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Abstract

We prove convergence in norm and pointwise almost everywhere on L?, p € (1, ), for certain multi-parameter
polynomial ergodic averages by establishing the corresponding multi-parameter maximal and oscillation inequal-
ities. Our result, in particular, gives an affirmative answer to a multi-parameter variant of the Bellow—Furstenberg
problem. This paper is also the first systematic treatment of multi-parameter oscillation semi-norms which allows
an efficient handling of multi-parameter pointwise convergence problems with arithmetic features. The methods of
proof of our main result develop estimates for multi-parameter exponential sums, as well as introduce new ideas
from the so-called multi-parameter circle method in the context of the geometry of backwards Newton diagrams
that are dictated by the shape of the polynomials defining our ergodic averages.
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1. Introduction
1.1. A brief history

In 1933, Khintchin [40] had the great insight to see how to generalize the classical equidistribution result
of Bohl [12], Sierpiriski [56] and Weyl [66] from 1910 to a pointwise ergodic theorem, observing that as
a consequence of Birkhoff’s famous ergodic theorem [11], the following equidistribution result holds:
namely, for any irrational 6 € R, for any Lebesgue measurable set E C [0, 1) and for almost every x € R,
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. #{me [M]:{x+m0} €eE}
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where {x} denotes the fractional part of x € R, and [N] := (0, N] N Z for any real number N > 1.
In 1916, Weyl [67] extended the classical equidistribution theorem to general polynomial sequences
({P(n)})nen having at least one irrational coefficient, and so it was natural to ask whether a pointwise
ergodic extension of Weyl’s equidistribution theorem holds. This question was posed by Bellow [5] and
Furstenberg [24] in the early 1980s; precisely, they asked if for any polynomial P € Z[m] with integer
coefficients and P(0) = 0 and for any invertible measure-preserving transformation 7 : X — X on a
probability space (X, B(X), ), does the limit

A}iglm Emerm ) f(TF™x)

exist for almost every x € X and for every f € L®(X)? Here and throughout the paper we use the
notation Eycy f(y) := # 2yey f(y) for any finite set Y # 0 and any function f : ¥ — C. In the mid
1980s, the first author [13, 14, 15] established that this is indeed the case whenever f € LP(X) and
p € (1,), leaving open the question of what happens on L'(X). Interestingly, it was shown much
later by Buczolich and Mauldin [18] that the above pointwise convergence result fails for general L'
functions when P(m) = m?; see also [42] for further refinements. In any case, the papers [13, 14, 15]
represent a far-reaching common generalization of Birkhoff’s pointwise ergodic theorem and Weyl’s
equidistribution theorem.

Both Birkhoff’s and Weyl’s results have natural multi-parameter extensions. In 1951, Dunford [23]
and Zygmund [72] independently extended Birkhoff’s theorem to multiple measure-preserving transfor-
mations 71, ..., T : X — X. They showed that the limit

moerte, i ST 1) (1.1)

.....

exists for almost every x € X and for any f € LP(X) with p € (1, 0), where ﬂjf:l [M;] == [Mi] x
X [My]. The limit is taken in the unrestricted sense; that is, when min{Mi, ..., M;} — oo. Here,
when k > 2, the pointwise convergence result is manifestly false for general f € L' (X).

In 1979, Arkhipov, Chubarikov and Karatsuba [2] extended Weyl’s equidistribution result to polyno-
mials (even multiple polynomials) of several variables. In its simplest form, their result asserts that for
any k-variate polynomial P € Z[my, ..., mg], any irrational 6 € R and any interval [a, b) C [0, 1), one
has

#{(m1,...,mi) € [152,[M;] : {OP(my, ..., mp)} € [a,b)}
min{My,..., My }—co0 M- Mk

=b-a. (12)

In the late 1980s, after [13, 14, 15] and in light of these results, it was natural to seek a common
generalization of the results of Dunford and Zygmund on the one hand (which generalize Birkhoft’s
original theorem) and Arkhipov, Chubarikov and Karatsuba on the other hand (which generalize Weyl’s
theorem), which can be subsumed under the following conjecture, a multi-parameter variant of the
Bellow—Furstenberg problem:

Conjecture 1.3. Let k € Z, with k > 2 be given and let (X, B(X), i) be a probability measure space
with an invertible measure-preserving transformation T : X — X. Assume that P € Z[my, ..., mg]
with P(0) = 0. Then for any f € L*(X), the limit

lim S 1[Mj]f(TP(m] """ ")) exists for u-almost every x € X.  (1.4)
J=
Our main theorem resolves this conjecture.
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Theorem 1.5. Conjecture 1.3 is true for all k € Z,.

The case k = 1 corresponds to the classical one-parameter question of Bellow [5] and Furstenberg
[24] and was resolved in [13, 14, 15]. In this paper, we will establish the cases k > 2. In fact, we will
prove stronger quantitative results including corresponding multi-parameter maximal and oscillation
estimates (see Theorem 1.11 below), which will imply Conjecture 1.3. This paper also represents a
first systematic treatment of multi-parameter oscillation semi-norms which allows an efficient handling
of multi-parameter pointwise convergence problems for ergodic averaging operators with polynomial
orbits. Before we formulate our main quantitative results, we briefly describe the interesting history of
Conjecture 1.3.

The theorems of Dunford [23] and Zygmund [72] have simple proofs, which can be deduced by
iterative applications of the classical Birkhoff ergodic theorem. For this purpose, it suffices to note
that the Dunford—Zygmund averages from (1.1) can be written as a composition of k classical Birkhoff
averages as follows

.....

Eimy....moyert', ) LA T = Bty [+ By ey f (7 (- T3 | (1.6)

The order in this composition is important since the transformations 71, . . . , Ty do not need to commute.
The first author, in view of [13, 14, 15], extended the observation from (1.6) to polynomial orbits and
showed that for every f € LP(X) with p € (1, 00), the limit

. Py (m) Py (my)
i1, s B comoy et it/ (G T ) (L
exists for u-almost every x € X, whenever Py,..., Py € Z[m] with P1(0) = ... = P;(0) = 0 and
Ti,..., T4 : X — X is a family of commuting and invertible measure-preserving transformations. The

result from (1.7) was never published; nonetheless, it can be thought of as a polynomial extension of
the theorem of Dunford [23] and Zygmund [72] (the arguments in Section 3.4 can be used to derive a
quantitative version of (1.7)). Interestingly, as observed by Benjamin Weiss (privately communicated to
the first author), any ergodic theorem for these averages fails in general for k > 2 when the 71, . . ., Ty are
general non-commuting transformations. It may even fail in the one-parameter situation for the averages
of the form E,ear) f (TIP] (m) .. T: "(m)x); see also [10] for interesting counterexamples.

This was a turning point, illustrating that the multi-parameter theory for averages with orbits along
polynomials with separated variables as in (1.7) is well-understood and can be readily deduced from
the one-parameter theory [13, 14, 15] by simple iteration as in (1.6). However, the equidistribution
result (1.2) of Arkhipov, Chubarikov and Karatsuba [2], based on the so-called multi-parameter circle
method (deep and intricate tools in analytic number theory which go beyond the classical circle method)
showed that the situation may be dramatically different when orbits are defined along genuinely k-variate
polynomials P € Z[my, ..., mg] and led to Conjecture 1.3. Even for k = 2 with P(m,m;) = m%m;
in (1.4), the problem becomes very challenging. Surprisingly it seems that there is no simple way (like
changing variables or interpreting the average from (1.4) as a composition of simpler one-parameter
averages as in (1.6)) that would help us to reduce the matter to the setup where pointwise convergence
is known.

The multi-parameter case k > 2 in Conjecture 1.3 lies in sharp contrast to the one-parameter situation
k = 1, causing serious difficulties that were not apparent in [13, 14, 15]. The most notable differences
are multi-parameter estimates of corresponding exponential sums and a delicate control of error terms
that arise in implementing the circle method. These difficulties arise from the lack of nestedness when
the parameters M, ..., My are independent; see Figure 1 and Figure 2 below. We now turn to a more
detailed discussion and precise formulation of the results in this paper.
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ON,N
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M N

Figure 1. Family of nested rectangles (cubes) Qp.m C On.n With M < N, for k = 2.

QM| ,M,

Ny
ON|.N,

M Ny

Figure 2. Family of un-nested rectangles Q. m, € On,.N, With M| < Ny and M > N, for k = 2.

1.2. Statement of the main results

Throughout this paper, the triple (X, B(X), u) denotes a o-finite measure space, and Z[my, . .., mg]
denotes the space of all formal k-variate polynomials P(my,...,my) with k € Z, indeterminates
my,...,my and integer coefficients. Each polynomial P € Z[my,...,m;] will always be identified
with amap Z¥ 5 (my,...,my) — P(my,...,my) € Z.

