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Abstract

We derive some structural properties of a trifactorised finite group G = AB = AC = BC, where A, B, and
C are subgroups of G, provided that A = A, X A, and B = B, X B, are n-decomposable groups, for a set
of primes 7.
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1. Introduction

Throughout this paper all groups considered are finite. Within the study of factorised
groups one has frequently to consider trifactorised groups, that is, groups of the
form G = AB = AC = BC, where A, B and C are subgroups of G. This occurs, for
instance, when aiming to get information on a normal subgroup N of a factorised
group G = AB, with A, B subgroups of G. In this case, an important tool is to
analyse the structure of the so-called factoriser of N, denoted by X(N), which is the
intersection of all factorised subgroups containing N. (A subgroup S of G = AB is
factorised it S = (AN S)BNS)and AN B<S.) The factoriser subgroup X(N) turns
out to be a trifactorised group; more precisely, X(N) = N(A N BN) = N(BN AN) =
(AN BN)(BNAN) (see [1]).

One of the classical results in the literature on finite trifactorised groups is due to
Kegel [13]. He proved that a finite group G = AB = AC = BC, which is the product
of two nilpotent subgroups A and B, is nilpotent (supersoluble), provided that C is
likewise nilpotent (supersoluble). A corresponding statement holds when A and B
are nilpotent and C belongs to a saturated formation containing all nilpotent groups
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(Peterson [1, Theorem 2.5.10]). It is worth emphasising that such a group is soluble,
by the celebrated theorem of Kegel and Wielandt on the solubility of a product of two
nilpotent groups.

Some criteria for the z-separability of a trifactorised group, for a set of primes n,
under assumptions of existence, conjugacy and dominance of Hall -subgroups, were
obtained by Pennington in [14] (see Theorem 3.1 and Corollary 3.5 below). A much
deeper result in the universe of all finite groups was proved by Kazarin in [7] using the
classification of finite simple groups: if the group G = AB = AC = BC is the product
of three soluble subgroups A, B and C, then G is soluble. Some related results were
obtained in [3], again in the universe of soluble groups, by considering some well-
known families of subgroup-closed saturated formations of so-called nilpotent type
(see [5] for an account of such classes of groups).

In this paper we go further with the research on trifactorised groups, dealing with
m-decomposable groups. A group X is said to be m-decomposable for a set of primes 7,
if X = X; X X, is the direct product of a 7-subgroup X, and a n’-subgroup X, where
7’ stands for the complement of 7 in the set of all prime numbers. For any group X
and any set of primes o, we use X, to denote a Hall o-subgroup of X. In particular,
X, will denote a Sylow p-subgroup of X, for a prime p.

For our purposes the following result is crucial.

THeorEM 1.1 ([12], Main Theorem). Let  be a set of odd primes. Let the group G = AB
be the product of two m-decomposable subgroups A = A, X A and B = By X By. Then
AxB; = B, A,, and this is a Hall n-subgroup of G.

This theorem, whose proof uses the classification of finite simple groups, is part of
a development carried out in [8, 9, 11, 12] and motivated by the search for extensions
of the theorem of Kegel and Wielandt mentioned above (see also [10]). We apply
Theorem 1.1 to obtain new results on trifactorised groups within the general universe
of finite groups.

The notation is standard and is taken mainly from [6], and we refer to this book
for the basic terminology and results about classes of groups. We refer to [16] for the
elementary facts regarding m-separable groups for a set of primes 7. In particular, we
denote by /,(G) the m-length of a r-separable group G. If X, Y are subgroups of a group
G,weset X' =(x¥' | xe X,yeY);in particular, X is the normal closure of X in G.

2. Preliminary results

We will frequently use the following well-known result, whose proof is
straightforward.

Lemma 2.1. Let the group G = AB be the product of the subgroups A and B. Assume
that D C A N B and that D is a normal subgroup of B. Then D¢ < A.

The next lemma is a reformulation of a result of Kegel, later improved by Wielandt,
which appears in [1, Lemma 2.5.1] (see also [9, Lemma 2]).
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Lemmva 2.2. Let the group G = AB be the product of the subgroups A and B and
let Ag and By be normal subgroups of A and B, respectively. If AgBy = ByAo, then
A§By = BoAS for all g € G.

