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The lubricated motion of an object near a deformable boundary presents striking subtleties
arising from the coupling between the elasticity of the boundary and lubricated flow,
including but not limited to the emergence of a lift force acting on the object despite
the zero Reynolds number. In this study, we characterize the hydrodynamic forces and
torques felt by a sphere translating in close proximity to a fluid interface, separating the
viscous medium of the sphere’s motion from an infinitely more viscous medium. We
employ lubrication theory and perform a perturbation analysis in capillary compliance.
The dominant response of the interface owing to surface tension results in a long-ranged
interface deformation, which leads to a modification of the forces and torques with respect
to the rigid reference case, that we characterize in detail with scaling arguments and
numerical integrations.
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1. Introduction

The dynamics of objects moving in viscous fluids has been studied both theoretically and
experimentally for a long time (Jeffery 1915; Lamb 1924; Collins 1955; Dean & O’Neill
1963; O’Neill 1964; Batchelor 1967). Confining the viscous flow between an object and
a rigid surface modifies the forces felt by the object (Goldman, Cox & Brenner 1967,
O’Neill & Stewartson 1967; Cooley & O’Neill 1969; Jeffrey & Onishi 1981). Such a
modification is involved in vastly different phenomena ranging from the mechanics of
joints (Hou et al. 1992; Hlavacek 1993), to the movement of cells in capillaries (Abkarian,
Lartigue & Viallat 2002) and the dynamics of suspensions (Batchelor 1970, 1971, 1976,
1977; Happel & Brenner 1983).

Recent research has provided evidence of boundary elasticity further modifying the
lubricated dynamics of an object (Leroy & Charlaix 2011; Leroy et al. 2012). Further
standardization of the measurement process has led to the design of contactless probes
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for rheology (Garcia et al. 2016; Basoli et al. 2018). The coupling of boundary
elasticity and lubrication flow, collectively termed soft lubrication, predicts the emergence
of lift forces exerted on particles translating parallel to soft boundaries (Sekimoto
& Leibler 1993; Beaucourt, Biben & Misbah 2004; Skotheim & Mahadevan 2005;
Weekley, Waters & Jensen 2006; Urzay, Llewellyn Smith & Glover 2007; Snoeijer,
Eggers & Venner 2013; Bouchet et al. 2015; Salez & Mahadevan 2015; Essink et al.
2021; Bertin et al. 2022; Bureau, Coupier & Salez 2023; Rallabandi 2024). Such lift
forces are associated with the symmetry breaking arising out of the deformability.
Since the latter is crucial to the generated force, the nature of the bounding wall has
been further explored by examining the influence of slip (Rinehart et al. 2020), and
viscoelasticity (Pandey er al. 2016; Kargar-Estahbanati & Rallabandi 2021). A reversal
of the nature of the lift force from repulsive to attractive has also been predicted
for viscoelastic settings (Hu, Meng & Doi 2023). Other studies have explored the
complex modifications induced by including inertial effects (Clarke & Potnis 2011)
and compressibility (Balmforth, Cawthorn & Craster 2010). On the experimental front,
dedicated research has verified the presence of these lift forces on various substrates
(Saintyves et al. 2016; Davies et al. 2018; Rallabandi er al. 2018; Vialar et al. 2019;
Zhang et al. 2020).

In biology, where cells and tissues are extremely soft, and/or at small scales in soft
matter, the interfacial capillary stress at the boundary dominates over bulk elasticity. By
employing a classical Stokeslet-like response of the flow near a fluid interface, it has
been shown that a rectified flow may be generated owing to the tension of the boundary
(Aderogba & Blake 1978; Nezamipour & Najafi 2021). On the other hand, finite-size
effects were addressed (Lee, Chadwick & Leal 1979; Lee & Leal 1980, 1982; Geller, Lee
& Leal 1986) in the regime of a large gap between the object and the fluid interface,
predicting counter-intuitive behaviours unique to capillarity. The results of these studies
have been useful in analysing the movement of microorganisms near a fluid interface
(Trouilloud et al. 2008; Lopez & Lauga 2014), as well as the formation of floating biofilms
(Desai & Ardekani 2020). Recently, capillary-lubrication studies (Jha, Amarouchene &
Salez 2023, 2024) have characterized the dynamics of an infinite cylinder near a fluid
interface, highlighting the influence of the viscosity contrast and thickness ratio between
the two fluid layers, and leading to large variability in the forces generated as opposed to
elastic interfaces.