Let d,k € Z,, and given a family 7 = {T},...,T,} of invertible commuting measure-preserving
transformations on X, a measurable function f on X, polynomials P = {Py,..., P4} C Z[my,..., mg]
and a vector of real numbers M = (My, ..., M) whose entries are greater than 1, we define the multi-
parameter polynomial ergodic average by

Al oy 7 () = Byegy, ST - TH My xe X, (1.8)

where Qps = [M;] X ...x [My] is a rectangle in ZX. We will often abbreviate AZ;X’T to AI\P/I;X when
the tranformations are understood. In some instances, we will write out the averages

P Pi,....P P Py,....P,
A f() = Ay x () ot Appxe 700 = Ay xS (0

depending on how explicit we want to be.

Example 1.9. From the point of view of pointwise convergence problems, due to the Calderdn trans-
ference principle [19], the most important dynamical system is the integer shift system. Consider
the d-dimensional lattice (Zd, B (Zd), Hza) equipped with a family of shifts Sy,...,Sy : 74 — 74,
where B(Z%) denotes the o-algebra of all subsets of Z¢, u7a denotes counting measure on Z¢, and
Si(x) = x —e; for every x € 74 (here, e j is j-th basis vector from the standard basis in Z¢ for
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each j € [d]). The average AIE‘X 7 with T = (T,...,Tq) = (S1,...,Sa4) can be rewritten for any
x=(x1,...,xq) € Z% and any finitely supported function f : Z¢ — C as
AL 2af (X) = Begy, f(x1 = P1(m), ..., xa = Pa(m)). (1.10)

The main result of this paper, which implies Conjecture 1.3, is the following ergodic theorem.

Theorem 1.11. Let (X, B(X), u) be a o-finite measure space with an invertible measure-preserving
transformation T : X — X. Let k € Z, with k > 2 be given, and P € Z[my, ..., my]| be a polynomial
such that P(0) = 0. Let f € LP(X) for some 1 < p < o0, and let Aj"\a/ll Mk;X’Tf be the average defined
in (1.8) with d = 1 and arbitrary k € Z,.

.....

(1) (Mean ergodic theorem) If1 < p < oo, then the averages A]I;,l +f converge in LP (X) norm.

----- M X,
(ii) (Pointwise ergodic theorem) If 1 < p < oo, then the averages AJICII
almost everywhere.

(iii) (Maximal ergodic theorem) If 1 < p < oo, then one has

My:X.T f converge pointwise

.....

.....

I sup AR e Alle ) Sp 1l oo (1.12)

(iv) (Oscillation ergodic theorem) If 1 < p < oo and T > 1, then one has

sup  sup “0[’] (AI{’,II

Mk;X,Tf My, ..., My € D‘r)”LP(X) <p.7.P ”f“LP(X),
J€Z, IEG‘](D{E)

.....

(1.13)

where D := {t" : n € N}; see Section 2 for a definition of the oscillation semi-norm Oy j. The
implicit constant in (1.12) and (1.13) may depend on p, T, P.

For ease of exposition, we only prove Theorem 1.11 in the two-parameter setting k = 2, though
there are some places in the paper where some arguments are formulated and proved in the multi-
parameter setting to convince the reader that our arguments are adaptable to the general multi-parameter
setup. However, the patient reader will readily see that all two-parameter arguments are adaptable (at
the expense of introducing cumbersome notation, which would make the exposition unreadable) to the
general multi-parameter setting for arbitrary k > 2, by multiple iterations of the arguments presented in
the paper.

We now give some remarks about Theorem 1.11.

1. Theorem 1.11 establishes Conjecture 1.3 for the averages AIICI;X’T f- This is the first nontrivial
result in the literature establishing pointwise almost everywhere convergence for polynomial ergodic
averages in the multi-parameter setting. See [53] for other pointwise convergence results in the
multi-parameter setting.

2. The proof of Theorem 1.11 is relatively simple if P € Z[m;, ..., mg] is degenerate; see inequality
(3.5) in Section 3. We will say that P € Z[my, ..., my] is degenerate if it can be written as

P(ml,...,mk)=P1(m1)+...+Pk(mk), (1.14)

where Py € Z[my],...,Px € Z[mg] with P{(0) = ... = Px(0) = 0. Otherwise, we say that
P € Z[my,...,mg] is non-degenerate. The method of proof of Theorem 1.11 in the degenerate case
can be also used to derive quantitative oscillation bounds for the polynomial Dunford and Zygmund
theorem establishing (1.7).

3. At the expense of great complexity, one can also prove that inequality (1.13) holds with Z, in place
of D,. However, we do not address this question here, since (1.13) is sufficient for our purposes and
will allow us to establish Theorem 1.11(ii).

https://doi.org/10.1017/fmp.2023.21 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2023.21

6 J. Bourgain et al.

4. If (X, B(X), p) is a probability space and the measure preserving transformation 7 in Theorem 1.11
is totally ergodic, then Theorem 1.11(ii) implies

lim Ag}l mex.r S (%) :/Xf(y)d,u(y) (1.15)

min{Mi,..., My }—oo T

p-almost everywhere on X. We recall that a measure preserving transformation 7' is called ergodic on
Xif T-'[B] = B implies u(B) = 0 or u(B) = 1, and totally ergodic if T" is ergodic for every n € Z,.

5. This paper is the first systematic treatment of multi-parameter oscillation semi-norms; see (2.9),
Proposition 2.16 and Proposition 2.18. Moreover, it seems that the oscillation semi-norm is the only
available tool that allows us to handle efficiently multi-parameter pointwise convergence problems
with arithmetic features. This contrasts sharply with the one-parameter setting, where we have a
variety of tools including oscillations, variations or jumps to handle pointwise convergence problems;
see [38, 49] and the references therein. Multi-parameter oscillations (2.9) were considered for the
first time in [37] in the context of the Dunford—Zygmund averages (1.1) for commuting measure-
preserving transformations.

We close this subsection by emphasizing that the methods developed in this paper allow us to handle
averages (1.8) with multiple polynomials. At the expense of some additional work, one can prove the
following ergodic theorem.

Theorem 1.16. Let (X, B(X), 1) be a o-finite measure space equipped with a family of commuting
invertible and measure-preserving transformations T\, T,,T5 : X — X. Let P € Z[m|,m;] be a
polynomial such that P(0,0) = 9, P(0,0) = ,P(0,0) = 0, which additionally has partial degrees (as
a polynomial of the variable m| and a polynomial of the variable my) at least two. Let f € LP(X)
for some 1 < p < oo, and let Ax‘l”rﬁ;gm"mﬂf be the average defined in (1.8) with d = 3, k = 2, and
Pi(my, mp) = my, Po(m, mp) = my and P3(my, m) = P(my, my).

(i) (Mean ergodic theorem) If 1 < p < oo, then the averages AE]’,IR;;;((m“mZ)f converge in LP (X)
norm.

(ii) (Pointwise ergodic theorem) If 1 < p < oo, then the averages A
almost everywhere.

(iii) (Maximal ergodic theorem) If 1 < p < oo, then one has

my,my, P (my,mp)

M, Mo:X f converge pointwise

|Am' ,my, P (my,my)

” sup My, My X fl“LP(X) Sp.p Ifllee (x)- (1.17)

M ,M>€eZ,
(iv) (Oscillation ergodic theorem) If 1 < p < co and T > 1, then one has

,myp, P(my,
sup sup [0y (AT oMy, My € De)llee o) Sporp I lle ),
J€Zs [ec; (D2)

(1.18)

where Dy := {t" : n € N}. The implicit constant in (1.17) and (1.18) may depend on p, T, P.

For simplicity of notation, we have only formulated Theorem 1.16 in the two-parameter setting,
but it can be extended to a multi-parameter setting as well. Namely, let d > 2 and let (X, B(X), 1)
be a o-finite measure space equipped with a family of commuting invertible and measure-preserving
transformations 71, ...,7T; : X — X. Suppose that P € Z[m;, ..., mg_{] is a polynomial such that

P(0,...,0) = P(0,...,0)=...=0,41P(0,...,0) =0,
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which has partial degrees (as a polynomial of the variable m; for any i € [d — 1]) at least two. Then the
conclusions of Theorem 1.16 remain true for the averages

,,,,, L P(my,..mg . ,my, P (my,
A;‘lnﬁliléﬁig‘l V£ inplace of AEI Ez;x(m‘ m) g, (1.19)
All remarks from items 1—4 after Theorem .11 remain true for ergodic averages from (1.19). Finally,

we emphasize that Theorem 1.11 and Theorem [.16 make a contribution to the famous Furstenberg—
Bergelson-Leibman conjecture, which we now discuss.

