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In a recent paper [2], Wong proved the following

THEOREM 1. Let {Ui}io be a non-decreasing sequence

of non-negative numbers, and let UO = 0. Then we have

n n
(1) = (U-U JUP<@1)PeH) ! 5 u-u
i1 i i-1" i — i=1 i i-

+1

Yang [3] proved the following integral inequality:

THEOREM 2. If y(x) is absolutely continuous cn a<x<X,
with y(a) = 0, then

X - X
(2) 7 IyPy Y ax < apra) 'x-a)P [ |yt [P Fax
a a

for p>1 and g> 1.
The purpose of this note is to obtain a discrete analogue
of (2) which includes the inequality (1) as a special case.

In fact, we are going to prove

THEOREM 3. Let {Ui}:o be a non-decreasing sequence

of non-negative numbers, and let Uo =0. If

p>0, gqg>0, ptgq>1 or p<0, qg<0,
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then

n n
+
(3a) s(u.-u, )Pk T (w.-u P9,
i i-1 i — n.. i i-1
1 i=1
-1
where Ko = q(p+q) and for n=1,2,3,...,
-1 -1 -1
K_ = max {K__, +prP (p+q) ., q+)P(ptq) ) .
I
p>0, q<0, ptq<1, p+q$0 or p<0, q>0, ptq> 1,
then
n n +
(3b) z.-u, YwPsc zw-u P9,
i i-1 i — n i i-1
1 1
where
-1
C0 = q(p+q) and for n=1, 2, 3,...,
. -1 -1 -1
Cn = m1:0{Cn_'1 +pnp (p+q) , q(n+1)p(p+q) }

In particular, we have

n n
(4) 2(U.-U, )WP < qnt)P(ptq) !t =(u.-u, P
1 i i-1 i — 1 i i-1

for p>1, g>1;

n n
+
(5a) sw.-u, )uPck nzw.-u, P
1 i i-1 i — n 1 i i-1

for p<0, q< 0

n n +
(5b) z(u.-u, HYuP>k rnzw.-u P4
1 i i-1 i — n 1 i i-1

4

https://doi.org/10.4153/CMB-1968-010-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1968-010-7

for p>0, ptq< 0, where K1“=1 and for n=2, 3,4, ...,

-4
Kn" = 1+p(p+q) i
i=2

p-1

Proof. Let X = (U-U, 1)p+q for i=1,2,3,...,
- 1 1=

)4 = Xiclk , where k = (p+q)-1 .

+ 0 that -U

p+tq $ 0, so tha (Ui i1
i

Since Ui = X (U.-U

i7Y; 1), by Hdlder's inequality we have

j=1

and

UiZDi if p+q< 0 or 0<p+q< 1

Therefore, Uip< D,p and hence
— i

n n k
2(U-U, ()WwP<zx TpP
1 i i-1 i - 1 i 1

if p>0, ptq>1 or p< 0 and either ptq< 0 or 0<p+q<1;
while U.p > D,p and hence
i =i

x ¥p P
1 1

M B
[\

(U.-U, 1)qU.pz
g 1T S

n

i
if p< 0, ptgq>1 or p>0 and either ptq< 0 or 0<p+q< 1.
Thus, (3a), (3b) will follow if we can prove
no o n
(6a) z x¥pP< K X for pg>0,
i —= . i

i=1 i=1

and
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n k n
(6b) =x¥pP>c = X, for pg<o0 .
1 Y

We prove (6a) by induction on n. Clearly it holds for
n =1 since Ki > 1. Assume that it holds for n, and observe

that
n+1 K n K

(*) > x¥pPck = x +x  ¥DP
i=q 1 i = n, 1 ntl n+1

Now, note that Xi >0 for all i >1, so that by a classical

theorem [1] of arithmetic and geometric means, we have for

pq> 0,
n+1
gk _p P 9k -1 pk
X D = +1 X +1 z X
nt1Pnp = EHTLX L [nH) - J0
p 1 n+1
< (n#1 X  4pk(nt1) = =T X} = E
< ){qknﬂp(n ) = J o= B,
i=1
since pktgk = 1. Hence from (%) we get
n+1 " n 1 n+1
X ¥DP <K = X +qgk(nt)? X +pk(n+1)? X,
. 1 i — n.. 1 n+1 . i
i=1 i=1 i=1
n+1
<
- Kn+1 . Xi
i=1

since an qk(n+1)p and Kn ZKn +pk(n+1)p-1 , which

+1
proves (6a). Note that for pq< 0, one can easily see that
gk P : .
>
il Dn+1 > En+'1 , so that (4b) will follow by proceeding as

above, and the proofs of (3a) and (3b) are completed.

To see (4), consider Kn‘ = q(n«H)p(p+q)-1 for p > 1,

g>1. We have K'1 = q2p(p+q)_121, and
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1 1 = -1 P_ P
Kn+1 - Kn = q(ptq) [(nt2)" -(n+1)"]

> qlp+q)” [(a+1Pipn+)P” 1o (nt1)P] > plp+a)” Hatt)P?,

where we used the Bernoulli inequality. Thus (4) follows from
the proof of (3a). Also, (5a), (5b) follows from the facts:

K'r;+1 - Kg = p(n+'1)p-1(p+q)-'1 , and

> q(n+'1)p(p+q)_1 for p<0 and q< 0,

&
v
-
\Y

but K"< 1

IN

q(n+1)p(p+q)—1 for p>0 and pt+q<O0:

Thus we complete the proof of Theorem 3.
We remark that (3a) [or (4)] becomes (1) when q =1 and

Also, note that (3a) is true even for 0< p< 1 when

> 1.
=1, but (1) fails to hold for p < 1.

p
q
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