine. 
By Bruck's theorem (7, 9), it is known that the subplanes must be of orders 
2 and 3. The routine examines each non-degenerate quadrangle in turn by 
forming extensions and thereby determining whether the extensions complete 
to a subplane of order 2 or 3 or neither. Each result determined by the routine 
is tallied accordingly. The answers for the Desarguesian plane are easily 
calculated; hence, the Desarguesian plane was used for a preliminary test run. 
Then the Carmichael plane and the Veblen-Wedderburn plane were run. The 
dual to the Veblen-Wedderburn plane was not run because the counts for the 
Veblen-Wedderburn plane and its dual must be the same since the planes of 
orders 2 and 3 are self-dual. 

An incidence matrix in the canonical form (17) of the given geometry and 
its transpose were the data of the computation. In the completion procedure 
one needs to know the point of intersection of two given lines. This point can 
be obtained by first performing the logical "and" upon the two matrix rows 
which represent the lines involved and then using the CAQ command to locate 
the resulting single bit, which represents the point, as quickly as possible. 
Since an incidence matrix consists of 91 by 91 ones and zeros, it is necessary 
to do this in triple precision. The transpose is used to perform the dual problem. 
These incidence matrices were produced by a SWAC programme which accepts 
the geometries in the form of eight Latin squares. 
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There are seven dist inct quadrangles in each Fano configuration—since one 
can choose any one of seven points, followed by any one of six, followed by 
one of four not on the line joining the first two chosen points , and this method 
produces every quadrangle in 24 forms. Likewise there are 13 X 12 X 9 X 4 /24 
= 234 dist inct quadrangles of a plane of order 3, and 91 X 90 X 81 X 64/24 
= 1,769,040 distinct quadrangles of a plane of order 9. If F is the number of 
Fano configurations, T is the number of subplanes of order 3, and 5 is the 
number of quadrangles from which the plane is singly generated, then 
7F + 2MT + S = 1,769,040. 

I t is well known t h a t the Desarguesian plane yields no Fano configurations, 
7560 subplanes of order 3, and no quadrangle which singly generates the plane. 
T h u s 7 X 0 + 234 X 7560 + 0 = 1,769,040. T h e Carmichael plane yields 33,696 
Fano configurations, 1080 subplanes of order 3, and 1,280,448 quadrangles 
which singly generate the plane. Now 

7 X 33696 + 234 X 1080 + 1,280,448 = 1,769,040. 

T h e Veblen-Wedderburn plane yields 51,840 Fano configurations, 1080 sub-
planes of order 3 (the same number as for the Carmichael plane) , and 1,153,440 
quadri laterals which singly generate the plane. Again 

7 X 51840 + 234 X 1080 + 1,153,440 = 1,769,040. 

Whenever another non-Desarguesian plane of order 9 is discovered, one 
could calculate the number of its subplanes. Should this ta l ly differ from the 
two given here, then it is clearly a new plane. On the other hand, an agreement 
of tallies between two planes can only suggest t h a t one should look for an 
isomorphism between them. In general, then, it may be possible to use subplane 
counts as distinguishing invar iants between non-isomorphic planes. (This 
routine has been run for this purpose five different t imes by either the W . D . P . C . 
or the Comput ing Facil i ty I B M 7090 a t U.C.L.A.) 

Moreover, if one can find a quadrangle which generates the entire plane, 
then the plane can be characterized in te rms of this completion. A second plane, 
possibly isomorphic to the first, could be examined to see if it has a quadrangle 
with the same extensions. This procedure is clearly valid theoretically. In 
practice, however, it is extremely t ime-consuming. 