While previous research has highlighted the importance of understanding lubricated
motion near a fluid interface, the characterization of the dynamics of a particle moving
with multiple degrees of freedom near a fluid interface remains to be explored.
In this article, we explore in detail the translational motion of a sphere moving in close
proximity to an infinitely viscous but deformable sublayer. In the small-deformation limit,
we calculate the forces and torques generated on the sphere during the motion. Due
to a symmetry between translational and rotational motions in soft lubrication (Bertin
et al. 2022), our work immediately generalizes to the case where rotation would be
added. The remainder of the article is organized as follows. We start by describing
the capillary-lubrication framework, before presenting the theoretical methodology for
obtaining the different fields using perturbation analysis at small deformations of the
fluid interface. We then discuss the implications of the interfacial deformation, and
the competition between gravity and capillarity, on the forces and torques generated
on the particle. Limiting expressions are derived for the capillary-dominated and
gravity-dominated responses. While the former case is novel, the latter is reminiscent of a
Winkler solid.
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Figure 1. Schematic of the system. A sphere of radius a immersed in a viscous fluid of viscosity n and
density p moves near a fluid interface. The undeformed gap profile is noted A(r, t), with r the horizontal radial
coordinate and ¢ the time. The origin of coordinates is located at the undeformed fluid interface (z = 0) in line
with the centre of mass of the sphere (r = 0). The interface separates the top fluid from a secondary fluid of
viscosity 71, with ng >> n, and density pg at the bottom, i.e. pg > p. The sphere has prescribed horizontal
velocity u and vertical velocity d, where d = h(0, f) denotes the instantaneous distance between the sphere
bottom and the undeformed fluid interface. The interface deflection field is denoted as §(r, f), the acceleration
due to gravity is denoted as g and the surface tension is denoted as o.

2. Capillary-lubrication theory

We consider a sphere of radius a translating with a prescribed time-dependent horizontal
velocity u = u(t)e, near a fluid interface, as shown in figure 1. The interface is
characterized by its surface tension o, and separates two incompressible Newtonian
viscous liquids with dynamic shear viscosities  and 7y, as well as densities p and py
(with p < pg). The acceleration due to gravity is denoted by g. The gap profile between
the sphere and the undeformed fluid interface is denoted by A (r, ), which depends on the
horizontal radial coordinate r and time ¢. The x-direction oriented along e, corresponds to
the horizontal angular coordinate & = 0. The time-dependent distance between the bottom
of the sphere’s surface and the undeformed interface is denoted by d(7), with d > 0. Its

temporal derivative d(f) denotes the vertical velocity of the sphere. We focus on the case
where the bottom layer is extremely viscous compared with the top layer, i.e. ng > n,
and is infinitely thick compared with the gap between the sphere and the undeformed
interface. These conditions allow us to assume that the tangential velocity at the fluid
interface vanishes because the shear stress from the top layer is insufficient to generate a
flow in the lower layer.