1.3. Contributions to the Furstenberg—Bergelson—Leibman conjecture

Furstenberg’s ergodic proof [27] of Szemerédi’s theorem [59] (on the existence arbitrarily long arithmetic
progressions in subsets of integers with positive density) was a departure point for modern ergodic
Ramsey theory. We refer to the survey articles [7], [8] and [25], where details (including comprehensive
historical background) and an extensive literature are given about this fascinating subject. Ergodic
Ramsey theory is a very rich body of research, consisting of many natural generalizations of Szemerédi’s
theorem, including the celebrated polynomial Szemerédi theorem of Bergelson and Leibman [9] that
motivates the following far-reaching conjecture:

Conjecture 1.20 (Furstenberg—Bergelson—-Leibman conjecture [10, Section 5.5, p. 468]). For given
parameters d, k,n € N, let Ty, ..., T; : X — X be a family of invertible measure-preserving transfor-
mations of a probability measure space (X, B(X), i) that generates a nilpotent group of step | € Z,,
and assume that Py y,...,P;j,...,Pqn € Z[my,...,my]. Then for any fi,..., f, € L*(X), the
nonconventional multiple polynomial averages

n
Pi 15 Pan _ Py, j(m) Pg,j(m)
AN (i ) () = Bt ) [ [ha@ ™ (121)
J=1
converge for u-almost every x € X as min{My, ..., My} — oo.

Variants of this conjecture were promoted in person by Furstenberg (we refer to Austin’s article [3,
pp. 6662]) before it was published by Bergelson and Leibman [10, Section 5.5, pp. 468] for k = 1. The
nilpotent and multi-parameter setting is the appropriate setting for Conjecture 1.20 as convergence may
fail if the transformations 71, ..., T, generate a solvable group, as shown by Bergelson and Leibman
[10]. The L?(X) norm convergence of (1.21) has been studied since Furstenberg’s ergodic proof [27]
of Szemerédi’s theorem [59] and is fairly well-understood (even in the setting of nilpotent groups) due
to the groundbreaking work of Walsh [70] with M} = ... = M}. Prior to Walsh’s paper, extensive
efforts had been made towards understanding L?(X) norm convergence, including breakthrough works
of Host—Kra [31], Ziegler [71], Bergelson [6] and Leibman [43]. For more details and references, we
also refer to [4, 21, 26, 32, 61] and the survey articles [7, 8, 25].

The situation is dramatically different for the pointwise convergence problem (1.21), but recently, sig-
nificant progress has been made towards establishing the Furstenberg—Bergelson—Leibman conjecture.
Now let us make a few remarks about this conjecture, its history and the current state of the art.

1. The case d = k = n = 1 of Conjecture 1.20 with P j(m) = m follows from Birkhoff’s ergodic
theorem [11]. In fact, the almost everywhere limit (as well as the norm limit; see also [64]) of (1.21)
exists also for all functions f € LP(X), with 1 < p < oo, defined on any o -finite measure space
(X, B(X), p).

2. The case d = k = n = 1 of Conjecture 1.20 with arbitrary polynomials Py ; € Z[m] (as we have
seen above) was the famous open problem of Bellow [5] and Furstenberg [24], which was solved by
the first author [13, 14, 15] in the mid 1980s. In fact, in [13, 14, 15], it was shown that the almost
everywhere limit (as well as the norm limit; see also [29]) of (1.21) exists also for all functions
f e LP(X),with 1 < p < oo, defined on any o-finite measure space (X, B(X), ). In contrast to the
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Birkhoff theorem, if P;; € Z[n] is a polynomial of degree at least two, the pointwise convergence
at the endpoint for p = 1 may fail as was shown by Buczolich and Mauldin [18] for Py ;(m) = m2
and by LaVictoire [42] for Py 1 (m) = m* for any k > 2.

3. In the commutative case (step £ = 1) where d, k € Z, and n = 1 of Conjecture 1.20 with arbitrary
polynomials Py 1,..., P41 € Z[my, ..., mg] in the diagonal setting M| = ... = Mj — that is, the
multi-dimensional one-parameter setting — was solved by the second author with Trojan in [54]. As
before, it was shown that the almost everywhere limit (as well as the norm limit) of (1.21) exists also
for all functions f € LP(X), with 1 < p < oo, defined on any o-finite measure space (X, 5(X), u).

4. The question to what extent one can relax the commutation relations between 77, ...,T4 in (1.21),
even in the one-parameter case M| = ... = M, is very intriguing. Some particular examples of
averages (1.21) with d,k € Z; and n = 1 and polynomial mappings with degree at most two in
the step two nilpotent setting were studied in [33, 45]. Recently, the second author with Ionescu,
Magyar and Szarek [36] established Conjecture 1.20 with d € Z; and k = n = 1 and arbitrary
polynomials Pj i,...,P41 € Z[m] in the nilpotent setting (i.e., when T1,...,T4 : X — X isa
family of invertible measure-preserving transformations of a o -finite measure space (X, B(X), u)
that generates a nilpotent group of step two).

5. In contrast to the commutative linear theory, the multilinear theory is wide open. Only a few results
are known in the bilinear n» = 2 and commutative d = k = 1 setting. The first author [16] established
pointwise convergence when P; (m) = am and P; 2(m) = bm, with a, b € Z. Recently, the third
author with Krause and Tao [41] proved pointwise convergence for the polynomial Furstenberg—
Weiss averages [28, 30] corresponding to P (m) = m and Py 2(m) = P(m) with P € Z[m] and
degP > 2.

6. A genuinely multi-parameter case d = k > 2 with n = 1 of Conjecture 1.20 for averages (1.21) with
linear orbits (i.e. P; 1(m1,...,mq) = m; for j € [d]) was established independently by Dunford [23]
and Zygmund [72] in the early 1950s. Moreover, it follows from [23, 72] that the almost everywhere
convergence (as well as the norm convergence) of (1.21) holds for all functions f € LP(X), with
1 < p < o0, defined on any o -finite measure space (X, B(X), i) equipped with a family of measure-
preserving transformations 77, ...,T4 : X — X, which does not need to be commutative. One also
knows that pointwise convergence fails if p = 1. A polynomial variant of the Dunford and Zygmund
theorem was discussed above; see (1.7).

We close this discussion by emphasizing that Theorem 1.11 and Theorem 1.16 also contribute to
the Furstenberg—Bergelson-Leibman conjecture and, together with all the results listed above, support
the evidence that Conjecture 1.20 may be true in full generality though a complete solution seems very
difficult.

1.4. Overview of the paper

The paper is organized as follows. In Section 2, we fix necessary notation and terminology. We also
introduce the definition of multi-parameter oscillations (2.9) and collect their useful properties; see
Proposition 2.16 and Proposition 2.18. In Section 3, we give a detailed proof of Theorem 1.11 by
reducing the matter to oscillation estimates for truncated variants of averages Af,ll xS see definition
(3.6) and Theorem 3.16, which in turn is reduced to the integer shift system, and Theorem 3.19. A result
that may be of independent interest is Proposition 3.7, which shows that oscillations for A ,f,,l MoX f and
their truncated variants are, in fact, comparable. In Section 3, see inequality (3.5), and we also illustrate
how to prove Theorem 1.11 in the degenerate case in the sense of definition (1.14) stated after Theorem
1.11. These arguments can be also used to prove oscillation bounds for the polynomial Dunford and
Zygmund theorem, which in turn imply (1.7).

We start with a brief overview of the proof of Theorem 3.19, which implies Theorem 1.5 when
k = 2 and takes up the bulk of this paper. The proof requires substantial new ideas to overcome a
series of new difficulties arising in the multi-parameter setting. These complications do not arise in the
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one-parameter setup [13, 14, 15]. The most notable obstacle is the lack of nestedness in the definition of
averaging operators (1.8) when the parameters My, ..., My are allowed to run independently. The lack
of nestedness complicates every argument in the circle method, which is the main tool in these kinds
of problems. In order to understand how the lack of nestedness may affect the underlying arguments, it
will be convenient to illustrate this phenomenon by comparing Figure | and Figure 2 below. The first
picture (Figure 1) represents the family of nested cubes, which is increasing when the time parameter
increases. The diagonal relation between parameters M| = ... = M} is critical.

The second picture (Figure 2) represents the family which is genuinely multi-parameter and there is
no nestedness as the parameters M1, . .., My vary independently.

