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Abstract

In slender-body theories, one cften has to find asymptotic approximations for certain inte-
grals, representing distribution:; of sources along a line segment. Here, such approximations
are obtained by a systematic method that uses Mellin transforms. Results are given near
the line (using cylindrical pol?r coordinates) and near the ends of the line segment (using
spherical polar coordinates).
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1. Introduction

Slender-body theory is a class ic topic in fluid dynamics; see, for example, [6, Sec-
tion 11.2]. A typical (and sin pie) problem is as follows. Consider a rigid, axisym-
metric body, defined by r = >>(x), 0 < x < L, where r and x are cylindrical polar
coordinates, L is the length of ihe body and S{x) is a given function defining the shape
of the body. For the body to je slender, it is required that S/L <C 1 for all x. We
suppose that the body is in an ideal fluid, and that there is an incident axisymmetric
flow. Then the perturbation to this flow caused by the presence of the body will also
be axisymmetric, and so it is plausible that the velocity potential for the perturbation,
<p(r, x), can be represented as. a distribution of sources along a piece of the x-axis
inside the body,

r , x ) = l
Ja

4>(r,x)=l =, (1.1)
J / ( ) 2 + 2
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where m is a density function and 0 < a < P < L. Slender-body theory gives
methods for estimating m, a and £. There is a considerable literature on these
methods, covering their derivation and application, and their generalization to other
physical problems. We mention a few papers from the 1960s [8,9,12,16], Tuck's
review [17], and the more recent work of Sellier [15], Chadwick [3] and Petrov [14].

A key ingredient in slender-body theory is the approximation of integrals such
as (1.1) for small values of r; this is the subject of this short paper. Methods for
approximating (1.1) are reviewed in Section 2. We then describe another method (in
Section 3), using Mellin transforms. This method has several virtues: it is systematic,
it is rigorous and it yields the complete asymptotic expansion. Further results are given
in Section 4, with emphasis on the behaviour of <p near the end-points. In particular,
we examine (p as a function of distance from the end-point at x = a.

2. A short review

To begin with, suppose that a = -oo and fi = oo. Then, Tuck [17] shows that

(j> (r, x) =-2m(x)logr + f(x) + O (r2 log r) a s r ^ O , (2.1)

where

and L(x) = \l°g(2x\ * > °' (2.2)
[—log(—2JC), x < 0 .

Thus, "three dimensional [point] source distributions along a line look like two dimen-
sional line sources when we are close to them" [17, page 185]. This accounts for the
first term on the right-hand side of (2.1). The second term is surprisingly complicated,
and reveals a non-local dependence on the density function m. Tuck describes two
ways to derive (2.1), one involving Fourier transforms, the other involving a splitting
of the range of integration.

Goldstein [6, pages 183-185] derives an approximation for finite a and f),

, (2.3)

for a < x < ̂ . (For x = a, see (4.5).) Equation (2.3) can be written as (2.1) (without
the error term) with

4>(r, x)~-2m{x)los(£)+m(fx)log(x-a)+ mtf) log (ft-x)

+ f m'Q) log (X-S)d$- [ m'M log (I - x) df,
Ja J x

(f) L(x - £)</£. (2.4)
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Sellier [15] has described a very general scheme for approximating integrals such
as (1.1). The result is an expansion in which the terms are given as certain finite-part
integrals: the main difficulty "consists in carefully calculating" these integrals [15,
page 1748]. Sellier also states [15, page 1738] that integrals such as (1.1) cannot be
approximated using Mellin-transform techniques: this is false, as we show in the next
section.

3. Use of Mellin transforms

We want to approximate <p(r, x), and we assume for now that a < x < ft. We also
assume that m is sufficiently smooth. See Section 4 for other possibilities.