We neglect fluid inertia and assume that the typical gap between the sphere and the
interface is much smaller than the typical horizontal length scale, allowing us to invoke
lubrication theory (Reynolds 1886; Oron, Davis & Bankoff 1997). Introducing the excess
pressure field p, in the top layer, with respect to the hydrostatic contribution, and the
horizontal velocity field v of the fluid in the gap, the incompressible Stokes equations
thus read at leading lubrication order

ap
Py, 2.1
0z @D
82
Vo =15, 22)
0z
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where V denotes the gradient in the horizontal plane and where z is the vertical coordinate.
In the limit of a small gap, the thickness profile of the fluid between the sphere and the
undeformed fluid interface can be approximated by its parabolic expansion, leading to

2
h(r,t) ~d@) + —. (2.3)
2a

The no-slip boundary condition is imposed at both the sphere’s surface and the fluid
interface. Hence, in the frame of the moving sphere, at z = A, one has

v=20, 2.4)
and at the interface, i.e. z = §, one has
V= —u= —ue,. 2.5

Given the boundary conditions above, we can easily write the horizontal velocity profile
in the gap between the sphere and the interface as

z—h
h—3§"

Vp
v=—"-0—-hEZ—-68)+u (2.6)
2n
The conservation of the fluid volume in the gap allows for the derivation of the Reynolds
thin-film equation for the system, which reads

9 v | Y _s3 %
8t(h 5=V [lzn(h ) +2(h 8)]. 2.7

The deflection of the fluid interface is controlled by the Laplace pressure jump. Thus, at
z =4, one has

p oV +g8(p — py), (2.8)

where we have assumed a small deformation of the interface and linearized the curvature.
Let us now non-dimensionalize the equations through

d(t) =d*D(T), h(r,f)=d*HR,T), r=IR, z=d"Z,

l
t= ET, v(r,z,t) =cV(R, Z,T), u(t)=cU)ey,, (2.9

nel *
p(r’ t)=WP(Ra T)a 8("’ [)=d A(R5 T)a

where ¢ and d* represent characteristic in-plane velocity and gap-thickness scales,
respectively, with [ = +/2ad* denoting the characteristic hydrodynamic radius.

At this point, we discuss the assumption of an infinitely viscous bottom layer and the
resulting vanishing of the velocity, which has been previously addressed in the literature
(Yiantsios & Davis 1990). Since the bottom fluid layer is considered to be much thicker
than the upper one, the flow generated in the former evolves over a much larger length
scale, typically given by a. As a consequence, by adapting the thin-bilayer-film normal
stress balance (see (A4) in Bertin et al. 2021) to the current case of a thick bottom layer, we
find that the dimensionless normal viscous stress at the fluid interface has a (ny/n)(d*/ n4
prefactor. We assume this numerical prefactor to be very small in our study, due to the
vanishing of d* /I, despite the large viscosity ratio — thus the non-inclusion of bottom-layer
stress terms in (2.8).
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In dimensionless terms, the undeformed thickness profile and Reynolds equation
become
H(R,T) ~ D(T) + R, (2.10)

and
0 vpP ;3 U
aT (H—- A) _—V-|:—12 (H—A) +—2 (H—A)i|. (2.11)

Besides, the deflection field A is related to the excess pressure field P by the dimensionless
version of the Laplace equation, which reads

VZA — BoA = kP, (2.12)

where Bo = (I/ 1.)? denotes the Bond number, [, = +/ o/lg(psi — p)] denotes the capillary
length and where we have introduced the capillary compliance of the interface, denoted
by
nel
K =

= (2.13)

3. Perturbation analysis

As in previous studies regarding soft lubrication (Sekimoto & Leibler 1993; Skotheim &
Mahadevan 2005; Urzay et al. 2007; Snoeijer et al. 2013; Salez & Mahadevan 2015; Essink
et al. 2021; Bertin et al. 2022), we perform an asymptotic expansion of the unknown fields
at first order in dimensionless capillary compliance, «, as

A~ kA + O(?), (3.1)
P~ Py + «kP; + O(k?), (3.2)

where k! A; is the ith-order contribution to the deflection of the interface, and x‘P; is the
ith-order contribution to the excess pressure field.