Our remedy to overcome the lack of nestedness will be to develop the so-called multi-parameter circle
method, which will be based on an iterative implementation of the classical circle method. Although
this idea sounds very simple, it is fairly challenging to formalize it in the context of Conjecture 1.3.
We remark that the multi-parameter circle method has been developed for many years in the context
of various problems arising in number theory (see [1] for more details and references, including a
comprehensive historical background) though it is not applicable directly in the ergodic context. We
now highlight the key ingredients that we develop in this paper and that will lead us to develop the
multi-parameter circle method in the context of Theorem 3.19:

(i) ‘Backwards’ Newton diagram is the key tool allowing us to overcome the problem with the lack
of nestedness. In particular, it permits us to understand geometric properties of the underlying
polynomials in Theorem 3.19 by extracting dominating monomials. The latter are critical in making
adistinction between minor and major arcs in the multi-parameter circle method. As far as we know,
this is the first time when the concept of Newton diagrams is exploited in problems concerning
pointwise ergodic theory. We refer to Section 4 for details.

(ii) We derive new estimates for multi-parameter exponential sums arising in the analysis of Fourier
multipliers corresponding to averages (1.10). In Section 5, we build a theory of double exponential
sums, which is dictated by the geometry of the corresponding ‘backwards’ Newton diagrams.
Although the theory of multi-parameter exponential sums is rich (see for example, [1]), our results
seem to be new and the idea of exploiting ‘backwards’ Newton diagrams and iterative applications
of the Vinogradov mean value theorem [17] in estimates of exponential sums is quite efficient.

(iii) A multi-parameter Ionescu—Wainger multiplier theory is developed in Section 6. The Ionescu—
Wainger multiplier theorem [34] was originally proved for linear operators; see also [46, 52,
55, 62]. In this paper, we prove a semi-norm variant of the Ionescu—Wainger theory in the one-
parameter setting, which is consequently upgraded to the multi-parameter setup. ‘Backwards’
Newton diagrams play an essential role in our considerations here as well.

(iv) Finally, we arrive at the stage where the multi-parameter circle method is feasible by a delicate
iterative application of the classical circle method. In this part of the argument, the lack of nested-
ness is particularly unpleasant, causing serious difficulties in controlling error terms that arise in
estimating contributions of the corresponding Fourier multipliers on minor and major arcs, which
are genuinely multi-parameter. In Section 7, we illustrate how one can use all the tools developed
in the previous sections to give a rigorous proof of Theorem 3.19.

We now take a closer look at the tools highlighted above. In Section 4, we introduce the concept
of ‘backwards’ Newton diagram, which is the key to circumvent the difficulties caused by the lack
of nestedness. The ‘backwards’ Newton diagram splits the parameter space into a finite number of
sectors, where certain relations between parameters are given. In each of these sectors there is a
dominating monomial which, in turn, gives rise to an implementation of the circle method to each of
the sectors separately. The distinctions between minor and major arcs are then dictated by the degree
of the associated dominating monomial. At this stage, we eliminate minor arcs by invoking estimates
of double exponential sums from Proposition 5.37. This proposition is essential in our argument; its
proof is given in Section 5. The key ingredients are Proposition 5.22, which may be thought of as a two
parameter counterpart of the classical Weyl’s inequality, and the properties of the ‘backwards’ Newton
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diagram. Although the theory of multi-parameter exponential sums has been developed over the years
(see [1] for a comprehensive treatment of the subject), we require more delicate estimates than those
available in the existing literature. In this paper, we give an ad-hoc proof of Proposition 5.22, which
follows from an iterative application of Vinogradov’s mean value theorem, and may be interesting in
its own right. In Section 5, we also develop estimates for complete exponential sums. In Section 6,
we develop the lonescu—Wainger multiplier theory for various semi-norms in one-parameter as well as
in multi-parameter settings. Our result in the one-parameter setting, Theorem 6.14, is formulated for
oscillations and maximal functions, but the proofs also work for p-variations or jumps. In fact, Theorem
6.14 is the starting point for establishing the corresponding multi-parameter Ionescu—Wainger theory
for oscillations. The latter theorem will be directly applicable in the analysis of multipliers associated
with the averages Af/ll ,:xJ - The results of Section 6 are critical in our multi-parameter circle method
that is presented in Section 7, as it allows us to efficiently control the error terms that arise on major
arcs as well as the contribution coming from the main part. In contrast to the one-parameter theory [13,
14, 15], the challenge here is to control, for instance, maximal functions corresponding to error terms.
For this purpose, all error terms have to be provided with asymptotic precision, which usually requires
careful arguments. The details of the multi-parameter circle method are presented in Section 7 in the
context of the proof of Theorem 3.19.

1.5. More about Conjecture 1.20

Conjecture 1.20 is one of the major open problems in pointwise ergodic theory, which seems to be
very difficult due to its multilinear nature. Here, in light of the Arkhipov, Chubarikov and Karatsuba
[2] equidistribution theory which works also for multiple polynomials, it seems reasonable to propose a
slightly more modest problem (implied by Conjecture 1.20) though still very interesting and challenging
that can be subsumed under the following conjecture:

Conjecture 1.22. Let d, k € Z, be given and let (X, B(X), u) be a probability measure space endowed

with a family of invertible commuting measure-preserving transformations Ty, . . ., Tg : X — X. Assume
that Py,...,Py € Z[my,...,my]. Then for any f € L®(X), the multi-parameter linear polynomial
averages
Pi,...,P, _ Py (m) Py (m)
AM‘l _____ Ajk;X’Tl _____ Tdf(x) _Emel'[_ﬁzl[M,]f(n 1 ...Tdd X)

converge for u-almost every x € X, as min{My, ..., My} — oo

Even though we prove Conjecture 1.3 here, it is not clear whether Conjecture 1.22 is true for all
polynomials. If it is not true for all polynomials, it would be interesting, in view of Theorem 1.16, to
characterize the class of those polynomials for which Conjecture 1.22 holds. Although the averages
from Theorem 1.11 and Theorem 1.16 share a lot of difficulties that arise in the general case, there are
some cases that are not covered by the methods of this paper. An interesting difficulty arises for the
so-called partially complete exponential sums when we are seeking estimates of the form

1

M, q
= 2| D) etama/g+asPim,ma) /)| < a7, (1.23)
19

mi =1 m2:]

for all My, q € Z, and some § € (0, 1), whenever (a, a3, q) = 1. These kinds of estimates arise from
applications of the circle method with respect to the second variable m, for the averages Aﬁl’ﬁ;ﬁm' m2) f
when we are at the stage of applying the circle method with respect to the first variable m . Here, the
assumption that P has partial degrees (as a polynomial of the variable m; and a polynomial of the
variable m5) at least two is essential. Otherwise, if M| < g, the decay ¢~¢ in (1.23) is not possible.

In order to see this, it suffices to take P(my,m;) = m%mz. A proof of Theorem 1.16 for polynomials
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of this type, as well as Conjecture 1.22, will require a deeper understanding and substantially new
methods. We believe that the proof of Theorem 1.11 is an important contribution towards understanding
Conjecture 1.22 that may shed new light on the general case and either lead to its full resolution or to a
counterexample. The second and fourth authors plan to pursue this problem in the future.

1.6. In Memoriam

It was a great privilege and an unforgettable experience for the second and fourth authors to know and
work with Elias M. Stein (January 13, 1931-December 23, 2018) and Jean Bourgain (February 28,
1954-December 22, 2018). Eli and Jean had an immeasurable effect on our lives and careers. It was a
very sad time for us when we learned that Eli and Jean passed away within an interval of one day in
December 2018. We miss our friends and collaborators dearly.

We now briefly describe how the collaboration on this project arose. In 2011, the second and
fourth authors started to work on some aspects of a multi-parameter circle method in the context of
various discrete multi-parameter operators. These efforts resulted in a draft on estimates for certain
two-parameter exponential sums. This draft was sent to the first author sometime in the first part of
2016. In October 2016, when the second author was a member of the Institute for Advanced Study, it
was realized (during a discussion between the first two authors) that the estimates from this draft are
closely related to a multi-parameter Vinogradov’s mean value theorem. This was interesting to the first
author who at that time was involved in developing the theory of decoupling. We also realized that
some ideas of a multi-parameter circle method from the draft of the second and fourth authors may
be upgraded and used in attacking a multi-parameter variant of the Bellow and Furstenberg problem
formulated in Conjecture 1.3. That was the first time when the second, third and fourth authors learned
about this conjecture and unpublished observations of the first author from the late 1980s that resulted
in establishing pointwise convergence in (1.7). This was the starting point of our collaboration. At that
time another question arose, which is also related to this paper. It is interesting whether a sharp multi-
parameter variant of Vinogradov’s mean value theorem can be proved using the recent developments in
the decoupling theory from [17]. A multi-parameter Vinogradov’s mean value theorem was investigated
in [1], but the bounds are not optimal. So the question is about adapting the methods from [17] to the
multi-parameter setting in order to obtain sharp bounds, and their applications in the exponential sum
estimates.