We start with some preliminary transformations. Suppose that, without loss of
generality, x is closer to or than fi\ put x — a = a and fi — x = b > a. Then, after
putting X\ = x + f in (1.1), we obtain

0, (3.1)

say. The second integral can be expanded using the Maclaurin expansion

(3.2)

the result is
00

h(.r,x) = ^cAx){-r2)n (3.3)
n=0

with
_ r(n+l/2)

Next, consider the first integral in (3.1), l\. The range of integration is symmetric
about £ = 0, so we split m into its even and odd parts. Thus, we write

m{x + £) =me(£;x) + m0(t;;x), where
m(x + !;) + m(x - !•) m(x + f) - m(x - f)

me(£;;c) = and mo(£;*) = ;

(3.5)

evidently, m0 integrates to zero, giving

f^U (3.6)
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Also, as me is even and smooth, we can assume that

N

me(t-;x) as 0,

[4]

(3.7)
n=0

where

(2n)!

In particular, M0(x) = m(x).
In order to expand 1\, we use a standard technique, which is to use the Mellin trans-

form [2,5,10,11,13]. We take the Mellin transform with respect to r; by definition,

= /(z) =

where z is the (complex) transform variable. From relation (3.6), it follows that
•^{h} = I\(z;x) is analytic in the strip 0 < Rez < 1. To see this, note first that
hir,x) = 0{r~x) as r -> oo; this gives Rez < 1. Second, h(r,x) — O(logr) as
r ->• 0, since

/ "
Jo

dl-

this gives Re z > 0.
Explicit calculation shows that

where

C(z;x) =

Later, we shall investigate the singularities of these functions.
The Mellin inversion formula gives

(3.8)

(3.9)

i rc+ioo

r x) L / Ii(z;x)r ldz,

with 0 < c < 1. To obtain the expansion of I\ in ascending powers of r, we move
the inversion contour to the left, picking up residue contributions; this procedure will
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be justified in Section 3.1. We shall see that I\(z;x) has double poles at z = —2N,
N = 0, 1,2, These will generate logarithmic terms because

= -2N; (3.10)

here, we have used dz ~ 1 + z log a as z -> 0.
We know that F(z) has simple poles at z = —N, N .= 0, 1, 2 , . . . ; near z = —N

(see Equation (11) in Section 1.17 of [4])

where \(r(z) = [r '(z)]/r(z) is the psi function [1, page 258]. Hence F(z/2) has a
similar approximation near z = — 2N. Also, a Taylor expansion gives

1/2) l l - ^ ( z + 2A0V(W +1/2)1 nearz = -2N. (3.11)

Hence, we find that

B(z) ~ BN

with
_ 2 ( l ) r ( A + 1/2) ( -

(using the duplication formula for F [1, Equation 6.1.18]) and
f(N + 1) - *{N + 1/2)

Thus, B(z) has a simple pole at z = -2N, N = 0, 1, 2, In particular, we have
Bo = 2 and vl>o = log 2.

Next, we examine C(z;x). The definition (3.9) shows that C{z;x) is analytic for
Rez > 0, but we must find its analytic continuation into Rez < 0. A consequence of
(3.7) is that (the analytic continuation of) C also has simple poles at z = -2N; we
need an approximation similar to that found above for B(z).

Subtracting mN from me in (3.9), we obtain
N az+2"M (x) f

T fL^+/ W^)"%(^)]r'^.
z + 2/i Jo

(3-13)

In this formula, the integral is analytic for Re z > -2N - 2 whereas the series
is meromorphic. Thus (3.13) exhibits the poles of C(t,x) and it enables us to
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approximate C near these poles. Hence, as az+w ~ 1 + (z + 27V) log a when
z — —27V, we obtain

where

C(z;x) ~ ^ l + MN(x) log a + CN(x) near z = -2N,
z + 2N

n=0

and the sum is absent if TV = 0. Thus C(z;x) has a simple pole at z = -2TV,
N = 0,1,2,... .