T h e collineation group for the Carmichael plane has the order 33,696 (21) . 
( I t is interesting to note t h a t this is the number of Fano configurations; 
however, they are no t all in the same conjugate class determined by this 
group. T h e Fano configuration A2, Az, A9, Bo, G6, D2, Du is t aken into itself 
by the non-ident i ty t ransformation 

x'i = xf*, 

x'2 = 2x2
a6, 

x'z = 2x2
aQ + xft, 
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where Zappa (21) asserts that this is a collineation and where the names of 
the points are found in (2), a& is given in (10), and the correspondence between 
the latter two papers is 0 <-> 0, 1 <-> 1, 2 <-» 2, 3 <->j, 6 <-> 2/, 4 <-» 1 + 7, 
5 <-» 1 + 2j, 7 <-> 2 + j , 8 <-» 2 + 2j.) For each characteristic extension of a 
quadrangle, the collineation group takes a generating quadrangle to precisely 
every other generating quadrangle of the same extension. If it turns out that 
no generating quadrangle goes to itself under any collineation except the 
identity, then there are 38 different characterizations of the plane found by 
dividing the number of quadrangles by the order of the collineation group. If 
we count characterizations of a single quadrangle in 24 ways instead of one 
way, then the minimal number of characterizations is 38 X 24 instead of 38. 

In the Veblen-Wedderburn plane, the order of the collineation group is 
622,080, which does not divide the number of quadrangles which singly gene­
rate the plane. Thus in this case the collineation group does take some quad­
rangles singly generating the plane into themselves. 

Note: The generators for the collineation group are given in (4). It was 
learned from Hall by private communication that the order of the group 
reported in (4) was wrong. To see this, we note that r = 2, 5 = 2 is an element 
of order 2 generating a normal subgroup which leaves the points at infinity 
fixed. We have given the correct value of the group. 

3. Subplanes of order p in Veblen-Wedderburn planes of order pa. 
We notice that 1080 = (81 X 80 X 72)/(9 X 8 X 6). Thus in this particular 
case the number of subplanes of the Veblen-Wedderburn plane (as well as the 
Carmichael plane) could be formulated as 

n2(n2 - \){n2 - n)/p2{p2 - l){p2 - p). 

This leads one to the following 

THEOREM. In a Veblen-Wedderburn plane of order n = pa, there are at least 
n2{n2 — l)(n2 — n)/p2(p2 — l)(p2 — p) subplanes of order p. 

Remark. The author discovered a proof of this theorem based on the under­
lying 'Vector space" (1) which involved several computations. The author 
reproduces below instead a shorter proof suggested by the referee. 

Proof. Any quadrangle Q with two vertices on the axis can be used as a basis 
for co-ordinatizing the V-W plane by a V-W system (9), p. 362. The additive 
subgroup of the V-W system which is generated by the multiplicative identity 
forms a field GF(p) under addition and multiplication. Hence the completion 
of Q is a (Desarguesian) subplane of order p. Therefore any quadrangle with 
two vertices on the axis of the V-W plane belongs to a subplane of order p. 
There are n2(n2 — l)(n2 — n) such quadrangles, p2(p2 — l)(p2 — p) of which 
occur in each subplane. 

Now a natural question arises as to discovering when equality holds. The 
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subplane count for Desarguesian planes shows that there are planes for which 
equality does not hold. If the nucleus of the V-W system exceeds the field F 
generated by the multiplicative identity, then there are some additional 
subplanes not counted. To see this, one realizes that in the Desarguesian 
subplane of order p&, 13 > 1, obtained from the nucleus, there are more planes 
than those counted by the above process. We are led to the following open 
question : Does the fact that the inequality is not an equality guarantee that 
the nucleus is larger than the field F? One wonders also: What can be said of 
the subplanes of the Hughes planes? (The Carmichael plane is a special Hughes 
plane (11).) 

4. Identifications in the free plane. Starting with four points, A,B,C,D, 
as the first partial plane and then freely extending four times to the fifth 
partial plane we obtain nine sets of four collinear points: ABEH, AC FT, 
ADGT, BCGK, BDFL, CDEM, EFJK, EGTL, FGHM. Then in the next 
extension we produce 24 lines, 12 of which have one of the original four points 
{AK, AL, AM, BT, BT, BM, CH, CT, CL, DH, DI, DK) and 12 more which 
have points H, I, J, K, L, M. More detail is given in the papers listed in the 
Introduction. 