A substantial part of this project was completed at the end of November/beginning of December
2016, when the fourth author visited Princeton University and the Institute for Advanced Study. At that
time, we discussed (more or less) all tools that were needed to establish Theorem 1.11 for the monomial
P(my,my) = m%m; Then we were convinced that we could establish Conjecture 1.22 in full generality,
but various difficulties arose when we started to work out the details, and we ultimately only managed
to prove Theorem 1.11 and Theorem 1.16. The second and fourth authors decided to illustrate the
arguments in the two-parameter setting and the reason is twofold. On the one hand, we wanted to avoid
introducing heavy multi-parameter notation capturing all combinatorial nuances arising in this project.
On the other hand, what is more important is that we wanted to illustrate the spirit of our discussions
that took place in 2016. For instance, the arguments presented in Section 5 can be derived by using Weyl
differencing argument, which may be even simpler and can be easily adapted to the multi-parameter
setting, though our presentation is very close to the arguments that we developed in 2016, and also
motivates the question about the role of decoupling theory in the multi-parameter Vinogradov’s mean
value theorem that we have stated above.

2. Notation and useful tools

We now set up notation that will be used throughout the paper. We also collect useful tools and basic
properties of oscillation semi-norms that will be used in the paper.
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2.1. Basic notation

The set of positive integers and nonnegative integers will be denoted, respectively, by Z, := {1,2,...}
and N := {0,1,2,...}. For d € Z,, the sets Z¢, R, C¢ and T¢ := R¢/Z¢ have standard meaning. For
any x € R, we will use the floor and fractional part functions

x| :==max{n €Z:n < x}, and {x} =x—|x].

For x,y € R, we shall also write x V y := max{x, y} and x A y := min{x, y}. We denote R, := (0, ),
and for every N € R, we set

[N]:=(,Nlnz={1,...,|N]},
and we will also write

Noy :=[0,N] NN, and N_y :=[0,N)NN,
Nspy :=[N,0)NN, and N,y :=(N,c0)NN,

For any 7 > 1, we will consider the set
D, :={t" :ne N}

Fora = (ay,...,a,) € Z" and ¢ > 1 an integer, we denote by (a, g) the greatest common divisor of
a and g; that is, the largest integer d > 1 that divides ¢ and all the components ay, . . ., a,. Clearly, any
vector in Q" has a unique representation as a/q with ¢ € Z,, a € 2" and (a, q) = 1.

We use 1 4 to denote the indicator function of a set A. If S is a statement, we write 15 to denote its
indicator, equal to 1 if S is true and O if S is false. For instance, 1 4(x) = T yea.

Throughout the paper, C > 0 is an absolute constant which may change from occurrence to occur-
rence. For two nonnegative quantities A, B, we write A < B if there is an absolute constant C > 0 such
that A < CB. We will write A ~ B when A < B < A. We will write <s or ~; to emphasize that the
implicit constant depends on ¢. For a function f : X — C and positive-valued function g : X — (0, o),
we write f = O(g) if there exists a constant C > 0 such that | f(x)| < Cg(x) for all x € X. We will also
write f = O (g) if the implicit constant depends on §.

2.2. Summation by parts

For any real numbers u# < v and any sequences (a,, : n € Z) € Cand (b, : n € Z) C C, we will use the
following version of the summation by parts formula

D awba=Suby+ Y. Sulba—bun), @1

ne(u,v]NZ ne(u,v-1]NZ

where Sy 1= Yke(u,winz @k forany w > u.
2.3. Euclidean spaces

For d € Z,, the set {¢; € R?: i € [d]} denotes the standard basis in R. The standard inner product
and the corresponding Euclidean norm on R¢ are denoted by

d
x"f:=zxk§k, and |x| = |x|2 =X - x
k=1

for every x = (x1,...,xq) and & = (£1,...,&4) € R
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Throughout the paper, the d-dimensional torus T¢, which unless otherwise stated will be identified
with [—1/2,1/2)¢, is a priori endowed with the periodic norm

d 12
lel= (D Ied) ™ for  £=(&,. b €T
k=1

where ||£¢|| = disr(éx,Z) for all £, € T and k € [d]. However, identifying T¢ with [—1/2,1/2)¢, we
see that the norm || - || coincides with the Euclidean norm | - | restricted to [—1/2, 1/2)¢.

2.4. Smooth functions

The partial derivative of a differentiable function f : RY — C with respect to the j-th variable x 7 will
be denoted by dy, f = d; f, while for any multi-index « € N9, let 3 f denote the derivative operator
A0l f=08" - 37 f of total order |a| := a) +... +aq.

Letn : R — [0, 1] be a smooth and even cutoff function such that

Ty s sl

For any n, ¢ € R, we define

n<n(§) =n(27"¢).

For any & = (£1,...,&4) € R4 and i € [d], we also define

19 (&) = nen(&).

More generally, for any A = {i,...,i,} € [d] for some m € [d], and numbers #n;,...,n;, € R
corresponding to the set A, we will write

W oy, (€)= ]‘[M (&) = ]—[n<n, ). 22)

If the elements of the set A are ordered increasingly 1 <i; < ... < i, < d, we will also write

m m
..... m (
M ©) =0 © = [ [en, &) = [ [0 ©)-
J=1 J=1

Ifn; =...=mn;, =n €R, we will abbreviate 77<n to r]<n and n(”

..... <Ni,,

2.5. Function spaces

All vector spaces in this paper will be defined over the complex numbers C. The triple (X, B(X), i) is a
measure space X with o--algebra B(X) and o -finite measure u. The space of all u-measurable complex-
valued functions defined on X will be denoted by L°(X). The space of all functions in L°(X) whose
modulus is integrable with p-th power is denoted by L? (X) for p € (0, co), whereas L™ (X) denotes the
space of all essentially bounded functions in L(X). These notions can be extended to functions taking
values in a finite dimensional normed vector space (B, || - ||g); for instance,

LP(X;B) = {F € L"(X; B) : | FllLe(x.8) = IFllsllze(x) < o},
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where L°(X; B) denotes the space of measurable functions from X to B (up to almost everywhere
equivalence). Of course, if B is separable, these notions can be extended to infinite-dimensional B.
In this paper, we will always be able to work in finite-dimensional settings by appealing to standard
approximation arguments. In our case, we will usually have X = R4 or X = T< equipped with Lebesgue
measure, and X = Z¢ endowed with counting measure. If X is endowed with counting measure, we will
abbreviate L? (X) to ¢ (X) and L? (X; B) to (P (X; B).

If T : By — B, is a continuous linear map between two normed vector spaces B and B, we use
IIT||g,— B, to denote its operator norm.

The following extension of the Marcinkiewicz—Zygmund inequality to the Hilbert space setting will
be very useful in Section 6.

Lemma 2.3. Let (X, B(X), u) be a o-finite measure space endowed with a family T = (T,,, : m € N) of
bounded linear operators T,, : LP (X) — LP(X) for some p € (0, ). Suppose that

Ap(T) = sup Z Ty

(wm:meN) e{-1,1}N" 7o

< 00,
LPLP

Then there is a constant Cp, > 0 such that for every sequence (f; : j € N) € LP(X; £2(N)), we have

“(Z %|Tmf,-|2)”2

jeNme

2.4)

124172

The index set N in the inner sum of (2.4) can be replaced by any other countable set and the result
remains valid.

The proof of Lemma 2.3 can be found in [48].

2.6. Fourier transform

We shall write e(z) = e27 for every z € C, where i* = —1. Let Fza denote the Fourier transform on
R4 defined for any f € L'(R¢) and for any ¢ € R? as

Fraf(€) = /]R F@e(x- £)dv.

If f € £'(Z4), we define the discrete Fourier transform (Fourier series) Fyq, for any & € T4, by setting

Fraf(€) = ) f(xe(x-4).

xezd
Sometimes we shall abbreviate Fza f to f.
Let G = R4 or G = Z?. The corresponding dual groups are G* = (R?)* = R4 or G* = (Z%)* = T4,

respectively. For any bounded function m : G* — C and a test function f : G — C, we define the
Fourier multiplier operator by

Tolmlf() = [ e(-€-om@Faf(€)de, for xeC. @5)

One may think that f : G — C is a compactly supported function on G (and smooth if G = R¢) or any
other function for which (2.5) makes sense.
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Let R<g4[X1, .. .,X,] be the vector space of all polynomials on R" of degree at most d € Z,, which
is equipped with the norm || P|| := Xy <g<a |cp| Whenever

P(x) = Z c[gxllg'-nxff" for x=(x1,...,x,) €R".
0<|B|<d

We now formulate a multidimensional variant of the van der Corput lemma for polynomials that will be
useful in our further applications.

Proposition 2.6. For each d,n € Z,, there exists a constant Cq, > 0 such that for any P €
Regl[X1,...,Xn] with P(0) =0, one has

'/ e(P(x))dx
[0,1]"

The proof of Proposition 2.6 can be found in [20, Corollary 7.3., p. 1008]; see also [, Section 1].

