REMARK ON THE DUAL EHP SEQUENCE
YASUTOSHI NOMURA
Dedicated to Professor K. Nosuiro for his 60th birthday

In this note we will improve the dual EHP sequence which has been con-
structed in [6] by showing that that can be extended by one term. We then
observe .that this can be used to' deduce a result which has been announced by
T. Ganea in [4]. As another application we will establish a theorem which
asserts that, under certain conditions, a principal - fibration with a loop-space
as fibre is prmc1pally equlvalent to the one .induced by some map.

T hroughout this note, we make use of the notations and results described
in [5] and [6] without specific reference.  In partxcular Ef p and Eg denote
the mapping track of a triad A —f—> Y<— B and the fibre of g respectwely Dually,
Cr,¢ and C; denote the ‘mappihg cyhnder of a cotrlad A(f—X——+B and the
cofibre of g respectively. We denote the loop and (reduced) ‘suspension functor
by 2 and S respectively. We use n(X, Y) to denote the set of based homotopy
classes of based maps XY, but we will permit ourselves not to ‘distinguish
between a map and the homotopy class it represents.

1. The dual EHP sequence
For a triad A—f—>Y<—g—B, we introduce in [6] the maps
¢ 2 Cp,p,>Y and 7' : SEf,¢—>Creg
which make the following diagram homotopy-commutative:

EftEg ——— s En’

J
P A v v SP _,SA
/ i Q v
E,,,,,\ P s B
P B/iz’ %
5' 77’ SB
fVg N k v
AVEB > Y > Croe SAVSB,
Received June 22, 1966.
269

https://doi.org/10.1017/5S0027763000024375 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024375

270 YASUTOSHI NOMURA

in which the columns are fibre triples, the middle row is the sequence associated
- P P, . : L L.
with the cotriad A<—Ey ;— B consisting of projections, and 7, &, £ are ap-

propriate injections. The map %/, which is defined by

(a, 45) 04551
7(a, 1, b;8)= r(élelf) 1453
(b, 4—4s) 34554

for ac A, b€ B, re Y’ with‘ fla) = (0), g(&) =7(1), induces the “suspension”
&* : n(Crog, V) >n(SEs,g V).
The composite & = Q°4, which is given by
KL((1-(a, VDR, B))=(a, a+B,b; 1)
forae A, b€ B, a, B Y with f(a) =a«(0), g(d) QB(I), a(1) = B(0) = *, induces
the dual Hopf invariant
% n(SEfg, V) —>n(Ef*Eg, V).

Now, the cooperation of SAV SB on Cr in the Puppe sequence for S Vg,

defines an action of 7(SAVSB, V) on n(Crw, V). We denote the result of

the action of (a, B) €n(SA, V)®=(SB, V) on ven(Cre, V) by (a, B)Tov.
Then we can easily verify the following

Lemma 1.1. &*((a, B)Tv) = (SP)*a + E*(v) — (SP)*R.
. B A
Next, given v : Cree >V, let u# denote the composite Y—>Cf;gl>V. v
determines the liftings 7 : A->E4 and §: B> E. of fand g with respect to
the projection E,~ Y. We denote the adjoint of €*(v) by 0 : Efz»2V. Let

h i Ef>Efgand j: : Eg—Ef, ¢ denote the obvious injections. Then we have

LemmMma 1.2. The following diagram is homotopy-commutative ;

Jors Pyoj
0ojl f
)
2V —'———>E1¢
N
—0°jz . g
Pz"jz

Eg _—__-—-ﬁ‘ ‘B7
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where i is the inclusion of the fibre.
Proof: According to Proposition 5. 14 of [6], we have
mi{0, PY (P} =Pi(f),

where m : QVx Ey,—~ E, is the action of 2V on E,. Note that Pioj, and P:°j
are trivial maps. Consequently, by composing with j;, we see that z'*b(ﬁa 7)) =
FoPioji. Similarly for homotopy-commutativity of the lower square.

The main purpose of this section is to improve Theorem 5.8 of [6] as

follows ;

THEOREM 1.3. Suppose that f, g and Y are p-, q- and r-connected respectively,
and that #i(V) =0 for iZp+q+r+2. If A, B and Y have the homotopy type
of CW-complexes, then the sequence

£ 3 (9223

74
T(E7*Eg, V)¢———n(SEys,g V)¢——n(Cfrg V)
is exact.

Proof. Since E;*Eg is (p+ g)-connected, it follows from a theorem of
Sugawara [9, Theorem 6.5] that the sequence

“*

sk 5
n(E;*Eg, V)ﬁ—,z(c,,b,,z, Vie—=zlY, V)

is exact. Consequentiy, given p = (SEs, V) with « “*(0) = j*Q*(p) =0, there
exists r € n(Y, V) such that Q™(p)=£""(r). Since

ro(ng)ok,: T°5’°i1:p°Q°il= *

for the injection k2, : A—> AV B, we see that (fVg)*r=0, so that r =k for

some v € n(Cyyg, V). Thus,
Q* E*(v) = £k (v) = Q*(p).