3.1. Zeroth-order pressure
At zeroth order in «, (2.11) reduces to

p=v. (Yo vH (3.3)

B 12 2) '
This equation is identical to the one for a perfectly rigid, flat and no-slip boundary. Since
the zeroth-order pressure field results from linear terms in velocity, we decompose it

azimuthally as

Po(R, T) = Poo(R, T) + Po1(R, T) cos b, (3.4)
with R and 6 the horizontal polar coordinates of R. Assuming a vanishing pressure field
at large R, and that it must remain finite and single valued at R = 0, the equations can

be solved to give the zeroth-order components of the excess pressure field as (O’Neill &
Stewartson 1967)

Poo = 3D (3.5)
©= 2D+ R ‘
6UR
P = —— . 3.6
0= ShT R (3.6)
1001 A58-5
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3.2. Interface deflection
We now decompose the first-order deflection of the interface azimuthally as

AR, T) = A1pR, T) + A (R, T) cos 6. (3.7

Writing (2.12) at first order in «, one has

10 dA10
—— | R—— ) — BoAi9p = Poo, 3.8
R8R< 8R> 0A10 = Poo (3.8)
and
10 0A11 An
—— [R—=——) - = —BoA;; = Py, 39
RaR( BR) g oA 9

with the boundary conditions Aj; — 0 as R — oo, and finite and single-valued Aj; at
R = 0. The solutions of the above equations can be written in the most general form as

A1) = ~/Bor) | " Ko(V/Bot )& Poo (&) d

— Ko(+/BoR) fo *Io(/BokePoo(&) d, (3.10)
AntR) = ~n(BoR) [ " Ki(VBot)E P 6) de

— Ki(v/BoR) fo * 1 (/Bok)e P €) de. G1)

where /; and K; denote the jth-order modified Bessel functions of the first and second
kinds, respectively.

To understand the parametric influence of the Bond number Bo, we explore the
behaviours of the interface deflection for both small and large Bo values. For vanishing
Bo, the anisotropic deflection component Aj; reaches a limiting behaviour given by the
following expression:

A7 3.12
1 0 R (3.12)

In contrast, the isotropic deflection component Ay does not show any limiting behaviour
at vanishing Bo, and a reduction in Bo leads to an unbounded increase in Ajy. To
understand the behaviour of Ajp as Bo — 0, we take an asymptotic approach previously
used in problems relating to capillary deformations (James 1974; Lo 1983; Dupré de
Baubigny et al. 2015). The vanishing of Bo allows for a scale separation in the radial
coordinate R into: (i) an inner region controlled by surface tension; and (ii) an outer region,

where gravity is present. In the inner region (R < 1/+/Bo), the interface deformation
1001 A58-6
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denoted by Ai10 satisfies

19 [ 04l

The general solution of the above equation reads
: 3D
lo=A—=—In(D+R?, 3.14
10 op D + R (3.14)

where A is an integration constant. The far-field behaviour of the inner solution reads
4 3D
Ay~ A— 1D In(R). (3.15)

In the outer region (R >> 1/+/Bo), gravity matters but there is no lubrication pressure,
which leads to the following governing equation for the interface deformation denoted by

AQy:
19 [ A
2R (RB—RIO) — BoAY, =0. (3.16)

The latter equation is solved, along with the condition that the deflection vanishes at
infinity, leading to

%o = BKo(VBoR), (3.17)
where B is an integration constant. The near-field behaviour of the outer solution reads
o In Bo
o~ —Bly—In2+ +InR), (3.18)

where y is Euler’s constant. Matching (3.15) with (3.18) leads to

3D In Bo
=——|(y—1In2 , 3.19
A 4D<y n2+ 2) (3.19)
3D
B=_—. (3.20)
4D

Substituting these constants in (3.14) and (3.17), we find the matched asymptotes of the
interface deflection at small Bo. The interface deflection can then be approximated by the
matched cross-over expression

3D 1 R?
A10|Bo—0 ~ — [ Ko(VBoR) + = In| —— ] | . (3.21)
4D 2 \D+R?

