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GALOIS GROUPS OF NUMBER FIELDS GENERATED
BY TORSION POINTS OF ELLIPTIC CURVES

KAY WINGBERG

Coates and Wiles [1] and B. Perrin-Riou (see [2]) study the arithmetic
of an elliptic curve E defined over a number field F' with complex multi-
plication by an imaginary quadratic field K by using p-adic techniques,
which combine the classical descent of Mordell and Weil with ideas of
Iwasawa’s theory of Z -extensions of number fields. In a special case they
consider a non-cyclotomic Z,-extension F., defined via torsion points of E
and a certain Iwasawa module attached to E/F, which can be interpreted
as an abelian Galois group of an extension of F.. We are interested in
the corresponding non-abelian Galois group and we want to show that the
whole situation is quite analogous to the case of the cyclotomic Z,-
extension (which is generated by torsion points of G,).

To make this precise: The odd prime number p satisfies the following
two conditions:

(i) p splits in K into two distinct primes: (p) = pp*,

(i) E has good (ordinary) reduction at every prime of F above p.
Then F. is the unique Z,-extension in F(E,.), where E_ =/, E, is
the group all torsion points of E(F) annihilated by a power of .

Now, let S, = S,(F) be the set of primes above p in F and let F be
the maximal p-extension of F unramified outside the set of primes S = S(F').
Assuming the weak p-adic Leopoldt conjecture, the abelian Galois group
G(F; |F.)" is a A = Z,[I"]-torsion module where /" = G(F.[F). This module
gives an alternative description of the Selmer group of E/F.,, [2] Theorem
12, and its characteristic power series defines the Iwasawa L-function
of E/F for which an p-adic analogue of the conjecture of Birch and
Swinnerton-Dyer is stated. In the following we will call this situation
(p # 2 with i) and ii), F.. © F(E,.), Fy) the elliptic case.

In general, nothing is known about the (non-abelian) Galois groups
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G(F,[F.) or G(F,[Fs) for T 2 S, not even their cohomological dimension.
On the other hand, let F., be the cyclotomic Z,-extension, i.e. the unique
Z -extension in F(y,.), where s, is the group of all torsion points of G,
of p-power order, and let S contain the set S, of all primes above p.
Then G(F,/F.) is a free pro-p-group, if the p-invariant of G(F,/F.)™ is
zero (hence this holds for abelian extensions F/@). Furthermore, the
Galois group G(F;/Fs), T2 S, is the free pro-p-product of all inertia
groups T,(F(p)/F.) with ve T\S(Fs), where F(p) denotes the maximal
p-extension of F. This is a result of Neukirch [6] for F = @ and in
general of O. Neumann, [7] or [9] for a short proof. If in addition we
assume F to be totally real, then G(F; /F.) is finitely generated, and we
will call this situation (p # 2, F.. < F(p,~), Fs,) the G,-case.
We prove the more general

THEOREM. Let S be a finite set of primes of F such that the following
degree condition holds

() T TR @) = n(E) + r(E),

where r(F) resp. r(F) is the number of real resp. complex places of F.
Let F., be a Z, extension in F; for which S)\S(F.) is « finite set and the
“weak Leopoldt conjecture”

rank,; G(Fyq5,/F.)" = 0

is satisfied.

(i) Assume p(G(Fss,/F.)*) is zero. Then the Galois groups G(F; [F.)
and G(Fs,s,/F.) are free pro-p-groups and the same is true for G(F/F.)
and G(Fgys,/F.) if and only if the set of primes {ve S\S(F.):v|q, N(q) =
1modp} is finite.

(i) If H(G(Fs,s,/F.), Q,/Z,) is zero, then the Galois group G(F.|Fs)
for T2 S is a free pro-p-product of inertia groups:

x  TS(F(p)IF.) —> G(F[Fs),

ve2ris(Fs)

where the isomorphism is induced by the maps
T(F(p)F.) = TAF(p)|Fs) => G(F(p)|Fs) —» G(F|Fs), veT\S(Fy).

Remark. a) P s(Fs) is the projective limit of the sets Z, (L) =
{v,|v:veT\S} provided with the cofinal topology, where L/F runs through
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all finite Galois subextensions of F/F, see [9] Section 2.

b) In the G,-case the assertion ii) is the result of Neumann (there
is no condition in that case, since Iwasawa proved in [4] that the weak
Leopoldt conjecture is true, see also [8] Proposition 5.1).