Now, by Lemma 1.1’ in [6], we can find a € #(SA4, V), B€a(SB, V) such that
0= (SP)*a + €*(v) — (SP,)*B, whence, by Lemma 1.1, we have

E*(a, B)TV) =0,
which completes the proof of our theorem.

CoroLLARY 1.4. (Sugawara [9, Lemma 7.4]). Let Y be a r-connected space

which has the homotopy type of a CW complex and let 'V be such that ni(V) =0
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for iZ3r+2. Then an element of n(QY, 2V) is primitive if, and only if, it is a

suspension element, i.e., lies in the image of =Y, V)-n(2Y, 2V).

This follows by considering a triad * > Y« * and applying Lemma 5.1 in
[61.

Now consider a triad A—f-> Y(-g—B in which f and g are fibrations with fibres
Fy, F» respectively. Let Ker (f : g) be the pull-back, ie., Ker(f : g)=
{(a, DIf(a) =g(b)). Letn :Ker(f:g) —»A m: Ker(f : g)- B denote the
projections. Then the map C, .,—Y corresponding to &/, is essentially the

same as the Whitney sum of f and g (as defined by I. M. Hall [3]). It is also
known as the fibre-join of f and g (see [1]). To %' corresponds the map

& SKer(f ; g)->Crue

which is given by

— ] (a.25s) if 251
Ela, b:s)= ]
| b, 2-29) if 2521
Also, in this case, to the dual Hopf invariant &  corresponds
&  F*F,>SKer(f : g)
which is defined by setting
L1 -t)a®th) =(a, b; t).

With these notations we have

CoroLLARY 1.5. Suppose Fi, F, and Y are (p —1)-, (q—1)- and r-connected
respectively and let 'V be such that ni(V) =0 for iZp+q+r+2. If A, Band Y
have the homotopy type of CW-complexes, then the sequence

=% ok

&G
n(Fi+Fs, V)ﬁ//—n(s Ker(f : @), V)e——n(Cfsg V)
is exact.

Finally we observe that the following result announced in [4] can be

derived from Lemma 1.2 and Theorem 1. 3 by considering a triad *——>Y<-£——B.

THEOREM OF GANEA. Let F*->B-€—>Y be a fibration in which Y is (m—1)-
connected and suppose wi(F)=x0 only if n<i=n+2m—2 m=1, n=1. Let
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0 : F-> 2V be a homotopy equivalence such that the composite

0
QY+*F—SF—V
is nullhomotopic, where the first is obtained by Hopf construction associated with
the action QY X F—>F and 0 is adjoint to 0.  Then there exists a map u : Y-V

and a fibre homotopy equivalence B~ Ey with induced fibre equivalence in 6 € n{F, V).

Moreover, it follows from Theorem 5.12 in [6] that, if V is an H-space
with 7;(V) =0 for i=m+#n+ min(m, n+ 1), maps « in the above forms a coset

of the image of
P p(SCeSY, V) -alY, V),

where % = (SE, 1&> is the cojoin product of the adjoints of Sk : SY -SCs
and the identity 1sy of SY.

2. An application to principal fibrations in the restricted sense

In [7] we strengthened the notion of principal fibrations in the sense of

i .. .o
Peterson-Thomas [8] as follows. A fibration F—> E——B is said to be principal
in the restricted sense, if F is a homotopy-associative H-space (with inversion)

and if there exist maps
yp . FxE->Eand 2 : Ker(p:p)~»F

subject to the following conditions :
(1) pu(1pxi) =1iu, where yy : Fx F—~ F is the multiplication of F,

(ii) pu = pgn, #{q:, p} =q where qi : FXE—-F and ¢ : FXE~E are the
projections,

(ii1) p(pex 1s) = pullpx u) where =5 indicates “is vertically homotopic to”,

(iv) plh. p1) = sp. where pi, p» : Ker (p : p) > E are the projections,

(v) {0, 1} ~ 51z where 1z is the identity map of E.

For example, a principal fibre bundle and Ef— X induced by f: X - Y from
the contractible path space over Y are principal fibrations in the restricted
sense. Note that, from (iv), %#{p., pi} =~ —h where {p,, p.} : Ker (p : p)
—~Ker (p : p) is the permutation.

Lemma 2.1. (A, pi} : Ker(p : p)>FxE and {q, u}: FXE->Ker (p : p)

are mutually inverse homotopy equivalences.

Proof. This follows from the following:
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(qzv ﬂ){hv P1>:<P1. Pz} by (iV),
{h, p:X{a, p}={aq1, @} by (ii).