By a theorem in (12) it is unnecessary to consider identifications between 
elements adjoined in different partial planes. The axioms guarantee that no 
identifications take place in the first three partial planes; cf. (8, 9). In the next 
partial plane there is only one possible identification and this produces a plane 
of order 2. Inspection will reveal that no identification in the fifth partial 
plane will yield new starts for planes. It is the possible identifications in the 
sixth partial planes among the 24 lines which warrant attention. 

We define a primitive category as an ordered quadruple of numbers which 
indicate the possible identifications among the first 12 lines. The first number 
is 0 if AK, AL, AM are distinct, 1 if AK = AL or AK = AM or AL = AM, 
2 if AK = AL = AM. Similarly, the second number is 0, 1, or 2 depending 
on the identifications occurring between BT, BT, BM. Likewise the third and 
fourth numbers describe the identifications between the lines through C and 
through D respectively. The remaining 12 lines may have identifications 
forced on them, e.g. AK = AL implies AK = AL = KL. In any event these 
remaining lines have few possibilities for further identifications. Either they 
may have identifications of the type KL = KM = LM whether the forcing 
identification AK = AL = A M occurs or not, or they may have identifications 
leading to Fano configurations, e.g. HT = HT = IT, when certain identifica­
tions do not occur among the first 12 lines. 

The 24 permutations on A, B, C,D will produce isomorphic copies of a given 
structure. Two primitive categories are in the same equivalence class defined 
by the isomorphisms if and only if for each structure satisfying the first primi­
tive category there is some structure in the second primitive category which is 
isomorphic to the first structure. We define a category as a primitive category 
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(a, b, c, d) with the property that a > b > c > d. Every primitive category is 
equivalent to some category and distinct categories are not equivalent. We 
abbreviate the notation for the category by dropping the parentheses and 
sometimes by dropping the zeros also. We order these 15 categories from the 
highest 2, 2, 2, 2 to the lowest 0, 0, 0, 0 (or NONE) as follows: 2, 2 ,2 ,2 ; 2, 2 , 2 , 1 ; 
2, 2, 2; 2, 2, 1, 1; 2, 2, 1; 2, 2; 2, 1, 1, 1; 2, 1, 1; 2, 1; 2; 1, 1, 1, 1; 1, 1, 1; 1, 1; 
1; NONE. 

The 2, 2, 2, 2 category appears when completing quadrangles in planes of 
order 3. Conversely, if one makes the identifications indicated by the 2, 2, 2, 2 
category, one obtains the plane of order 3. For related results and details on 
this, see (14, 15). Some categories describe the structure uniquely, as in this 
2, 2, 2, 2 category case. Some categories have several non-isomorphic structures 
within the same category. To illustrate this, we consider the following examples: 
(1) an extension with exactly these identifications: AL = AM = LM, 
BJ = BM = JM, CJ = CL = JL; (2) an extension with exactly these 
identifications: AK = AM = KM, BI = BJ = I J, CH = CL = HL. Both 
examples are in the category 1, 1, 1 ; yet, by inspection, they are non-isomorphic 
structures in that the sets of points ALM, BJM, CJL have L, M, J in common 
whereas the sets A KM, BU, CHL have no points in common. 

5. Theorems on identifications. 

LEMMA 1. In any singly generated plane of order greater than three which has a 
quadrangle which singly generates the plane in a way which falls in a 2,2,2, x 
category (x is 0 or 1), there exists another quadrangle which singly generates the 
plane in a way which does not fall in a 2, 2, 2, x category. 

Proof. Let A, B, C, D generate the plane so that in addition to the nine sets 
of collinear points given above we have the sets A KLM, BUM, CHJL. We 
do not ascribe any particular identifications between the six lines DH, DI, 
DK, HI, HK, IK except, of course, to deny that DHIK is a set of collinear 
points. Since C = AFC\ BG and D = AG C\ BF, any element of the plane 
can be written as an expression in A, B, F, G ; or, in other words, A, B, F, G 
singly generate the plane also. This is displayed below. 