The interface deflection is shown in figure 2 at a fixed low value of Bo. The cross-over
expression at small Bo described above matches the exact one calculated using (3.10),
with improving precision as Bo reduces. Figure 2 also shows the inner and outer solutions,
which diverge in the far and near fields, respectively.

1001 A58-7
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Figure 2. Isotropic component Ajg of the amplitude of the first-order interface deflection as a function of
the radial coordinate R (solid black line), as calculated from (3.10), for Bo = 0.01, D =1 and D = 1. For
comparison, the inner solution (red solid line), the outer solution (blue solid line) and the matched cross-over
expression (symbols), from (3.14), (3.17) and (3.21), respectively, are also shown.

The other interesting limit arises when Bo — o0, leading to the curvature-related terms
in (3.8)—(3.9) dropping out, giving us

Poo 3D
App=———="———, (3.22)
Bo  2Bo(D + R?)?
Por 6UR
Al=————=————— (3.23)

Bo  5Bo(D+R%)?’
As a consequence, the deflection is directly proportional to the pressure applied, with

k/Bo = ncl/ [gd*3(psl — p)] as an effective compliance. From the latter, we see that in
the limit of large Bo the surface tension no longer controls the deformation. This large-Bo
response is akin to the Winkler response for thin compressible elastic materials, which
has been studied previously (Skotheim & Mahadevan 2005; Urzay et al. 2007; Salez &
Mahadevan 2015; Chandler & Vella 2020; Bertin et al. 2022).

Apart from these two extremes, further exploration of the influence of Bo can be
done using (3.10) and (3.11). Figure 3 shows the isotropic and anisotropic profiles of the
amplitude of the first-order interface deflection, for different values of Bo. We see that
capillarity leads to a long-ranged interface deflection whose range and magnitude both
decrease with increasing Bo.

3.3. First-order pressure

At first order in «, the pressure field involves in particular the squared velocity, and can
thus be decomposed as

Pi(R, T, Bo,D) = Pio(R, T, Bo, D) + P11 (R, T, Bo, D) cos & + P1»(R, T, Bo, D) cos 26.
(3.24)

The governing equations for the components Pj; of the first-order magnitude P; of the
excess pressure field can be derived by considering (2.11) at first order in . Since P is

1001 A58-8
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Figure 3. Isotropic component Ajg (a) and anisotropic component Aq; (b) of the amplitude of the first-order
interface deflection as a function of the radial coordinate R, as calculated from (3.10) and (3.11), for D =1,
various Bo as indicated, and for either D = 1 (a) or U = 1 (b). The black solid line denotes the limiting profile
for Bo = 0 in the anisotropic case, as given in (3.12).

not needed to compute the forces and torques, we restrict ourselves to the two following
equations:

19 aP 19 9Poy Ay OP
-z (RH3—10) =- |:3RH2 <A10—00 + i—m)}

R AR aR ROR 9R 2 9R
L3y gpAu 940 (3.25)
IR R oT '
19 P H3 19 dP, oP,
(R —py = — L 3RE2 (A0 2 A 22
ROR aR R2 ROR R R
3H? AP A A
— 10701 4 g Z2l0 _ p 22l (3.26)
R2 IR aT

Using the linearity of the equations above, the components of the pressure field can be
expressed as follows:

U? D? D
P10 = ﬁd)lﬂ + ﬁd)bz + ﬁ(ﬁb, (3.27)
U UD
Py = B¢U + o duh» (3.28)

where the ¢ represent the auxiliary functions for the corresponding second-order forcing
parameters k, such as U? etc., which all vary with distance R and depend upon the values
of D and Bo. These functions can then be evaluated by numerically solving (3.25)—(3.26),
together with the boundary conditions that the pressure vanishes in the far field and
remains finite and single valued at the origin. The results are shown in figures 4 and 5.
For all components, as Bo increases, the magnitudes of the auxiliary functions decrease
due to the decreasing interface deflection. Interestingly, even though the deflection studied
above is long ranged, the pressure field decays quite rapidly.
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20 Bo=1
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Figure 4. Auxiliary functions ¢y (see (3.27)) of the isotropic component Pjg of the first-order magnitude P
of the excess pressure field, as functions of the radial coordinate R, for various Bond numbers Bo, as obtained
by numerically solving (3.25) with D = 1.