We conclude that BCr~z has a double pole at z = - 2 7 V , N = 0,1,2, ... . Wri t ing
z + 27V = w, w e see that

™ / M A T „ \ / 1
BCr~z ~ r2NBN(l - wlogr) [ + MN\oga + CN) - + * w

near ro = 0, and so the residue at z = -27V is

Summing up,

NN

/,(/-,*) = ^ r 2 " B n JMn (*„ + log (^ ) ) + Cn) + i?w(r, JC) (3.15)

where

i?w(r,x) = O (r2N+2\ogr) as r -»• 0. (3.16)

Combining this result with (3.1) and (3.3), we obtain the complete asymptotic expan-
sion of 0.

3.1. Justification of (3.15) and (3.16). To justify moving the contour, consider
f<g BCr~z dz, where "tf is the closed rectangle given by

with positive (anti-clockwise) orientation. Put z = a + ir. Then, ^0 is a = c,
|T| < Y with 0 < c < 1 and Y > 0; eventually, we shall let Y -» oo. The left side
of the rectangle is ^v, defined by a = -27V - S and |r| < Y with 0 < 5 < 2. Also,
#± is r = ±Y with -2/V - 5 < a < c. Thus, # encloses the poles at z = -2n,
n = 0,1,2,..., N.
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From (3.13), we see that the analytic continuation of C(z;x) is bounded on ci.
Also, as r(z) T(l -z) = n/ sin (nz), (3.8) gives

~ cos (TTZ/2) T ((Z + l)/2) ~ cos (TTZ/2)

as \z\ ->• oo, using [1, Equation 6.1.47]. Moreover, 2|cos(7rz/2)| ~ e"M/2 as
| r | -> oo. Hence, the integrals over ̂ + and #L decay exponentially with increasing Y.
Thus an application of the residue calculus gives (3.15) with

1 f
RN(r,x) = lim — - / BCr~l dz

Y-KX> 2ni Jc#N

r2N+S roo

= —— / B(ir-2N -S)C(ir-2N -S;x)r-'zdr.

The integral is bounded (independently of r) and S can be any number with 0 < S < 2.
For example, with 8 = 1, we obtain /?^(r, x) = 0(r2N+l) as r ->• 0. If we move the
contour " ^ further to the left, to <£'N+I> we obtain RN = termw+i + RN+i, where term,,
is the nth term in (3.15). As RN+\ = O(r2N+3), we see that RN is comparable to the
first term neglected in (3.15), and so we obtain (3.16). For similar arguments, see [13,
Section 5.1].

3.2. A special case. For a simple special case, take Af = 0 in (3.1), (3.3) and (3.15),
giving

0(r, x) = Bo (MJ [*O + log ( - ) ] + C0J + c0 + 0 (r2logr) as r -> 0.

Then, as Bo = 2,^0 = log 2 and Mo = m(x), we recover (2.1) in which

fix) = 2m(jc)log2fl + 2C0(jc)+coW; (3-17)
recall that a = x - a > 0. Now, from (3.14) and (3.5), we have

m(x-g)-m(x)d g

fam(r)-m(*) , , /-x mit)-mjx)= ramit)-mjx)dt+r
Jx t X Jx—a

= [mix + a) + mix -a)- 2m W] loga + / m\t) log ix - t) dt
Jx—a

- I m'it)\ogit-x)dt (3.18)
Jx

rx+a

= [mix + a)+mia)-2mix)]\og2a+ m\t)Ux - t)dt, (3.19)
Ja
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as x - a = a; L(x) is defined by (2.2). Also, (3.4) gives

f m{t)dt
co(x) = /

J l x - a t - X

= m(B)\og2(B-x)-m(x+a)log2a+ m\t) L(x - t)dt. (3.20)
Jx+a

When (3.19) and (3.20) are substituted in (3.17), we recover Goldstein's formula
for / , (2.4). Notice that if m is not differentiable at x, then one can use (3.18)
forCoOc).

4. End-point behaviour

We have shown in Section 3 how to approximate 0(r, x) when a < x < B. If
x < a or x > B, the situation is simpler, because one merely uses the Maclaurin
expansion (3.2) with t = r/{x—x\) in (1.1); the result is an expansion in powers of r2.