ABBE BFDL HCJL ALM GEL 
AFCP BGCQ HDPQ BJM 
AGDJ FGHM CD EM FEJ 

Now to say that this quadrangle A, B, F, G singly generates the plane in a 
way which is in a 2, 2, 2, x category, then three of the following four sets must 
be collinear: ALMQ, BJMP, FEJQ, GELP. The collinearity of ALMQ 
implies Q = K since both Q and K lie on lines BG and AL. Similarly the 
collinearity of FEJQ implies Q = K. Therefore, regardless of the choice of 
the three sets, Q = K. Similarly it can be shown that P = I. But this shows 
that DHIK is a collinear set, contrary to the hypothesis. 
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LEMMA 2. In any singly generated plane which has a quadrangle which singly 
generates the plane in a way which falls in a 2, 2, x, y category, where 
0 < y < x < 2, there exists another quadrangle which singly generates the plane 
in a way which does not fall in a 2, 2, u, v category where 0 < v < u < 2. 

Proof. Let A, B, C, D be a quadrangle which singly generates the plane 
such that A KLM and BUM are collinear sets whereas CHJL and DHIK are 
not collinear sets. Let us assume that the A, B, F, G singly generate this plane 
in a way which is in the 2, 2, u, v category and v ^ 2. Now we display the 
resulting collinear sets. 

ABHE BFDR HCQR AM GE 
AFCP BGCS HDP S BM 
AGDQ FGHM CDEM FE 

From our assumption, at least two of the following four sets must be 
collinear: 

A MRS, BMPQ, FEQS, GEPR. 

If A MRS is a collinear set, then R = L, S = K; 
if BMPQ is a collinear set, then P = I, Q = J; 
if FEQS is a collinear set, then Q = J, S = K; 
if GEPR is a collinear set, then P = I, R = L. 

In choosing any two of these conditions, either CHJL or DHIK is forced to 
be a collinear set. This fact can be found by inspecting the six ways it can occur. 
This fact contradicts the hypothesis. 

From Lemmas 1 and 2, we obtain 

THEOREM 1. In any singly generated plane of order greater than three there 
exists a quadrangle which singly generates the plane in a way which falls in a 
category less than 2, 2, 0, 0. 

From our viewpoint, we are not concerned whether a given completion is 
for the plane or for its dual plane. In other words, we do not care whether we 
discuss extensions of quadrangles or quadrilaterals. 

LEMMA 3. In any singly generated plane which has a quadrangle which singly 
generates the plane in a way which falls in a 2, x, y, z category, where 
0 < s < ; y < x < 2 , there exists a quadrangle or quadrilateral which singly 
generates the plane in a way which does not fall in a 2, u, v, w category where 
0<w<v<u<2. 

Proof. Let A, B, C, D be a quadrangle which singly generates the plane in a 
way which falls into one of the categories 2, 1, 1, 1; 2, 1, 1; 2, 1; 2. We can 
associate three quadrilaterals with this quadrangle. These quadrilaterals are: 
a = AB, b = BC, c = CD, d = AD; a' = AB, bf = BD, c' = CD, d' = AC; 
a" = AC, b" = BC, c" = BD, d" = AD. We note that A can be expressed 
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as ad, a'd', a"d"\ B as ab, a'b', b"c"; C as be, c'a1', a"b";D as cd, b'c', c"d". Thus 
these quadrilaterals have A, B, C, D in their extensions, and they singly gene­
rate the plane; for the method used to make this claim, see the proof of (12, 
Theorem 5.3). Furthermore, we can extend these quadrilaterals using the same 
notation in a dual fashion and obtain: e = BD, f = EG, g = AC, h = BI, 
i = EF, j = AL, k = CL, I = FG, m = DI; ë = BC, f = EF, g' = AD, 
h' = BJ, ï = EG, f = AK, k' = DK, V = FG, m' = CJ; e" = CD,f" = FG, 
g" = AB, h" = CH, i" = EF, j " = AM, k" = J5M, r = £G, m/r = DH. 