< CanllPII7V4.

2.7. Comparing sums to integrals

A well-known but useful lemma comparing sums to integrals is the following. The proof can be found
in [73, Chapter V]; see also [63].

Lemma 2.7. Suppose f : [a,b] — R is C' such that f' is monotonic and | f’(s)| < 1/2 on [a, b]. Then
there is an absolute constant A such that

) D, elf(m) - /abe(ﬂs))ds( < A.

a<n<b

2.8. Coordinatewise order <

For any x = (x1,...,xx) € R¥and y = (y1,...,yx) € R¥, we say x < y if and only if x; < y; for each
i € [k]. We also write x < y if and only if x < y and x # y, and x < y if and only if x; < y; for each
i € [k]. LetI C R¥ be an index set such that #I > 2 and for every J € Z, U {co}, define the set

Sy(l):=={(t;:ieNgy) CLitg<st1 <5 ... <51}, (2.8)

where N, := N. In other words, S; () is a family of all strictly increasing sequences (with respect to
the coordinatewise order) of length J + 1 taking their values in the set I.

2.9. Oscillation semi-norms

Let I C R¥ be an index set such that #I > 2. Let (a,(x) : t € I) € C be a k-parameter family of
measurable functions defined on X. For any J C I and a sequence I = (I; : i € N.j) € G, (D), the
multi-parameter oscillation semi-norm is defined by

J-1

2\1/2
(0] 1tel) = —ay, ,
1.7(a:(x) ) (;OmBs[lllg]mﬂlaz(x) al.,(x)l)

2.9

where B[/, i] := [1i1, L(i+1)1) X . .. X [Lik, I(i+1)k) is a box determined by the element I; = (1;1, ..., Iix)
of the sequence I € S;(I). In order to avoid problems with measurability, we always assume that
I> ¢t a;(x) € Cis continuous for u-almost every x € X, or J is countable. We also use the convention
that the supremum taken over the empty set is zero.
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Remark 2.10. Some remarks concerning the definition of oscillation semi-norms are in order.

1. Clearly, Oy j(a; : t € J) defines a semi-norm.
2. Let I € R* be an index set such that #I > 2, and let J;,J, C I be disjoint. Then for any family
(a; 12 €l) CC,any J € Z, and any I € S (I), one has

OI,J(at teljuly) < 0],1((1[ it e J|)+01,J(a, it el). (2.11)

3. LetI € R* be a countable index set such that #I > 2 and J C 1. Then for any family (a, : € I) € C,
any J € Z,, any I € S; (), one has

Ory(a,:tel) < (Z|at|2)l/2-

tel

4. Let I C R¥ be a countable index set such that #I > 2. For [ € [k], let p; : R — R be the Ith
coordinate projection. Note that for any family (a, : r € I) C C, any J € Z,, any I € S;(I) and any
[ € [k], one has

J-1

1/2
Ory(a;:tel) = (Z sup  [a; — 01j|2)
=0 teB[I,j]NI

172
< ( Z sup |a(t1,---,t171,f1,tz+| ----- fk)| ) > (2.12)
nep () Wsessti=tstietseenstic) €lliepiep gy pi (D)
(t15eesti— 1521511415 ) €D

where p;(I) C R is the image of [ under p;. Inequality (2.12) will be repeatedly used in Section 7. It is
important to note that the parameter ¢ € I in the definition of oscillations and the sequence I € S (I)
both take values in I.

5. We also recall the definition of p-variations. For any I C R, any family (a, : # € I) € C and any
exponent 1 < p < oo, the p-variation semi-norm is defined to be

J-1 Up
VP(a; it €l):= sup sup (Z las,, —a; |p) ,
JeZyto<<ty \ Ty ’
t; el J
where the supremum is taken over all finite increasing sequences in I.
It is clear that for any I C R such that #I > 2, any J € Z, U {oo} and any sequence [ = (/; : i €
N<y) € S;(I), one has

O (0, tel) <VP(a,:tel), (2.13)

whenever 1 < p < 2.

6. Inequality (2.13) allows us to deduce the Rademacher—Menshov inequality for oscillations, which
asserts that for any jo, m € N so that jo < 2™ and any sequence of complex numbers (ag : k € N),
any J € [2"] and any I € S;([jo,2™)), we have

01.4(a;: jo<j<2") <Vaj:jo<j<2m)

m  2mi_]
<EY(S] Y wa-af) e
i=0 =0 kUi

Uicljo.2™)

where U;'. = [j21, (j + 1)29) for any i, j € Z. The latter inequality in (2.14) immediately follows
from [51, Lemma 2.5., p. 534]. Inequality (2.14) will be used in Section 6.

https://doi.org/10.1017/fmp.2023.21 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2023.21

Forum of Mathematics, Pi 17

7. For any p € [1, 0] and for any family (a, : € N¥) C C of k-parameter measurable functions on X,
one has

sup  sup ||01 Jj(a;:te Nk)”Lp(x) <2 ” sup la;

I
JEeZy | €Sy (Nl‘) LeX)

) (2.15)
+ sup sup ||01 j(a;:teZ )||L,,(X)
J€Zs [y (ZF)
This easily follows from the definition of the set S; (N¥); see (2.8).
8. Forany I C R with #I > 2 and any sequence I = (I; : i € N.j) € S;(I) of length J € Z, U {0}, we
define the diagonal sequence I = (I; : i € N<;) € S, (I¥) by setting I; = (I;,...,I;) € I¥ for each
i € No;. Then for any J C I, one has

sup ||0,J(a, tEJ)|

) < sup HO,J(a, :teJ)H e
1€6,(1 Lrx) 1€6; (1) Lo
It is not difficult to show that oscillation semi-norms always dominate maximal functions.
Proposition 2.16. Assume that k € Z, and let (a; : t € RF) C C be a k-parameter family of measurable
functions on X. Let 1 C R and #1 > 2. Then for every p € [1, o], we have

sup |a,|||Lp(X) < sup||a,||L,,(X) + sup sup ||01 gla; it el )||LP(X), 2.17)
re(I\{supL}¥ J€Zi 16 (I)

where I € S5 (IX) is the diagonal sequence corresponding to a sequence I € Sy (1) as in Remark 2.10.

A remarkable feature of the oscillation semi-norms is that they imply pointwise convergence, which
is formulated precisely in the following proposition.

Proposition 2.18. Let (X, B(X), u) be a o-finite measure space. For k € Z,, let (a; : t € NK) C C be
a k-parameter family of measurable functions on X. Suppose that there is p € [1,0) and a constant
Cp > 0 such that

sup sup ||O; (a;:t€ Nk)”LP(X) <Cp < o,
J€Z, 16, (N)

where I € S;(NK) is the diagonal sequence corresponding to a sequence I € S;(N) as in Remark
2.10. Then the limit

exists p-almost everywhere on X.

For detailed proofs of Proposition 2.16 and Proposition 2.18, we refer to [53].

3. Basic reductions and ergodic theorems: Proof of Theorem 1.11

This section is intended to establish Theorem 1.11 for general measure-preserving systems by reducing
the matter to the integer shift system. We first briefly explain that the oscillation inequality (1.13) from
item (iv) of Theorem 1.11 implies conclusions from items (i)—(iii) of this theorem.

3.1. Proof of Theorem 1.11(iii)

Assuming Theorem 1.11(iv) with 7 = 2 and invoking Proposition 2.16 (this permits us to dominate
maximal functions by oscillations), we see that for every p € (1, o), there is a constant C, > 0 such
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that for any f € L?(X), one has

|| Sup |AII\)41,M2;Xf||

s ixy Sp.p I fllee (x)- 3.D
MM <D, LP(X) ~P (X)

But for any f > 0, we have also a simple pointwise bound

sup AM1 MzXf< sup AM1 szf
M ,My€eZ, M, M, eD,

which in view of (3.1) gives (1.12) as claimed.

3.2. Proof of Theorem 1.11(ii)

We fix p € (1,00) and f € LP(X). We can also assume that f > 0. Using (1.13) with T = 2!/5 for every
s € Z, and invoking Proposition 2.18, we conclude that there is f; € LP (X) such that

lim AQP;I/S,Z’Q/S;Xf(x) = fs*(x)

min{n;,n; }—>oo

u-almost everywhere on X for every s € Z,. It is not difficult to see that f" = f{ for all s € Z,, since
D, € Dyiys. Now for each s € Z, and each M, M, € Z,, let nﬁw € N be such that 2""M: /s < M; <

20D/ for € [2]. Then we may conclude

Z*Q/Sfl*(x) < lim inf Af,, xS (x) < limsup A1€1 xS (x) < Zz/sfl*(x).
min{M;,M, }—oco 1,442, min{M;,M>}—co 1,M>;

Letting s — oo, we obtain

: P _ %
mm{Mlll’%z}Hm AMI,MZ;Xf(x) =fi (x)

pu-almost everywhere on X. This completes the proof of Theorem 1.11(ii).