Moreover, if Ay and By are m-groups for a set of primes n, and O,(G) = 1, then
[AY, BOG] =1.

For a set of primes 7, we recall that a w-separable group is a D,-group, that is,
every m-subgroup is contained in a Hall 7-subgroup, and any two Hall 7-subgroups are
conjugate in the group. We will use, without further reference, the following fact on
Hall subgroups of factorised groups, which is applicable to m-separable groups (see [1,
Lemma 1.3.2]).

Lemma 2.3. Let G = AB be the product of the subgroups A and B. Assume that A and
B have Hall rt-subgroups and that G is a D,-group for a set of primes . Then there
exist Hall m-subgroups A, of A and B, of B such that A, By is a Hall n-subgroup of G.

We need specifically the following result, whose proof uses the classification of
finite simple groups.

LemMma 2.4 ([15], Theorem 7.7). Let G be a finite group, A < G, and 7 a set of primes.
Then G is a D-group if and only if A and G/A are D, -groups.

3. Main results

Our first results on trifactorised groups, Theorem 3.2 and Corollaries 3.3 and
3.4, provide an alternative approach to that of Pennington [14] concerning the
m-separability of trifactorised groups. The main goal is to avoid hypotheses of
existence, conjugacy and dominance of Hall w-subgroups (D,-properties), in contrast
to Pennington’s results. This will follow as consequence of Theorem 3.2, which
provides the D,-property of a trifactorised group, as a first application of Theorem 1.1.

We gather first the above-mentioned results of [14]. We recall that a group G is
n-closed for a set of primes r if the m-elements of G generate a normal z-subgroup.

Tueorem 3.1 ([14], Theorem, Corollary 2). Let G = AB = AC = BC be a Dx-group
where A and B are n-closed subgroups and C is a n-separable subgroup, for a set of
primes n. Then:

(1) G is m-separable and 0,(C) C O,(G) and O, (C) C O »(G);

2) LG <LLICO)+1and l(G) < 1(C)+ 1;

(3) if A and B are also n’-closed (that is, A and B are n-decomposable), then
:(G) = 1;(C) and 1:(G) = 1, (C) (and also O, (C) C O (G)).

THEOREM 3.2. Let m be a set of odd primes. Let the group G = AB = AC = BC be
the product of three subgroups A, B and C, where A = Ay X Ay and B = B; X By are
n-decomposable groups and C is a Dy-group. Then G is a Dy-group.
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Proor. Note first that A, B; is a Hall 7-subgroup of G by Theorem 1.1.

We argue by induction on |G|. The hypotheses of the result hold for factor groups.
Hence whenever N is a nontrivial normal subgroup of G, the inductive hypothesis
implies that G/N is a D,-group. If in addition N is a D,-group, then the result follows
by Lemma 2.4. In particular, we may assume that O,(G) = O, (G) = 1. By Lemma 2.2
it follows that [AY, BY] = 1.

We consider now the case where A, # 1 and B, # 1. We claim that AS N BS = 1.
Otherwise, if N is a minimal normal subgroup of G contained in AY N BY, then
[N, N] =1, that is, N is abelian and then either N < O,(G) =1 or N < O(G) =1,
a contradiction.

On the other hand,

AG = AL B = AR = AL[An Bel 2 1

U

and
BS = BPP M = BY = BB, Ap] # 1.

Let H be a m-subgroup of G. We aim to prove that H < (A, B,)? for some g € G.
We apply induction on the factor groups G/AY and G/B¢, and may assume that

H< BnAﬂ[Azr’ Bn’]

and
H < (AxBulBr, Aw])® = (AxBylBr, Ax])’

for some g = ab with a € A, b € B, since B;[B;, Ay] is normal in G and A, is normal
in A. Consequently,

H < (BﬂAlr[Aﬂ’ Bﬂ’]) N (AﬂBn[Bﬂ’Aﬂ’])b = ((AnBﬂ[Am Bn’]) N (AnBﬂ[Bn’An’]))h
= (Aian([Am Bn’] N (AﬂBn[Bm An’])))by

since A;[A, Br] is normal in G and B, is normal in B.

We claim that [A,, By] N (AxB;[Bx, Ax]) is a m-group. Since A,B, is a Hall
n-subgroup of G, this will imply that H < (A;B;([Ax, Bx] N (AzBx[By, Ax 1))’ =
(AzB;)", as we aimed to prove.