CoRroLLARY (The elliptic case for F = K). Let E be an elliptic curve
defined over the imaginary quadratic field K with complex multiplication by
the ring of integers of K. Let p + 2 be a prime, which satisfies the con-
ditions i) and ii), and let F., be the unique Z extension in F(E,.). Then
the Galois group G(Fs/F.), S 2 S,, is a free pro-p-group and G(F,|Fy) for
T> 8>S, is a free pro-p-product of inertia groups:

*  T(F(p)/F.) —> G(F,[Fy).

vezr\s(Fg)

This follows immediately from the theorem. Indeed, the (weak) Leopoldt
conjecture is valid for K and recently L. Schneps and independently R.
Gillard proved g = 0 for F = K. The second assertion is quite remarka-
ble, since the inertia groups T,(F(p)/F.) are not finitely generated for
primes v above p*/p (recall: T(F(p)/F.) = Z, or 1 for v } p).

We need the following notations: Let M’ resp. M, be the I-
invariants resp. I'-coinvariants of a compact noetherian A-module M.
According to the general structure theory we have

rank, M = rank,, M, — rank, M".

Furthermore, A* = Hom (4, Q,/Z,) denotes the Pontrjagin dual of a Z,-
module A and A,. and ,»A are defined by the exact sequence

pm
0—> A—>A >A—>A,—>0,

where the middle map is the multiplication by p™.
Now we start with a purely algebraic

LeEMMA. Let
1 H G > [ 1

be an exact sequence of pro-p-groups, where G is finitely generated and I’
is isomorphic to Z,. Then we have the following assertions for the com-
pact noetherian A-module H®™:

(1) rank,H* = — ¥(G) + dimy, HG, Q,/Z,), + rank, (H*(H, Q,/Z,)")*
with the partial Euler-Poincaré characteristic
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7(G) = 3. dimy, H'(G, F,).

(1) Let H*H, Q,/Z,) be zero and let H*G, Q,/Z,) be divisible; then
H® does not contain any non-trivial finite A-submodule.

Proof. Let 1 - R— F— G —1 be a minimal representation of G by
a free pro-p-group F of rank n = dimp, HY(G, F,) and a closed normal
subgroup R and let the free pro-p-group E be defined by the commutative
and exact diagram

|
'

—d
_— > >~
H—> > > Q>+

|

="

'

|

Dualizing the corresponding Hochschild-Serre spectral sequences we get
the exact sequences

0 —> HG, Q,/Z,)* —> R|[R, F] —> F** —> G* —— 0
0— H¥H, Q,/Z,)* —> R|[R, E] —> E*™ —> H**—— 0,

Since E® is a free A-module of rank n — 1 ([5] Satz 3.4 a), we get

rank, H** = n — 1 — rank, R/[R, E] + rank, H*H, Q,/Z,)*

—n — 1 — (rank,, R/[R, F] — rank,, R/[R, E]")

+ (rank,, HY(H, Q,/Z,)f — rank,, H'H, Q,/Z,)*")
= n — 1 — (rank,, H¥G, Q,/Z,)* + dimy, ,G**)

+ (rank,, R/[R, E]" — rank,, H*(H, Q,/Z,)*")

+ rank,, H*(H, Q,/Z,)"*
= n — 1 — (rank,, HYG, Q,/Z,)* + dimy, ,G*™)

+ rank,, H'(H, Q,/Z,)"™* .

The exact cohomology sequence

0 — (,G™* —> H*G, F,) —> ,HYG, Q,/Z,) —> 0
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induced by the sequence 0 — Z/p — Q,/Z, AN Q.,/Z,— 0 now gives the
first assertion. The second follows by the exact sequence

0 —> Hl(Ha Qp/Zp)F —> HZ(G9 Qp/Zp) —_—> HZ(H, Q.'/Zﬂ)r —> 0 )
since H*® does not contain any non-trivial /-submodule if and only if
H*' = (H'(H, Q,/Z,))* is a free Z,module.
In the following we deal with the commutative and exact diagram
obtained by class field theory:

0——> Ug(F.) —> J] U(F.) —> G(Fs/F.)" —> A —>0
ves
A A A ii

| | |

%) 0 ——> U (F.)—> [] U(F.) —> G(F;/F.)* —> A —>0

) ]

00— Kero —> ] Uv(Fm)—f—* G(F,/Fs), —> 0
ver7\S

HYG(F,/F.), Q,/Z,)*

HYG(F|F.), Q,|Z,)*

Here we have used the following notations: S and T are sets of primes
with T2 S, If F, is the n-th layer of F., let Uy,(F,) be the p-primary
part of the unit group of the v-completion of F, and let Uy(F,) be the
topological closure of the image of the global unit group of F, diagonal
embedded in the local groups. Then Uy(F.) resp. U(F.) is the projective
limit of U,F,) resp. Ug(F,) relative to the norm map. A denotes the
Galois group of the maximal abelian unramified p-extension of F., and for
shortness we set G(F,/Fs), for G(F|F)/[G(F|Fs), G(F/F.)].

In the diagram the vertical sequence is obtained from the Hochschild-
Serre spectral sequence and the horizontal maps in the middle are induced
by the reciprocity homomorphism. The map ¢ is surjective, since Fy has
no unramified p-extension.