3.3. Proof of Theorem 1.11(i)

Finally, pointwise convergence from Theorem [.11(ii) combined with the maximal inequality (1.12)
and dominated convergence theorem gives norm convergence for any f € L”(X) with 1 < p < co. This
completes the proof of Theorem 1.11.

3.4. Proof of Theorem 1.11 in the degenerate case

It is perhaps worth remarking that the proof of Theorem 1.11 is fairly easy when P € Z[mj, m;] is
degenerate in the sense that it can be written as P(mj, m;) = Py(m;) + P>(my), where P; € Z[m;] and
P, € Z[my] such that P (0) = P,(0) = 0 (see (1.14)). It suffices to prove (1.13). The crucial observation
is the following identity:

APl(ml)AP2(m2)f APZ(mZ)API(ml)f A;[(lm]:/[;n”f (32)
Recall from [48] that for every p € (1, ), there is C;, > 0 such that for every f = (f, : t € N) €
LP(X;¢*(N)) and i € [2], one has

H( sup IAP‘(““)fLI) 1 <ol (3.3)

Lp(X) ~
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Moreover, from [47], it was proved that for every p € (1, o), there is C,, > 0 such that for every
feLP(X)andi € [2], one has

sup  sup (01 (AR o Mi € Zo) e x) < Collfller x)- (3.4
J€eZ, 1€5y(Zy)

By (3.2), forevery J € Z,, I € GJ(Zf) and j € N_;, one can write

AP, mz)f P(ml mz)f|

P(m) P (my) Py (my)
AN MyX ,11,2X 1 1( sup |A2 x f—A 2 f1)

I 2;X
Ijr <My<lI(j41)2

P, P P
+ sup |A 2(m2)( sup |A 1(m1)f AI]]S;])fDl'
MyeZ, Ij]SM1<IU+])]

sup sup |A

(M,,M,)€B|I,j]

Using this inequality with the vector-valued maximal inequality (3.3) and one-parameter oscillation
inequality (3.4), one obtains

sup  sup ||01,J(A§4(lmj4;n2)f My, M; € Z,)l|Lr (x)
J€Z, [, (Z2)

s D sup sup [J0r s (ARS F My € Zo) e x) Sp 1 e - (3.5)
ie[2] JEZ, [€Sy(Zy)

This completes the proof of Theorem 1.11 in the degenerate case. From now on we will additionally
assume that P € Z[m;, m;] is non-degenerate.

3.5. Reductions to truncated averages

We have seen that the proof of Theorem 1.11 has been reduced to proving the oscillation inequality
(1.13). We begin with certain general reductions that will simplify our further arguments. Let us fix our
measure-preserving transformations 77, . . ., T4, our polynomials P = {Py,...,Pq} C Z[my, ..., mg]

and define a truncated version of the average (1.8) by

wex S X) = Emeryg, g FAIT T M) ke X, (3.6)

..........

where
Rty,omy = (IMI)\ [77 MG ]) -+ x ([M) \ [77 M ])

is a rectangle in Z*.
We will abbreviate A Mx 1O AM X and Ry, ... .m, to Ry Whenever M = (M, ..., My) € Zk
We now show that the Lp (X) norms of the oscillation semi-norms associated with the averages from

(1.8) and (3.6) have comparable norms in the following sense.

.....

Proposition 3.7. Let d, k € Z, be given. Let (X, B(X), u) be a o-finite measure space equipped with
a family of commuting invertible and measure-preserving transformations Ty, ..., T4 : X — X. Let
P={P1,...,Pq} CcZ[my,...,my]|, M = (My,..., My) andletAAP,I;X andﬁﬁ;x be the corresponding
averaging operators defined respectively in (1.8) and (3.6). For every T > 1 and every 1 < p < oo,
there is a finite constant C := Cq . p - > 0 such that for any f € LP(X), one has

|| sup A%, X|“LI’(X) S C” sup 1A% X|“LI’(X)' (3.8)
M eDk
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An oscillation variant of (3.8) also holds
sup  sup HOIJ (AE;X ‘M e D’;)HLP(X)
J€Zs [ec; (DX)

<Csup sup ||01,J(AAP,I;Xf M e D’;)”LP(X) +C I fllLr (x) -
JEZs 16, (DK)

3.9)

Proof. The proof will proceed in two steps. We begin with some general observations which will permit
us to simplify further arguments leading to the proofs of (3.8) and (3.9).
Step 1. Suppose that (a,, : m € Z¥) is a k-parameter sequence of measurable functions on X. Then

for M =(M,...,My)=(",...,7"%) € D’;, one can write
Z Ay = Qs
meQm,....m;, (1eeslic) €Ny X XNy mER 1y 1y
and
|RTll _____ le|
P :
(Uaeanli) €Ny X XNy 5T T
Combining these two estimates, one sees that
|| Sup |EmEQM am|||L”(X) ~k T “ Sup |Em€RMam|“Lp(X) (310)
M €Dk Me

Applying (3.10) with a,, (x) = (T - TF "™ x), we obtain (3.8).
Step 2. As before, let (a,, : m € Z¥) be a k -parameter sequence of measurable functions on X. For
leNg and M = (My,...,My) = (7",...,7"%) € DX, define the sets

l k -1 k

By = [ [(Mi\ [ M) x [ [ (M) and DY, o= [ [(AMAN [ M) x [ M) x [ ] (v,

i=1 i=l+1 i=1 i=l+1
Note that B?W = Qum and Bﬁ,l = Ry, and Bﬁ;ll = Biv[ U Dﬁw. Moreover, for [ € [k], one sees
sup  sup ”01 J(EmeB’ 1, : M€ Dk)”LP(X)

J €L, 1Sy (Dk)

<sup sup |07 (up,Eppept am: M €D

)
J€Zi 16, (DK) HLP(X) G-11)

+ sup  sup ”01 (v, E meDl, Gm - MEDk)”LP(X)’
JEZ [ €5 (DK)
where

Byl _ LMy] = 7'My Dyl _ e My
-1 nd - vay =T =
IBLY [M] |BL| | M|

Up,; =

1

Considering iipg, := up, — 1+ 771 and T, := vy, — 771, we see that

~2 <2
Z Wy, St 1, and Z Vi, St 1.

M;eD, M;eD,
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Thus, using (2.12), one sees that

sup  sup HOI ](”Ml meB!, am = M GDT)”LP(X) ~T H sup |Em€QMam”|LP(X)’

J€Zs [eGy (DX) M eDk
X (3.12)
sup sup ||01 J(VMI mEDl A M EDT)“L[’(X) ~T || sup |EmEQMam|||Lp(X)
JEZi [ €3y (Dk) ME]D
By (2.15), there is Cp + > 0 such that
sup  sup ”01 7(vm B meD!, am M eD )”LI’(X) < Cp, T” sup |EmEQMam”LP(X)
JEZ; €5, (DK) Me (3.13)
+ sup  sup ”01 7(vmE meBl, 1, M e Dk)“LP(x)
J€Zs [ Gy (DX)
Finally, combining (3.11), (3.12) and (3.13), one obtains the following bootstrap inequality:
sup  sup HO; J(EmEBI 10, :MeD )||L,,(X) < Cp, T|| sup |Em€QMam|”Lp(x)
J€Zy 1) (DY)
+7 ' sup  sup ”01 J(EmeBl 10yt M GDk)in(X)
JEZy 1ec, (DK)
+1tl(r-1) sup  sup ||01,](Em635wam M e Dk)“ur(x)’
J€Zs [eGy (DX)
which immediately yields
sup  sup ||01 J(EmeBl 10y, :MeD )|L1,(X) < Cp, TH sup IEmEQMamHL,,(X)
J€Zy [ec; (DK) (3.14)
+sup sup ||01,J(Em635wam M e ID)T)| Lr(X)"
JEL+ | €& (DY)
Iterating (3.14) k times and using (3.10) to control the maximal function, we conclude that
sup sup ”01 J(EM€QMam M eD )| LP(X) < Cp T|| Sup |Em€RMam” LP(X)
J€Zy 16 (DK) (3.15)

+sup sup HOIJ(]EmeRMam M € D’;)|
JE€Zs [eG; (DX)

LP(X)"

Finally, using (3.15) with a,,(x) = f (TIP im) . T;"(m)x) and invoking Proposition 2.16 (to control the
maximal function from (3.15) by oscillation semi-norms), we obtain (3.9) as desired. m]

Now using Proposition 3.7, we can reduce the oscillation inequality (1.13) from Theorem 1.11 to
establish the following result for non-degenerate polynomials in the sense of (1.14).