(a) (b)
0 1.4 : ‘
V Bo=0.01 Bo=0.01
Bo=0.1 1.2 Bo=0.1 |
—0.02+ Bo= 1 1ol Bo=1
—Bo=10 ' ——Bo=10
500 —Bo=100| o 08 —Bo=100| |
v S 06/
~0.06] ] 04
02
~0.08 : : : : e
0 1 2 3 4 5 0 1 2 3 4 5
R R

Figure 5. Auxiliary functions ¢ (see (3.28)) of the anisotropic component Py; of the first-order magnitude P
of the excess pressure field, as functions of the radial coordinate R, for various Bond numbers Bo, as obtained
by numerically solving (3.26) with D = 1.

4. Capillary-lubrication forces and torques

Since the zeroth-order forces and torques acting on the sphere are identical to the
known ones for the motion near a rigid, flat and no-slip boundary, we focus here on
the first-order forces and torques acting on the sphere, and resulting from the interface
deflection. These can be calculated from the stress tensor ¥, that reads in the lubrication
approximation: X ~ —plI + ne,d,v, where I denotes the identity tensor. In dimensional
units, the first-order vertical force acting on the sphere can be evaluated as

N 25/27t/<77ca

3/2 poo
Jfo1 x> /0 P1o(R)RdR, 4.1

d* 1/2
which can be decomposed using the auxiliary functions calculated before as

a3 2P . n2ia®
— oy o ,
od? DG 3 D a3

where the oy (with k indicating here the forcing source, such as U?) are the prefactors
of the respective scalings. These prefactors are plotted in figure 6 as functions of Bo.
An important difference arises between the various prefactors at small Bo. Indeed the
prefactor a2 reaches a plateau, whereas aj and «pp increase logarithmically with
decreasing Bo. These asymptotic behaviours at small Bo can be calculated using the
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Figure 6. Prefactors oy of the scalings of the vertical-force terms, defined in (4.2), as functions of Bond
number Bo. The solid and dashed lines correspond to the small- and large-Bo behaviours (see table 1),
respectively.

A, Pr Bo— 0 Bo — oo
e 67/25 967t/(125B0)
apy —67[2 + 6y 4+ 31In(Bo/4)] 1447 /(5Bo)
aj —97[1 + 2y + In(Bo/4)] 127t/Bo
Bub —247[4 4+ 10y 4+ 51In(Bo/4)]/25 9687/(125B0)
Bis 367 /25 247 /(25B0o)

Table 1. Asymptotic behaviours of the scaling prefactors oy and S at small (see Appendix A) and large (see
Bertin et al. 2022) Bond numbers Bo, where y denotes Euler’s constant.

Lorentz reciprocal theorem (Daddi-Moussa-Ider er al. 2018; Rallabandi et al. 2018;
Masoud & Stone 2019), by invoking as well (3.12) and (3.21), as detailed in Appendix A
and summarized in table 1. They are in agreement with the numerical solutions, as
shown in figure 6. Besides, as Bo increases, all the prefactors decrease, and this decrease
becomes inversely proportional to Bo in the large-Bo limit, highlighting the transition to
the Winkler-like regime. The corresponding asymptotic expressions have been calculated
previously (Bertin ef al. 2022), are summarized in table 1, and are in agreement with the
numerical solutions, as shown in figure 6.