Let ¢ € [Ax, Bv]1 N (AxBr[Br, Ar]). Then ¢ =td with t € A;B, and d € [B;,Ar].
Hence, t = cd™'. But [A;, By ] N [By, Axy] =1 and [[Ax, By, [Br, Ax]] = 1, because
A% N BY =1 and [A9, BS] = 1. Consequently, it follows in particular that the order of
¢ divides the order of ¢, which is a 7-number. This proves the claim and the result in
the case under consideration.

In the case where A; = 1 and B, = 1, the group G has Hall 7-subgroups and Hall
n’-subgroups, which implies that G is a D,-group (see [2]).

Hence, we may assume without loss of generality that A, = 1, A # 1, B, # 1 and
By # 1. Since G =AB=AC = BC and A, = 1, it is easy to deduce by order arguments
that B, < C. Hence, the facts that B, < B and G = BC imply, by Lemma 2.1, that
B¢ < C. Set N = B¢. Since C is a D,-group, it follows that N and so also G are
D,-groups, by Lemma 2.4, which concludes the proof. O
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CoroLLARY 3.3. Let 7 be a set of primes. Let the group G = AB = AC = BC be the
product of three subgroups A, B and C, where A = A; X Ay and B = B, X B, are
n-decomposable groups and C is n-separable. Then G is n-separable.

Moreover, O,(C) C 0,(G) and I,(G) = [;(C) (and also O, (C) C O (G) and 1, (G) =
Lw(C)).

Proor. We may assume that 7 # @ and 7’ # (. Let o € {n, 7’} such that 2 ¢ . Then
C is o-separable and so C is a D,-group. By Theorem 3.2, G is a D -group and the
result follows by Theorem 3.1. O

The following result is easily deduced.

CorOLLARY 3.4. Let it be a set of primes. Let the group G = AB = AC = BC be the
product of three subgroups A, B and C. If A, B and C are n-decomposable groups,
then G is n-decomposable.

It may be of interest to compare Corollary 3.4 with the following result, which
appears in [14] as a corollary of Theorem 3.1(1). Indeed, Corollary 3.4 may also be
seen as consequence of the following result together with Theorem 3.2.

CororLARrY 3.5 ([13, Satz 1], [14, Corollary 1]). Let G be a Dy-group. Then G is
n-closed if and only if there are subgroups A, B and C of G, all n-closed and satisfying
G =AB=AC = BC.

The following example shows a trifactorised group G = AB = AC = BC with
subgroups A, B and C such that A and B are n-decomposable but G and C are not
m-separable.

ExampLE 3.6. Consider X = Alt(5) the alternating group of degree 5 and let G = X X X.
Let ¥,Z < X with Y = Alt(4) and Z = Cs the cyclic group of order 5. Let A =Y X Z,
B=27ZxY, and let C = D(X) = {(x, x)| x € X} = A5 be the diagonal subgroup. Set
m={5}, son’ ={2,3}. Then G=AB=AC = BC and A and B are m-decomposable
groups, but G and C are not n-separable.

We show next that under the hypotheses of Corollary 3.3 the n-length of the group
G can be arbitrarily large.

ExampLE 3.7. Consider P a nontrivial r-group and Q a nontrivial 7’-group, for a set of
primes 7. For every i > 1, we define inductively a group X; as follows:

Xi=P, Xo=P~Q
Xi=X;_1~P, X=X~ Q wheni>3,i Odd,
where R ~ § denotes the regular wreath product of R with S, for any pair of groups R
and S.
Consider X = X,, for any positive integer n. Write X)) = X = X and set G =

XD % X@_ Take X a o-Hall subgroup of X, for each o € {r, 7’} and i = 1,2. Now
let A=X"x X2, B=xXx X% and C = D(X) = {(x, x)| x € X} = X the diagonal

https://doi.org/10.1017/S0004972717001034 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972717001034

[6] Finite trifactorised groups 223

subgroup. Then G = AB = AC = BC, A and B are n-decomposable groups, C and G
are m-separable and [;(G) = [,(C) is either n/2 or (n + 1)/2, depending on whether n is
even or odd.