We are looking for a quadrangle or quadrilateral which singly generates the 
plane in a way which falls in a category less than 2, 0, 0, 0. Therefore, we con­
sider the case when each of the three quadrilaterals introduced above has an 
extension in the 2, 0, 0, 0 category or higher category. Please note that we 
chose A, B, C, D so that AKLM is a collinear set. Having made this choice, 
we cannot assert that a, b, c, d completing in the 2, 0, 0, 0 category would 
necessarily imply the existence of the concurrent set aklm. All we do assert is 
that aklm or bijm or chjl or dhik is a concurrent set. Of course this same assertion 
is true for a, b, c, d completing in any higher category than 2, 0, 0, 0 also. 
Likewise we now have a'k'Vm' or b'i'j'm! or c'h'j'l' or d'h'i'k' as a concurrent 
set and a"k"l"m" or b"in3"m" or c"h"j"l" or dnh"i"k" as a concurrent set. 

Suppose aklm is a concurrent set. This says that the lines AB, CL, FG, and 
DI would be concurrent. But H is, by its definition, the point of intersection 
of AB and FG. Therefore, H would lie on CL and DI. Thus CHL and DHI 
would be collinear sets. Similarly, if instead bijm is a concurrent set, the lines 
BC, EF, AL, DI would meet in the point K. Thus AKL and DIK would be 
collinear sets. Likewise, if chjl is a concurrent set, then BIM and ALM are 
collinear sets; if dhik is a concurrent set, then BIJ and CJL are collinear sets. 
The concurrency of a'k'Vm', b'i'j'm', c'h'j'V, d'h'i'k' implies respectively the 
collinearity of DHK, CHJ; AKL, CJL; BJM, AKM; BIJ, DIK. The remaining 
quadrilateral implies that one of the following four pairs of sets is a pair of 
collinear sets: BIM, DIH\ AMK, DHK-, CHL, A ML; CHJ, BJM. 

Suppose aklm and a'k'Vm' are identifications which exist for these quadri­
laterals, then we have forced the collinear sets DIH, CLH and DHK, CHJ. 
To say that DIH and DHK are both collinear sets implies that DHIK is a 
collinear set, but this is not allowed under the hypothesis that the quadrangle 
A, B, C, D extends to the plane in a category lower than 2, 2, 2, 2, which is the 
only category with DHIK as a collinear set. 

We wish to abbreviate the argument of the above paragraph so that we can 
apply it several times. First let us label the conditions as follows: 1 means 
aklm concurrent, 2 means bijm concurrent, 3 means chjl concurrent, 4 means 
dhik concurrent; similarly we make 1' correspond to a'k'Vm', 2' to b'i'j'm', 
3' to c'h'j'V, 4' to d'h'i'k', and 1" to a"k"l"m", etc. Then the above argument 
will read " 1 , V implies DHIK." Under our assumption, three numbers hold: 
one unprimed, one primed, and one double primed. Also we n©te that the 
conclusions BIJM, CHJL, DHIK are contrary to the hypothesis. 
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Cases 1, 1', x where x is any double-primed number are eliminated by 1, V 
implies DHIK. Cases 1, 2', x are eliminated by 1, 2' implies CHJL. Cases 
1, 3', x, where x ^ 3" , are eliminated by 3', 1" implies BUM; 1, 2" implies 
DHIK; 1, 4" implies CHJL. Cases 1, 4', x are eliminated by 1, 4' implies 
DHIK. In summary, if aklrn is a concurrent set, then c'h'j'V and c"h"j"l" 
are also. In fact, if aklm is a concurrent set, we have the collinear sets A KLM, 
BJM, CHL, DHL 

Similarly cases 4, 1', x and 4, 3', x are eliminated. Since 4, 1"; 4, 3" ; 4, 4" 
imply respectively BUM, CHJL, BUM, we consider 4, 2', 2" and 4, 4', 2" 
as the remaining cases for 4. Now M, 2" implies DHIK. Therefore, if dhik is a 
concurrent set we have the collinear sets AKLM, BU, CJL, DHK. 