Similarly, the horizontal force acting on the sphere is given by the expression (Bertin
et al. 2022)

o H Py A
fx,l ~ ZnncaK —2RP11 — E aRPn + ? + TaRPOO

0

Ao Po; UAj
— | orP — | —2——— | RdR, 4.3
+2<R01+R> H2} (4.3)

which can be decomposed into
N n*uda’ n%ua’

o1 = —=Byp s Bu d (4.4)
1001 A58-11
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Figure 7. Prefactors By of the scalings of the horizontal-force terms, defined in (4.4), as functions of Bond
number Bo. The solid and dashed lines correspond to the small- and large-Bo behaviours (see table 1),
respectively.

where the f; (with k indicating here the forcing source, such as U) are the prefactors
of the respective scalings. These prefactors are plotted in figure 7 as functions of Bo.
An important difference arises once again between the two prefactors at small Bo. Indeed,
the prefactor B, reaches a plateau, whereas B, increases logarithmically with decreasing
Bo. These asymptotic behaviours at small Bo can be once again calculated using the
Lorentz reciprocal theorem, as detailed in Appendix A and summarized in table 1. They
are in agreement with the numerical solutions, as shown in figure 7. Besides, as Bo
increases, all the prefactors decrease, and this decrease becomes inversely proportional to
Bo in the large-Bo limit, highlighting once again the transition to the Winkler-like regime.
The corresponding asymptotic expressions have been calculated previously (Bertin et al.
2022), are summarized in table 1 and are in agreement with the numerical solutions, as
shown in figure 7.

As shown in previous studies (Salez & Mahadevan 2015; Bertin ef al. 2022), the
contributions to the first-order torque felt by the sphere along the y-axis have the same
numerical prefactors as those for the first-order horizontal force, with the inclusion of a
supplementary length-scale factor a. Hence, the first-order torque exerted on the sphere is
given by

N n*uda® n>iat 45
Ty,l—,BUDG—dZ_ UUd. 4.5)

We conclude this whole section with an important remark. The cross-over from the
capillary-dominated to the Winkler-like regime occurs at Bo ~ 1. This occurs when the
hydrodynamic radius is comparable to the capillary length. Since typical capillary lengths
are of the order of ~1 mm, and given the lubrication conditions, such a cross-over can only
be felt with spheres of millimetric radii and above.

5. Conclusion

Using capillary-lubrication theory, scaling arguments and numerical integrations, we
explored the asymptotic forces and torques generated on a sphere in translational motion
within a viscous fluid, in close proximity to a deformable capillary interface with another,
infinitely viscous fluid on the other side. Due to a symmetry between translational
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and rotational motions in soft lubrication (Bertin et al. 2022), our work immediately
generalizes to the case where rotation would be added. Specifically, by employing a
perturbation analysis in the limit of small deformation of the fluid interface, we calculated
the pressure fields decomposed into their various contributions from different degrees
of freedom of the sphere. We investigated in particular the effects of gravity, which not
only change the scaling laws of the forces and torques, but also show a Winkler-like
elastic response at large Bond numbers. Altogether, our results allow us to quantify and
possibly control soft-lubricated motion near tensile interfaces, which are ubiquitous in
soft matter and biological physics. For example, the visco-capillary lift force revealed
among others by our analysis, could contribute to the rationalization of the swimming
of active organisms at the air—water interface (Trouilloud ez al. 2008), the self-propulsion
of levitating Leidenfrost droplets (Gauthier et al. 2019) for which a detailed mechanism is
lacking to date or the thermal motion of oil droplets near rigid walls for which intriguing
transient non-conservative forces have been reported (Fares et al. 2024).

Acknowledgements. The authors thank G. Audéoud, V. Bertin and I. Cantat for interesting discussions.