It is well known that the Fitting subgroup of a product of two nilpotent groups is
factorised (see [1, Lemma 2.5.7]). As an application of Corollary 3.4, we obtain the
following generalisation of that result for 7-decomposable groups. A particular case
in the universe of finite soluble groups was obtained in [4, Theorem 2].

ProprosiTiON 3.8. Let F be the class of all n-decomposable groups, for a set of primes
n. If G = AB is a m-separable group and A and B are F -groups, then the F -radical G
of G is a factorised subgroup, that is, Gy = (G N A)(G# N B) and A N B is contained
in G¢. (Recall that G = O,(G) X O (G).)

Proor. Assume that the result is not true and let G be a counterexample of minimal
order. Since G is m-separable, G = O,(G) X O, (G) # 1, and the choice of G
implies that the 7 -radical L/G¢ of the factor group G/G¢# = (AG#/G#)(BG#/G¥)
is factorised; in particular,

(AGr/GF) N (BGF/GF) < L/Gy.
Set X = X(G#), the factoriser of G# in G = AB. Then G& < X = AG# N BG# < L and

L=(LNAG#)LN BGs) = (LNAG#(LNB)C (LNAX(LN B)
=(LNAXNAXNB(LNB) =(LNALNB)CL,

that is, L = (L N A)(L N B).

If L were a proper subgroup of G, then by the minimal choice of G the ¥ -radical
of L would be factorised with respect to the factorisation L = (L N A)(L N B). But
ANB<X<LandsoANB=(LNA)N(LNB)<Lg. Then GF = Ly would also be
factorised with respect to G = AB, a contradiction.

Consequently, L = G and G/G is an ¥ -group, that is,

G/Gy = O0x(G/Gy) X Ox(G/Gy).

Since A = A; X Ay and B = B; X By and G is m-separable, we deduce by Lemma 2.3
that A, B; is a Hall 7-subgroup of G, and A, B, is a Hall ’-subgroup of G. It follows
that A, B,G¢ = A;B;O,(G) and A, B,G¢ = A, By O,(G) are normal subgroups in G.
Now, applying Corollary 3.4,

X = (AN BG#)Gy = (BN AG#)Gy = (A N BG#)(B N AGy)

is an ¥ -group, that is, X = X X X,.

Let o € {m,n’}. Since G = 0,(G) X O, (G) < X, we deduce in particular that
[X,, O, (G)] = 1. Since G is m-separable, X, is contained in some Hall o-subgroup
of G. But every Hall o-subgroup of G has the form (A, B,)" for some t € O, (G), as
AsB;0O4(G) € G, so it contains X,,. Hence X, < O,(G). Consequently, X = G#, the
final contradiction. O
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The next example shows that the above result is not true if G is not a m-separable
group.

ExampLe 3.9. Let N = Ly(2%) and let ¢ be the Frobenius automorphism of N and
¥ = ¢*, which is an automorphism of N of order 3. Consider G = [N]{) the natural
semidirect product of N with (). We note that |G| =25 -3*.5-7-13 and also that
CoW) = L,(2). Set = {2,3,7,13}.

The group G can be factorised as G = AB, where A = Ng(G) is a m-group,
B = Ng(G13) = By X By = ([C13]C3) X Cs is m-decomposable and |[A N B| = 3. Hence,
if 7 is the class of all 7-decomposable groups, the ¥ -radical of G is G# = 1, and it is
not factorised.

Theorem 3.11 below provides a stronger version of Corollary 3.4 for a trifactorised
group where two of the factors are m7-decomposable and the third factor is a subnormal
subgroup. We will need the following preliminary result. For any formation ¥ and
any group X, we denote by X’ the ¥ -residual of X.

Lemma 3.10. Let F be a Fitting formation. If the group G = HK is the product of two
subnormal subgroups H and K, then G = H K” .