PropositioN 1. Let T be a finite set of primes of F containing S,.
Then

HYG(F:|F.), Q,/Z,)*

is a free A-module of finite rank.
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Proof. Since the cohomological dimension of G(F,/F) is equal or less
2, the group H*G(F./F), Q,/Z,) is divisible, and H(G(F,/F), Q,/Z,) is zero.
The exact sequences obtained from the Hochschild-Serre spectral sequence

0 —> H(G(F[F.), Q,|Z,)r —> H"(G(F:|F), Q,/Z,)
—— H*(G(F,[F.), Q,/Z,)" —> 0

for i = 1, 2 show:

HYG(F.|F.), Q,/Z,)" is divisible,
HYG(F,|F.), Q,Z,)r = 0.

This gives the assertion, [8] 1.2.

Now we are interested in the conditions under which G(F/F.)™ is a
A-torsion module, where S is a finite set of primes of F such that S,\S(F..)
is finite and the degree condition (*) holds. This is equivalent to the
weak Leopoldt conjecture, which says: the defect

5n = rl(Fn) + rZ(Fn) —1- rankZp US(Fn)
is bounded for n — oo, [2] Lemma 14.
ProrositioN 2. Let S be a set of primes of F such that the degree
condition (*) holds and let F., be a Z,-extension in Fg such that S,)\S(F.,)
is finite. Then the following assertions are equivalent:

i) rank, G(F/F.)™ = 0.
ll) a) HZ(G(FS/Fm)9 Qp/Zp) = HZ(G(FSUSP/FOO)’ Qp/Zp) = 0

and
b)) [ UfF.)—> G(Fsys,/Fs)..
VESH\S(Foo)
iii) a) rank, H(G(F/F.,), Qp/Zp) = rank, HZ(G(FSNF/FM), Q./Z,)=0
and

b) rank, Us,s,(F.) = rank, Ug(F..).

Proof. We estimate the rank of G(F/F.)™ by using the diagram (**)
for T=SUS,:

rank, G(F/F.)* > rank, G(F,/F_)*®
— (rank, [] U,(F.) — rank, Ker ¢)
veT\S

+ rank, H(G(Fs/F.), Q,/Z,)*
— rank, H{G(F;/F.), Q,/Z,)*
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By the global duality theorem due to Tate and Poitou one can compute
the Euler-Poincaré characteristic of G(F,/F):

1(G(F|F)) = WG(F:[F)) = — r(F),

see [3] Proposition 22, Corollary 5. Furthermore, Iwasawa’s result on
local Z,-extensions, [4] Theorem 25, gives

rank, [|] UWF.)= > [F,:Q,)=r(F).

vESH\S (Feo) veSp\S(F)

Hence by the lemma we get
rank, G(Fs/F.)"™ > rank,Ker ¢ + rank, H(G(F/F.), Q,/Z,)*,
Therefore 1) implies
rank, Ker ¢ = rank, H{(G(F/F.), Q,/Z,)* = 0.

If F. is a non-cyclotomic Z,-extension, we have considering the A-module
structure of the local groups U,F.)

U (F.) € A"

VESH\S(Fu)

([4] Theorem 25), so Ker ¢ must be zero as a rank zero submodule of a free
_I-module, i.e., ¢ is an isomorphism. If F is the cyclotomic Z,-extension,
S must contain S,, and there is nothing to show for ¢.

Furthermore, we obtain

rank, G(F,/F.)"* = r(F),
hence by the lemma and Proposition 1

HYG(F.|F.), Q,Z,) = 0.
Therefore we get the inclusion

HYG(Fs[F.), Q,|Z,)* < G(F:|Fy), = i UJF.) = 17D,

hence as above
HYG(Fs/F.), Q,/Z,) = 0.

Assertion iii) follows from ii) for trivial reasons. Finally, iii) implies
1) by combining the following rank equalities:

rank, G(Fs/F_ )" = rank, G(F,/F..)*™ — r(F),
rank, G(F;/F.)* = r(F) + rank, H(G(F,/F.), Q,/Z,)* .
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(the last one follows from the lemma, Proposition 1 and cd (G(F./F)) < 2).

PropositioN 3. Let S and F, be as in Proposition 2. If the A-rank
of G(Fs[F. )" is zero, the following is true:

1) GF/F.)" and G(Fs,s,/F.)"” do not contain any non-trivial finite
A-submodule.

i) There exists an inclusion

Tor,, G(Fss,/F.)" = Tor, G(Fs/F.)™ .
In particular, there is an inequality
UG(Fsys,/F)") < (G(F[F.)™) .
iii) The Galois group G(Fs/F.) (resp. G(Fs,s,/F.)) is a free pro-p-group
if and only if W(G(Fs|F.)") (resp. y(G(Fss,/F.)™) is zero.