1,1 h
Lemma 2.2. The composite EL—}-»Ker( b : p)—>F is nullhomotopic, where
1= ].p:.
Proof. By (v) and (ii) we have
R{1, 1} =h{q, p}{0, 1}=q{0, 1} =0.

LemMma 2.3. Suppose F has the inversion o : F->F. Then the composite
i h
FxF—Xer(p : p)—>F
is homotopic to the composite
T lpxw o
FxXF—Fx F———FXx F—>F,
where | is the inclusion and v is the switching map.

Proof. We define n: FxF->Fx F by setting n(x, x/) = (&, m(x, x')).
Since F has an inversion, » is a homotopy equivalence. We see at once that
mllp X w)rn is homotopic to the projection Fx F->F on the first factor. Now,

since the diagram

FxXF ___n_.> FXF
lp*Xil l
<q21 ,U} {
FXE —————>Ker(p : p)
h
q J
F

is homotopy commutative, it follows that A/% = u(1r X w)rn, whence the desired

conclusion.
The goal in this section is to prove the following

)
THEOREM 2.4. Let F ——>E-p°>B be a principal fibration in the restricted sense
such that B is m-connected and njl F) =0 only if n+1<j=2n+m+2. Suppose
there is given an H-homotopy equivalence 6o : F—>R2V. If E and B have the
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homotopy type of CW-complexes, then there exist a map u * B>V and a fibre
homotopy equivalence p : E - E, with induced fibre equivalence in 6y n(F, 2V),
so that the diagram

. " :
FXE ———s F

0ox7)l b
m

RQVXE,——>FE,

is homotopy commutative, where m is the action of 2V on Ey.

Proof. We apply Corollary 1.5 to the triad ELBJ—E and use Lemma
1.2.for 6=(—6@)oh : Ker (p : p)—>Q2V.
First we show that _Z”*(#) =0 for the adjoint ¥ : SKer(p : p) » V of 6.

Consider the diagram

4

I'+F S Ker(p:p)
Sl .
S[,Ua(ero))r]
B+ ( = ) S(Fx F) SF
S( - 00)
</ el
V=2V e > SV —> 7V,

in which the row in the bottom is the fibre sequence constructed for the triad
*>Ve+* By Lemma 2.3, we see that the above diagram is homotopy-com-
mutative. Since &'o.% >0, it follows that

G0 7 =55~ 6:)(Sh).Z =0,

as required.

By the assumption on connectedness, Corouary 1.5 now implies that
E* () =0 for some v : Cpop— V. Let % : B~V denote the composite
Bi>Cﬁvp—v+V. Then, by Lemma 1.2, we obtain the homotopy commutative

diagram
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i

)

l

0{i, 0}
; —

- 6{0, 7}

’1}——)3(——\1

i’

where 7, g are liftings of p. Using Lemma 2.3, we see that 6{i, 0}~ 6.,
- 0{0, i}~6,. By Proposition 5.14 of [61, m.{ —0, /p1} = g and, in turn,
my(Box F){h, p1} =Gulh, p} by (iv). This, together with Lemma 2.1, yields
m(Gox f) = gp.

But 7~ 72, because 7 and Z define the separation element in n(E, 2V), the
adjoint of which is the composite

S{1e, 1 -4
‘———>SKer(p p)— '")CpAp‘—)V

SE

This composite is nullhomotopic by Lemma 2. 2. This shows that m{6,x D} = pu
for =7, which completes the broof of the theorem.

3. The dual situations
In this section we briefly state the results which are dual to the previous

sections. With a cotriad

4l x%p

we associate in [6] the following homotopy commutative diagram
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in which 7, a generalization of the Freudenthal suspension, is defined in §4 of
[6], the Hopf invariant H is defined in §6 of [6], F’ is the map defined in §6
of [6], and I, L, k are the appropriate mjectlons

LemMma 4.1. For ac€aV, 2A) and B n(V, 2B) we denote the result of
the action of {a, B} € n(V, QLAXB)) on vE rn(V, Efsg) by {a, B} Tv. Then we

have
2@, By Tv) = (2I)wa + 75 (0) — (2h).B.-
v
-Now, given v€.r(V, Efsg), we denote the composite V-—>Efsg—>X by «;
then v determines the extensions
f: Cu—>A, g:C,»B

of f, g. Let 6 €=(SV, Cy,¢) denote the adjoint of 7.(v), and let z : Cu >SVV Cy
be the cooperation. Then we have

Lemma 4.2. »*{0, Lg) =1 1.

Lemma 4.3. The following diagram is homotopy-commautative

ph
A —> (s

7 Tplo

Cu—-ﬁSV

g ’ lpz(—d)
DL
B —>

Ce

in which p; : Crg—>Cy, p2 ¢ Cr,e—Cq are the quotient maps which identify B, A

with basepoint respectively.