Proor. We argue by induction on dy + dg, where dx denotes the subnormal defect of
X in G for each X € {H, K}, that is, the smallest nonnegative integer dy such that there
exists a series X = Xy < X; < --- < Xy, = G of subgroups of G. If H and K are normal
subgroups of G (dy + dk < 2), the result follows by [6, II, Lemma 2.12]. Without loss
of generality assume that H is not normal in G and let H < H < G. We observe that
H=HHANK),so, by the inductive hypothesis, G¥ = ATK" and B =H" (AN K)”.
Since ¥ is closed under taking subnormal subgroups, it follows that (H N K)* < K7,
and so G = H"K”. O

TueoreM 3.11. Let  be a set of primes. Let the group G = AB = AC = BC be the
product of three subgroups A, B and C, where A = A; X Ay and B = B, X By are
n-decomposable groups and C is a subnormal subgroup of G. If ¥ is the class of all
n-decomposable groups, then GT = CT.

Proor. We may assume that 7 is a set of odd primes.

First notice that the class ¥ of all 7-decomposable groups is a Fitting formation.
Suppose the result is not true and let G be a group of minimal order among the groups
X having two m-decomposable subgroups H and K and a subnormal subgroup L such
that G = HK = HL=KLand G" # L”.

Then there exist two m-decomposable subgroups A and B of G and a subnormal
subgroup C of G such that G = AB = AC = BC and G # C”. We choose C with |C]|
maximal. We split the proof into the following steps.

Step 1. G = CT N for every minimal normal subgroup N of G, C < G” and
Coreg(C”) = 1.
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Let N be a minimal normal subgroup of G. Since (G/N)” = G” N/N, the minimal
choice of G implies that G N = C* N. Moreover, C < G” which implies that
G =C”7(G” nN). Since G # C7, it follows that G "N =N and so N < G”.
Then G” = C” N and also Coreg(C”) = 1. Moreover, since C” is a subnormal
subgroup of G, N normalises C” (see [6, A, Lemma 14.3]), which implies that
cr <G”.

Step 2. 1If there are two different minimal normal subgroups, then they are abelian.

Assume that Ny, N, are minimal normal subgroups, N; # N,. By Step 1, G¥ =
CP N, = C*N,. Since [N;, N»] = 1, we deduce that N! < C” for i=1,2. Since
Coreg(C”) = 1 it follows that N; and N, are abelian.

Step 3. G = 0,(G) X O (G) < C.

Suppose C is a proper subgroup of CG#. Since G = AB = A(CG¢) = B(CG#),
CGy is a subnormal subgroup of G and |C| < |CG#|, it follows by the maximality of C
that G = (CG#)” . By Lemma 3.10, G¥ = C”, a contradiction. Therefore C = CG#
and so G < C.

Step 4. Gg = O0,(G) X O (G) # 1. Moreover, if o € {n, 7’} such that O,(G) # 1, then

0,(G) =1.
Assume that O,(G) =1 and O, (G) = 1. We know that A, B, is a subgroup of G
by Theorem 1.1. Then Lemma 2.2 implies that [AY, BY] = 1. Consequently, from

this fact together with Step 2, we deduce that, if A, # 1 and B, # 1, then there is an
abelian minimal normal subgroup, and so a normal p-subgroup, for a prime p, which
is a contradiction. Therefore, we may assume without loss of generality that A, = 1
and B, # 1. Since G = AB = AC = BC, by order arguments it follows that B, < C.
Moreover, B, < B and G = BC, which implies, by Lemma 2.1, that Bf < C. Then
there is a minimal normal subgroup N of G contained in C, and G* = C* N < C.
Hence G¥ /CT = N/(NN C?) e . Now N is a nonabelian minimal normal subgroup,
and so it is a direct product of copies of a nonabelian simple group. But N N C” is
a direct product of simple components of N, because it is a normal subgroup of N.
It follows that N is a n’-group, and so N < O, (G) =1, a contradiction. Therefore,
Gy = 0,(G) X O (G) # 1.

The last statement follows because G /C* = N/(N n C”) for every minimal
normal subgroup N of G.

Step 5. G” < O,(G). If there is a minimal normal subgroup which is an elementary
abelian p-group for a prime p, then G” has the same properties. Moreover, G is
o-separable (and o’-separable).

Let N be a minimal normal subgroup of G, N < O,(G). Since G" = C” N, we see
that G¥ /CT = N/(N n C”). Then 07 (G”) < Core(C”) = 1, which implies that G*
is a o-group. If there is a minimal normal subgroup which is an elementary abelian
p-group for a prime p, analogous arguments prove that G” has the same properties.
Moreover, it follows now that G is o-separable, as is G/ G”.
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Step 6. G=GyGy, G <G,<G, GG, 4G, GF =(G"G,).
This follows by Step 5 and Lemma 3.10.