Cases 2, 1/, x; 2, x, V' ; and 2, x, 2" are eliminated. Since 2', 3 " as well as 
2', 4" implies CHJL, cases 2, 2', x are eliminated. Now cases 2, 3', 3 " and 
2, 3', 4" imply respectively AKLM, BJM, CHL, DIK and AKLM, BJM, 
CHJ, DIK. Thus 2, 3', x are accounted for. Now 4', x for x ^ 3" are eliminated, 
so that only 2, 4', 3" needs consideration. From 2, 4', 3 " we obtain AKLM, 
BIJ, CHL, DIK. 

Now we need only to consider the cases involving the concurrency of chjl. 
Cases 3, 3', x and 3, 4', x are eliminated. Then 3, 1', 2" is the only possible 
3, V, x case. Also 3, 2', 1" and 3, 2', 2" are the only possible 3, 2', x cases. 
Thus we obtain: AKLM, BIM, CHJ, DHK; AKLM, BIM, CJL, DIH; 
AKLM, BIM, CJL, DHK. 

In summary, the only permissible combinations of collinear sets are displayed 
below in compact form : 

AKLM AKLM AKLM AKLM AKLM AKLM AKLM AKLM 
BJM BIJ BJM BIJ BIM BIM BIM BJM 
CHL CJL CHJ CHL CHJ CJL CJL CHL 
DIH DHK DIK DIK DHK DIH DHK DIK 

Thus, in any event, if these quadrilaterals extend by the 2, 0, 0, 0 or higher 
category, then A, B, C, D extends by the 2, 1, 1, 1 category. By applying the 
permutations on A, B, C, D, one discovers that the first six displayed above 
are of the same type, and the last two are of the same type. Let us study the 
latter type first. Let us assume that AKLM, BIM, CJL, DHK are collinear 
sets. Then upon examining the quadrilateral a, b, c, d, we discover that chjl, 
dik, bij are concurrent sets. Now dhik and bijm are not concurrent sets. The 
only possible identification with the lines a, k, l, m is aktn. Thus this quadri­
lateral completes in category 2, 1, 1, 1 or 2, 1, 1. Suppose we have category 2, 1, 
1 ,1 ; then by considering the map a —> C, b -* B, c—> A, d—^D, this type of 
completion is dual to AKLM, BIM, CHJ, DHL But applying the results 
already obtained in a dual fashion, the three quadrangles associated with the 
quadrilateral a, b, c, d (in a dual fashion to the three quadrilaterals associated 
with the quadrangle A, B, C, D) singly generate the plane but do not all com­
plete in the 2, 0, 0, 0 or higher category since AKLM, BIM, CHJ, DHI is not 
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displayed above. Suppose we have category 2, 1, 1 for the quadrilateral a, b, 
c, d, then by the same argument there would be some quadrangle associated 
with the quadrilateral which would not complete in the 2, 0, 0, 0 or any higher 
category. 

Now we assume that A KLM, BU, CJL, DHK are collinear sets. We now 
introduce a new quadrilateral which we shall call a, b, c, d as follows: a = CE, 
b = EF, c = FG, d = CG. In this new notation e = EG, f = KM, g = CF 
(note that A = fg}, h = AE, i = IM, j = CL, k = FL, I = iX , m = AG. 
Immediately we have akm = D, bjrn — J,ch — H, dhk = B. This quadrilateral 
singly generates the plane but none of the sets akltn, bijm, chjl, dhik can be 
concurrent. Thus this quadrilateral lies in a category lower than 2, 0, 0, 0. 

From Lemma 3 we can now obtain : 

THEOREM 2. In any singly generated plane of order greater than three there is a 
quadrangle or quadrilateral which extends to the whole plane in a way which does 
not fall in the 2, 0, 0, 0 category or any higher category. 

COROLLARY. In any self-dual singly generated plane of order greater than three 
there is a quadrangle which extends in a way which does not fall in the 2, 0, 0, 0 
category or any higher category. 