Proof. We have cd,(G(Fs,s,/F)) <2 and HYG(Fs,s,/F.), Q,/Z,) =0
by Proposition 2, so the lemma implies i) for G(Fys,/F..)™.

Now assume S, ¢ S (hence F, is not the cyclotomic Z,-extension).
Proposition 2 and Theorem 25 in [4] give

(G(Fsus,,/FS)c)r =( I UF )N =0.

VESP\S (Feo)

Therefore we obtain the exact sequence
0 —> G(Fsys,/F.)"" —> G(Fs/F. )"
(T UFEN > GFsys,[F)P

VESp\S (Foo)
Since F./F is unramified for all ve S,\S we get an isomorphism
0 = H(I', ., U(F) —> UfF)y,, > U(F) —> HI,.,, U(F,)) =0
(I',., = G(F, ,/F.)), and consequently
( 1 UFN= 11 ULF).

VESH\S (Fon) VeSS (F)

By class field theory we have a commutative and exact diagram

oI UlF) =5 (G (F sy, FND)
!
0—> ulF) =5 o T1 UF) —> ,uG(Fyys,/F)™.

veSuS)
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Since the group p(F) of all roots of unity in F is diagonal embedded in

the local groups, we see that +r restricted to the Z,-torsion subgroup of

[Toesns ULF) is injective. In the beginning of the proof we showed that

G(Fgys,/F.)"" is Z,-free, hence we now get the same assertion for G(F/F.)"".
Since Torz, ([Tves s, UF.)) is trivial, the exact sequence

0—> [|  UfF.) —> G(Fyys,[F.)" —> G(F/F.)" —>0

Ve SH\S (Feo)
gives the assertion ii), whereas iii) follows from the isomorphism
0 — ,G(F[F.y** > H(G(F./[F.), F,) —> ,H G(F.[F.), Q,/Z,) = 0
with T'= S resp. T=S U S,

Proof of the Theorem. In order to prove the second statement we first
consider the exact sequence

0 —> G(Fs/Fsps,). —> G(Fs[F.)" —> G(ans,,/Fw)ah —90
(observe: H(G(Fs,s,/F.), Q,/Z,) = 0, Proposition 2 ii)). Now the surjection

induced by the reciprocity map

UJF.) —> G(F/Fs,s,).

Ve S\Sp(Fon)
gives the rank equality

rank, G(Fs/F.)" = rank,G(Fs.5,/F.)" = 0.
Indeed, the module

UF.) = [l UF)LI]
veES\Sp(F o) 9€ S\Sp(F)
N()=1mod p

is /-torsion, because we have for a decomposition group I', of I', gt p:

I',=1& UF.) = U(F) (cyclic of finite order)
[Tr]l]<ow&e UWF)=2Z,.
Using Proposition 2 we get
[1  T(F(P)F.y” —> GFs,[Fsqs,).
VESH\S (Foo)

HYG(Fs,/F.), Q,/Z,) =0,

and the Hochschild-Serre spectral sequence implies
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0 = H¥(G(Fs,/F.), Q,/Z,) —> H (G(Fss,/F..), H(G(Fs,/Fsqs,), Q:Z,))
—> HYG(Fss,/F..), Q,/Z,) = 0.
Therefore Lemma 2.1 in [9] gives the isomorphism
* T(F(p)F.) —> G(Fs,|Fsqs,) .
vers \sFsns,)

In the commutative and exact diagram

0 0

* T(F(p)IF.) —> G(Fs,[Fsqns,)
versnsFsuysy
A

* T(F(p)/F.) —> G(FTusp/ans,,)
VeI sSnsp Fsusy
A

* T(F(p)IF.)—> G(Frys,/Fs,)

VELT s S, sy

0 0
the bottom map is an isomorphism by the theorem of Neumann. There-
fore we obtain the assertion ii) for the sets T'U S, and S N S,, hence for
T and SN S, by dividing through the normal subgroup generated by all
inertia groups for ve S,\T. Finally, the normal subgroup
*  TyF(p)F.) of * T(F(p)IF.) = G(Fr|Fsqs,)

VEPS\T(F'S) VEPT\SNSp FSNSy)

is just the kernel of the canonical surjection G(F/Fss,) —» G(F/Fs,s,),
hence isomorphic to G(F;/Fj).
In order to prove i) we observe that by the just established isomor-

phism
#  T(F(p)IF.) —> G(Fs|Fsqs,)

VELS\SNSp

the surjection ¢ is in fact an isomorphism. Thus we get

HGESF)?) = G sns,[F)®) + - 24 wUFILILD -

N(g)=1mod p

Now the proof of the theorem is accomplished by using Proposition 3 1i), iii).
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