The situation when x = a or* = B is more interesting. Suppose that x — a. Then
(1.1) becomes

where I = B — a. The behaviour of 0(r, a) for small r depends on the behaviour of
m(x) as x -» a+. Let us assume that

nr" as£^0+, (4.1)

where — 1 < K0 < K\ < • • •; the quantities Kn and An are constants. The asymptotic
form (4.1) allows for possible singular behaviour at the end-point, x = a; logarithmic
terms could also be included. (A similar analysis could be carried out at points x with
a < x < B where m or one of its derivatives is discontinuous.)

Next, we calculate the Mellin transform of <p{r, a), denoted by <p(z,a). This
function is analytic in the strip max (0, — K0) < Rez < 1, and is given by

where B(z) is defined by (3.8) and
1 fl

ld$. (4.2)

Proceeding as before, we move the inversion contour to the left. The first pole
encountered is a simple pole at z = —KQ if — 1 < *o < 0 but it is a simple pole at
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z = 0 if K0 > 0. If K0 = 0, there is a double pole at z = 0. In any of these cases, we
can calculate the asymptotic expansion of <j>{r, x) for small r by computing residues.
For example, suppose that K0 = 0 so that m(a + £) ~ Ao = m(a) as £ -* 0+. Then
using (3.12) (with N = 0) and

2Ca(z) - —t + Xo near z = 0, (4.3)

where

Xo = m(a) log£+ / m + *, ~ m ( a ) ^ = m(y3) logl - / m'(a + £) l o g | ^ ,
Jo ? Jo

(4.4)
we find that

- a) - [ m'(4>{r, a) ~ -m(a) log ( ^ + mtf) log (0 - a) - [ m'(£) log ($ - a) d£ (4.5)

as r -» 0; this should be compared with (2.3).
The result (4.5) holds when the field point at (x,r) = (a, r) approaches the point

(a, 0) at one end of the line of sources in a direction perpendicular to the line. More
generally, other approach directions could be selected. Thus, introduce spherical polar
coordinates (/?, 0), with

x = a — RcosO and r = R$,in0,

where R > 0 and 0 < 6 < n; 9 is the angle of approach. Then, with a slight abuse of
notation, (1.1) gives

Ja V(a - *i - R cos 0)2 + R2 sin2 6> Jo •R1

with t = p - a. Now, calculate the Mellin transform of <p(R, 9) with respect to R,

f°° , f°° tz~xdt
<t>(z,9)= Rz~l<j)(R,9)dR = 2Ca(z) , (4.6)

Jo Jo y/l + 2rcos9 + t2

with Ca defined by (4.2). As before, the function <£(z, 6) is analytic in the strip
max (0, —K0) < Rez < 1; see (4.1). The remaining integral in (4.6) can be evaluated
[7, Equation 8.714(2)], giving

0(z, 9) = -7^—Ca(z) P-Z(cos9), max (0, -K0) < Rez < 1, (4.7)
sin7rz

where Pv(x) is a Legendre function. We can now proceed as before, moving the
inversion contour to the left.
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Let us assume that K0 = 0 so that (p(z,9) has a double pole at z = 0. Then,
near z = 0, (4.7) gives

0 ( z , 0 ) / r z ~ - ( ^ - + Xo) l - 2 z l o g ( c o s ( - ) ) (1 -z logr t ) ,
z\ z ) L V \2//J

where we have used (3.10) (with N = 0), (4.3) and [1, Equation 8.6.20]. Hence,
computing the residue at z = 0, we obtain

<p(R,9) m(a)log / ? c o s 2 ( - j \ + X0 as R -* 0, with 0 < 9 < n, (4.8)

where the constant Xo is given by (4.4). Notice that

^ [/?"/>„ (cos 0)] = lo

is an axisymmetric harmonic function. Notice also that (4.8) reduces to (4.5) when
9-=n/2.

We conclude by noting that the Mellin-transform technique is applicable to other
related problems. For example, it can be used to estimate

Ja

where /x is a parameter; the case fi = 3/2 is of some interest [15].
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