Step 7. The final contradiction.

If A, = 1, then we may take G, = B,» < C, which implies that G G, < C and
so G7 = (G G,)” <C7, a contradiction. Analogously B, =1 is not possible.
Consequently A, # 1, B, # 1 and O,-(G) = 1. Again, by Lemma 2.2, [A%,B%] =1,
and together with Step 2, we can consider a minimal normal subgroup N < Bg, which
is abelian. In particular, [AS,, N] = 1.

By Lemma 2.3 there exists a Hall o”’-subgroup of C, say C,, such that A, C,
is a o”’-Hall subgroup of G. Since N is an elementary abelian group and C, acts
coprimely on N, we can apply Maschke’s theorem (see [6, A, Theorem 11.5]) to
deduce that the C,.-invariant subgroup C* N N has a C,-invariant complement in N,
say H. Moreover, since Coreg(C”) = 1, it follows that H # 1. SoG¥ =C"N=C"H
with C* nH = 1.

Now C,-G" /C* < C/C” is an F-group. But C,-G" /C = C, HC" |C* = C, H,
because C* N C,H = 1. This means that C,-H is an #-group, and so H centralises
C,. Since [N,A, ] =1, it follows that H centralises G, = A,-C,-, which is a Hall
o”’-subgroup of G. In particular, H X G € F.

Since G = C” H is an elementary abelian subgroup by Step 5, again by Maschke’s
theorem, there exists a complement of H in G”, say T, which is G,--invariant. But
then, by Step 6, we see that G* = (G" G,)” = (THG,)” < T, which is a proper
subgroup of G”, the final contradiction. O

Remark 3.12. Example 3.6 shows that the statement in Theorem 3.11 does not remain
true if the subgroup C fails to be subnormal.

As a particular case of Theorem 3.11 we recover the following extension of Kegel’s
result quoted in the introduction, which appears in [3].

CoroLLARY 3.13. Let the finite group G = AB = AN = BN be the product of three
subgroups A, B and N, where N is subnormal in G. If A and B are nilpotent, then
the nilpotent residual of G coincides with the nilpotent residual of N. In particular, the
nilpotent residual of N is normal in G.

One might expect that the result of Peterson [1, Theorem 2.5.10] mentioned in
the introduction should generalise to a corresponding positive result by replacing the
class of nilpotent groups by a class of m-decomposable groups for a set of primes
n. The following example shows that this is not the case, even if the factor C is
assumed to be a m-separable normal subgroup and the saturated formation to contain all
m-decomposable groups.

ExampLE 3.14. Let & be a set of primes. Assume that the group G = AB = AC = BC is
the product of three subgroups A, B and C, where A = A; X Ay and B = B; X B, are
n-decomposable groups, and C is a n-closed normal subgroup of G. If ¥ is a saturated
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formation containing the class of all 7-decomposable groups, the next example shows
that it is not true in general that G € ¥ whenever C € F.

Choose the groups T =(t) = C7, Y = (y) = C3, X = (x) = C, and consider the
natural action of ¥ X X = Aut(T) on T as automorphism group; more precisely,
# =1, t*=1"'. Let TYX be the corresponding semidirect product. We consider
now an irreducible and faithful 7Y X-module V over the field of five elements (see [6,
B, Theorem 10.3]) and form G = VT YX the corresponding semidirect product.

Take 7 to be the set of all odd primes, so 7’ = {2}, A = VT'Y which is a m-group,
B =YX which is a 7-decomposable group, and C = VT X which is a n-closed normal
subgroup of G. We note that G = AB = AC = BC. By [6, 1V, Proposition 1.3)], the
class of groups

H = (G| Autg(S) € (C,, Ey) for all 7-chief factors S of G)

is a formation, where (C,, &) denotes the class of groups which either are isomorphic
to C, or belong to &y, the class of groups of odd order.

We now consider ¥ = LF(f) the saturated formation locally defined by the
formation function f given in the following way:

f(p)=H forevery prime p # 2,
f(2) =&, the class of 2-groups.

It is easy to see that the class of all m-decomposable groups is contained in F.
Moreover, C € ¥ but G ¢ F.
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