6. Limitations to th is approach. Although the planes of orders 2 and 3 
are easily removed from our discussion, and Desarguesian planes have special 
identifications, widely different types of planes may have some of their identifi­
cations alike. In particular, we shall now show an example where a dual 
Veblen-Wedderburn plane and a Hughes plane not only extend in the same 
category but this extension is of the same type within the category. We use the 
starred lines common to planes 1.44.1.1 and 1.44.1.2 given in (10). In particular, 
let A = (0, 0), B = (1, 0), C = (3, 1), D = (4, 2). Then AB: y = 0, AC: 
y = 6x, AD: y = 4x, BC: y = 7x + 5, BD: y = Sx + 6, CD: y = x + 7. 
Please note that by 7x + 5 we mean to imply that the line has slope 7 and 
3>-intercept 5. We do not imply any underlying algebraic structure for multipli­
cation or addition. Then E = (5, 0), F = (2, 3), G = (5, 6). Then EF: 
y = 2x + 5, EG: x = 5, FG: y = x + 4. Then H = (8, 0), I = (5, 8), 
J = (1, 4), K = (0, 5), L = (5, 7), M = (1). The identifications to be made 
are CJ = CL = JL, DI = DK = IK, KL = KM = KL, IJ = IM = JM. 
No other identifications can be made in this partial plane. 

The author wrote a SWAC routine to carry out the above computations. 
These computations are easily checked by hand but tedious in searching the 
original incidences. Therefore, the author adds: CJ: y = 8x + 8, DI: 
y = 5x + 5, KL: y = x + 5, / / : y = x + 3. 

7. The singly generated plane of Knuth and Walker. In (12) several 
specific planes were shown to be singly generated. Since the writing of that 
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paper, the author has learned by private communication from Lombardo-
Radice that Cofman has shown that every finite Hall plane is singly generated. 
Therefore, hopefully many classes of finite non-Desarguesian planes may 
eventually be shown to be singly generated. The purpose of this example then 
is to show at least one more type of plane which has the possibility of being 
singly generated. 

The example which we shall use is a geometry of order 32. By Bruck's 
theorem (7, 9), any proper subplane is of order 2, 3, or 5. As in the previous 
examples, see (12), we can soon discover if the quadrangle completes to a 
plane of order 2 or 3. In order to handle possible planes of order 5, we recall 
that the only such is Desarguesian (2). Therefore, we point out an identification 
forced in Desarguesian geometries, already known in the study of Moebius 
nets (18). Suppose A, B, C, D is a quadrangle and the points E, F, G obtained 
as elsewhere in this paper are not collinear. Then non-degenerate triangles 
ABC and GFE are perspective from D. Applying Desargues' theorem, HIK is 
a collinear set. 

The plane due to Walker (20) and Knuth (13) and called P ( l ) in the latter 
paper is the example. We display below part of the multiplication table for the 
algebraic system which co-ordinatizes the plane. The additive part of the 
system forms the elementary Abelian group of order 32. We represent the 
elements in binary notation; therefore, addition takes place without carries. 
Finally both distributive laws hold. 

X 10000 01000 00100 00010 00001 

10000 10000 01000 00100 00010 00001 
01000 01000 00100 00010 00001 10100 
00100 00100 00010 01001 10100 00101 
00010 00010 00001 11010 11110 10111 
00001 00001 10010 11011 10000 oiiio 

In this case, the line y = xm + b will mean the set of points (m) at infinity 
and (x, y) such that the product xm obtained from the table above (and the 
distributive laws) when added to b by the additive elementary Abelian group 
yields y. We take A = (00000, 00000), £ = (00000,10000), C = (10000,00000), 
D = (00001, 00001). Then AB: x = 00000, AC: y = 00000, AD: y = x, 
BC:y = x + 10000, BD:y = x(10010) + 10000, CD: y = x(10101) + 10101. 
Then E = (00000, 10101), F = (00100, 00000), G = (10000). And EF: 
y = x(10011) + 10101, EG: y = x(10000) + 10101, FG: y = x(10000) + 
00100. Thus Af B, C, D does not complete to a plane of order 2. Finally 
H = (00000, 00100), / = (10101, 00000), K = (10111, 00111). To show that 
A, B, C, D does not complete to a plane of order 3 or 5, it suffices to show that 
H, Iy K are not collinear. The line joining H and I is: y = x(01101) + 00100. 
Also (10111) (01101) + 00100 9* 00111. Therefore, this plane is singly 
generated. 
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