In the sequel we assume that 'f, g and X are p-, ¢- and 7r-connected res-
pectively, and that V is a CW-complex. Assume further A and B are a-, b-
connected respectively.

LemMma 4.4. The sequence

(V, X)—>n(V, Ei,,1,)—n(V, Cv)
is exact for V such that dim V<p+gq+7r—1 (cf. Theorem 4.3 or Corollary 4.5
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in [61).

The proof of the following theorem is similar to tha;t of Theorem 1.3,
except that we use the fact that F' is [p+ ¢+ min(r+1, p, ¢, max (@, b)) — 1]-
connected by Lemma 6. 6 in [6].

THEOREM 4.5. The sequence

7 H.
7(V, Egsg)—>n(V, 2Cs,¢)—>n(V, Cs2Ce)
is exact for V with dim V<p+ g+ min(r+1, p, ¢, max (a, b)) — 2.

CoroLLARY 4.6 (Theorem 5.2 in [2]). If X is r-connected, then the sequence

i H,
2(V, X)—>n(V, 95X)—>n(V, SX4SX)
is exact for V with dim V<3r+1.

CorOLLARY 4.7. Assume f and g are cofibrations. Then the sequence

Ey Hy
n(V, Efsg)—>n(V, 2 Coker<f : g»)—>n(V, C2D)

is exact for V with dim V<p+ g+ min(»+ 1, p, q, max (a, b)) —2, where C, D are
cofibres of f, g respectively, Coker{f : g> is the quotient space obtained from AN B
by the identifications f(x) = g(x), x& X and E, H are defined as follows:

- j a(2t) 0211,
E(x, axpP)(t) =
| p2—-28 1=21<2,
H=1i(29), q : Coker{f : g>->Cokerlf : g2/X=CVD, i: 2ICND)-»C4,D.

It follows from Lemma 4.3 and Theorem 4. 5 that

THEOREM OF GANEA. Let g : X— B be a cofibration with m-connected cofibre
D and let X be (n — 1)-connected. If there is a homotopy equivalence 6 : SV—D
such that the composite

] H
V—2D= 2Ce——>SXD

is null-homotopic, where § is adjoint to 6, and if dim V=n+m+ min(m, n) -2,
then g is induced by some map u : V-X.

Now we strengthen the notion of principal cofibrations introduced in [10]

as follows. Let A—'—>B—E—>C be a cofibration with cofibre C= B/A and let €
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be an H'-space which is homotopy associative. @~ We say that i is a principal

cofibration in the restricted sense, if there exist maps
@ B-CVB, h:C-Coker<i; i)
subject to the following conditions :

(i) (1o V@Q)u' = mq, where uy : C—>CV C is the comultiplication,

(i1) p'i = isd, {&2, p'} =4, where i, : C-»CV B, i, : B->CV B are the injections
and {7, #'} : Coker<i : i>~>CV B is the map determined by 7 and ',

(i) (ubV1p)p! =4(1c V u') ! where =4 indicates ‘‘is homotopic rel. 4 to”,

(iv) {&, j1} #' =44, where 7, j» : B->Coker<: : > denote the injections,

(v) {0, 15tp'=415.

Then we can readily verify the following properties:

(vi) {h, 1} : CV B> Coker<i : i> and {sé, o'} : Coker<i; i> > CV B are
mutually inverse homotopy equivalences.

(vii) C—h—>Coker<i ) {—152—})3 is null-homotopic.

h
(viii) The composite C——Coker<i : i>/A = CV C is homotopic to

’
Y2 eV . . . . e 4.
C-HCV 250V Cc-5CV C where o is the inversion and r is switching
map.

With these preliminaries we can prove

Tueorem 4.10. Let A—'éB—LC be a principal cofibration in the restricted
sense such that A is m-connected and C is an n-connected CW-complex with dim
C=2n+min(m, n) —1. Suppose given an H' homotopy equivalence 0, : SV C.
If V has the homotopy type of a CW-complex, then there exist a map u : V- A
and a homotopy equivalence i : Cy— B with induced cofibre equivalence 6, so that
the diagram

l'
Cy ———— SVVC,

7 lmv?
!’

B —2X S CVB

is homotopy commutative, where m' is the coaction of SV on Cu.
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Added in proof. There is an error in computirig the connectedness of -Cy, ¢
in §6 of [6]. Theorem 6.2 of [6] should be stated as.follows: Let f, g be p-,
q-comiected réspeétively and let X, A, B be r-, a-, b-connected respectively.
Then p is [p + ¢+ min (p, ¢, max (g, b)) — 1]-connected and » is [p + ¢+ min (p, g,
7+ 1, max(a, b)) - 2]-connected. The word ‘‘min(p, q, 7+ 1)” in Lemma 6.6 and
Theorem 6.8 of [6] should be replaced by the one “min( p, q, r+1 max(a, ).
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