Funding. The authors acknowledge financial support from the European Union through the European
Research Council under EMetBrown (ERC-CoG-101039103) grant. Views and opinions expressed are, however,
those of the authors only and do not necessarily reflect those of the European Union or the European
Research Council. Neither the European Union nor the granting authority can be held responsible for
them. The authors also acknowledge financial support from the Agence Nationale de la Recherche under
Softer (ANR-21-CE06-0029) and Fricolas (ANR-21-CE06-0039) grants. Finally, they thank the Soft Matter
Collaborative Research Unit, Frontier Research Center for Advanced Material and Life Science, Faculty of
Advanced Life Science at Hokkaido University, Sapporo, Japan.

Declaration of interests. The authors report no conflict of interest.
Author ORCIDs.

Aditya Jha https://orcid.org/0000-0002-9520-7578;
Thomas Salez https://orcid.org/0000-0001-6111-8721.

Appendix A. Lorentz reciprocal theorem

In this appendix, we employ the Lorentz reciprocal theorem for Stokes flows
(Daddi-Moussa-Ider ef al. 2018; Rallabandi et al. 2018; Masoud & Stone 2019) in the limit
of vanishing Bond number Bo, which allows us to evaluate the asymptotic behaviours of
the scaling prefactors o and B.

A.l. Vertical force

The model problem introduced to perform the calculation comprises a sphere moving in a
viscous fluid and towards an immobile, rigid, planar surface. We denote by V,=-V 1e;
the velocity at the particle’s surface while assuming a no-slip boundary condition at the
wall’s surface located at z = 0. The model problem is described by the incompressible
Stokes equations, V - Y=0and V-9 L =0, where ¥ denotes the stress tensor of the
model problem and v, denotes the corresponding fluid velocity. We invoke lubrication
theory to obtain the corresponding pressure and velocity fields, given by

= — ) Al
pL(r) P (AD)
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Vpi(r )

b1(r2) = —h(), (A2)
2n
where

N r2
h(r) ~d+ —. (A3)

2a

From the Lorentz reciprocal theorem, one has
/n-E-f)Lds:/n-ZA'-vds, (A4)
S S

where ¥ and v denote the stress tensor and flow velocity for the real problem, with &
denoting the entire bounding surface, including the surface of the sphere, the surface of
the substrate and the surface located at » — oco. The unit vector normal to the surface
pointing towards the fluid is denoted by n. Given the boundary conditions of the model
problem, the above relation simplifies to give

1 A
FZ:—A—/n-E-vds. (AS)
Vi Js
To approximate the velocity field at the wall’s surface, we perform a Taylor expansion
accounting for the small deformation of the wall as
v|z=0 = v|z=8 - 881v0|z=0, (A6)
= —ue, — de, + (3; — ud,)de; — 83,vol.—o, (A7)

where v( denotes the zeroth-order velocity field corresponding to a sphere moving near a
rigid surface. Thus, the leading-order normal force simplifies to

1 N ~
F1~ —A—/ (PL(8r — udx)d + N3V 1 |=0 + d;V0l:=0) dr. (A8)
Vi Jr2

Computing the latter integral by considering the deflection § (or A in dimensionless
variables) generated at vanishing Bo allows us to recover the asymptotic expressions
presented in table 1.

A.2. Horizontal force

The model problem consists here of a sphere translating with a velocity f/”ex, parallel to
and near an immobile and rigid substrate with no-slip boundary conditions applied at both
the surfaces of the sphere and the substrate. A similar treatment as in the previous section
leads to

b (r) 6n‘7||rc059 (A9)
V)= —7—"
P Sh2(r)
N (r)
v (r,z) = Vi r 2z — h()] + V|| = (A10)
2n h( )’
and
1
Fy1 >~ o (pn(at — udy)8 + nd V=0 * 9.v0l;=0) dr. (A11)
Il
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Computing the latter integral by considering the deflection § (or A in dimensionless
variables) generated at vanishing Bo allows us to recover the asymptotic expressions
presented in table 1.
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