Theorem 3.16. Let (X, B(X), 1) be a o-finite measure space equipped with an invertible measure-
preserving transformation T : X — X. Let P € Z[m|, my] be a non-degenerate polynomial such that
P(0,0) = 0. Let Az@;xf with M = (M, M3) be the average defined in (3.6) with d = 1, k = 2 and
Pi=P.Ifl<p<ooandt > 1,and D, := {t" : n € N}, then one has

sup sup |01 5 (A axf i MMz € DO)llLe(x) Sporp IfllLe (x)- (3.17)
J€Z, 1€, (D2)

The implicit constant in (3.17) can be taken to depend only on p, T, P.
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3.6. Reduction to the integer shift system

As mentioned in Example 1.9, the integer shift system is the most important for pointwise convergence
problems. For T = Sy, for any x € Z and for any finitely supported function f : Z — C, we may write

At atyz.s, f () = Bmeryy ar, f(x = P(my,m)). (3.18)
‘We shall also abbreviate Aﬁ,l’ My 2., to A 11;[1 Mz In fact, we will be able to deduce Theorem 3.16 from

its integer counterpart.

Theorem 3.19. Let P € Z|my, my] be a non-degenerate polynomial (see (1.14)) such that P(0,0) = 0.
Let A1I\)/1|,M2;Zf be the average defined in (3.18). If 1 < p < coandt > 1, and D, := {t" : n € N}, then
one has

sup  sup |0 (A ppzf  Mi My € Do)ller(z) Sporp 1 ller @) (3.20)
JeZs [ec, (D2)

The implicit constant in (3.20) can be taken to depend only on p, T, P.

We immediately see that Theorem 3.19 is a special case of Theorem 3.16. However, it is also a standard
matter, in view of the Calderdn transference principle [19], that this implication can be reversed. So in
order to prove (3.17), it suffices to establish (3.20). This reduction is important since we can use Fourier
methods in the integer setting which are not readily available in abstract measure spaces.

From now on, we will focus our attention on establishing Theorem 3.19.

4. ‘Backwards’ Newton diagram: Proof of Theorem 3.19
The ‘backwards’ Newton diagram Np of a nontrivial polynomial P € R[m;, m;],
P(mimg) = Y ey pom)'m¥,  with co0 =0, 4.1y
Y72
is defined as the closed convex hull of the set
| {G+yy+y)erR?:x<0,y <0},
(y1,72)€Sp

where Sp := {(y1,72) e NXN: ¢, ,, # 0} denotes the set of non-vanishing coefficients of P.

Let Vp C Sp be the set of vertices (corner points) of Np. Suppose that Vp := {vy,...,v,}, where
v; = (vj1,vj2) satisfies vj 1 < v 1,and v 2 < v foreach j € [r].

Let wp = (0,1) and w, = (1,0) and for j € [r — 1], let w; = (w;,1,wj2) denote a normal vector
to the edge v;v;41 := vjy1 — vj such that w; 1, w; > are positive integers (the choice is not unique but it
is not an issue here). Observe that the slopes of the lines along w;’s are decreasing as j increases since
Np is convex. The convexity of Np also yields that

wj-(v-v;)<0 and  w;_1-(v—-v;) <0 (withone inequality strict), 4.2)

forallv € Sp\ {v;} and j € [r]. Now for j € [r], let us define

W(j) := ﬂ {(a,b) € Z. XZ, : (a,b) - (v —v,) < O},
vesp\{v}

which is the intersection of various half planes. If Vp = {v}, then we simply define W (1) = Z, X Z,.
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Remark 4.3. Obviously, if 1 <i < j < r,then W(i) N W(j) = 0. Indeed, if (a, b) € W(i) N W(j), then
(a,b)-(v—v;) <Oforallv e Sp\{v;} and (a,b) - (v —v;) <Oforall v € Sp \ {v;}. In particular,
(a,b)-(vj—v;) <0and (a,b) - (v; = v;) <0, which is impossible.

Lemma 4.4. For j € [r], we have
W(j)={(a,b) €Z, X Zy : Jap>0 (a,b) =aw;_1 +pw;}.

Proof. The convexity of Np implies that the normals w;_;, w; are linearly independent; therefore, for
every (a,b) € Z, X Z,, there are @, 8 such that (a,b) = ew;j_1 + Bw;. We only need to show that
(a,b) € W(j) if and only if @, 8 > 0. First, suppose that (a,b) € W(j). Then (a,b) - (v—-v;) <0
forall v € Sp \ {v;}. In particular, (a,b) - (vj+1 —v;) = (@wj-1 + Bw;) - (vj+1 —v;) < 0. But this
implies that aw ;1 - (vj+1 —v;) < 0, since w; - (vje1 — v;) = 0. This immediately gives that & > 0,
provided that j € [r — 1], since wj_; - (vj41 —v;) < 0 by (4.2). When j = r, then @ > 0 since
wr =(1,0)and 0 < b = (a,b) - (0,1) = (@wy-1 + Bw,) - (0,1) = aw,—1 - (0,1) = @w,_1 2. Similarly,
taking v = v;_j for 1 < j < r, we obtain 8 > 0. When j = 1, then 8 > 0 because wo = (0,1) and
0<a=(a,b) (1,0) = (ewy + Bw;) - (1,0) = Bw; - (1,0) = Bw;.1. Conversely, if @ > 0 and 8 > 0,
then for any v € Sp \ {v,}, we have (a,b) - (v —v;) = awj-1 - (v —=v;) + Bw; - (v —v;) < 0, since
wj-1+-(v-v;) <0and w; - (v —v;) < 0, with at least one inequality strict. |

Lemma 4.4 means that W(j) consists of those lattice points of Z, X Z, which are within the cone
centered at the origin with the boundaries determined by the lines along the normals w;_; and wy,
respectively. Now for j € [r], we set

S(j) =={(a,b) e NXN: Jg50,420 (a,b) = aw;—1 + pw;}.
Remark 4.5. Some comments are in order.

1. Having defined the sets S(j) for j € [r], it is not difficult to see that
U S(j) =N x N. (4.6)
J=1

2. We note that for (a, b) € S(j), we have (a,b) - (v —v;) < 0forall v € Sp by (4.2). However, the
strict inequality may not be achieved even for v # v;.
3. If r > 2, then by construction of the sets S(j), one sees that if (a, b) € S(j), then

Wi Wj-1,72
—Lra<b< L 4.7
wj.1 wWj-1,1
forany 1 < j < r;andif j = 1 or j = r one has, respectively,
w1,2 Wyr-1,2
—Za < b < oo, and 0<b<—""a (4.8)
w1,1 Wr-1,1

4. If r=1and (a,b) € S(1),then0 < a,b < co.

Now for any given (a, b) € S(j), we try to determine @ and 8 explicitly. Let A; := [w;_i|w;] be the
matrix whose column vectors are the normals w;_1, w;. Then

a _ wWj-1,1 Wj,1 @
b wis1p win ) \B)°
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The convexity of Np (and the orientation we chose) ensures that det A; < 0. Taking d; := —detA; > 0,

one has
a\ 1 wj2 —wjii\f{a) _ i —awjs + bwj
B detA; \ ~wj-12 wj-1,1 ) \ b dj \awj-1p—bwj_1,1 ]’

We have chosen the components of w;_; and w; to be non-negative integers; therefore, for j € [r — 1]
(keeping in mind that @, 8 > 0 and d; > 0), we may rewrite

. t t
S(j) = {(a,b) € NxN: 3 myernar (a.b) = wjo1 + —w;).
J J

We allow ¢ to be zero when j =r.
We now split S(j) into S;(j) and S,(j), where

$10) = ((@.0) € 5G) < (@b = My 4 Dy wemw wem,
J J
S2(j) = {(a,b) € S(j) : (a,b) = gwj_l + m;l“fmwj, neN, NeN}
J J

We can further decompose

sij=J sV, ad  S0) =Sy,

N eN N eN
where
. ) (n+N) N
SV () =l(a,b) € S() + (@.h) = oy + -y, n e ),
J J 4.9)
. , N (n+N) '
SY () =((a.b) € 8() : (@.b) = Ty + 2w, ne N},
J J
Lemma 4.10. For each j € [r], there exists oj > 0 such that for every v € Sp \ {v;}, one has
(a,b)-(v—-vj;) <-0ojN 4.11)

forall (a,b) € Sf’ (7). The same conclusion is true for Sé\] ().

Proof. For every (a,b) € SV (j), we can write

(n+N) N n N
dj wj-1+ d—ja)j = d—j(uj_l + d—j(u)j +a).,v_1)

(a,b) =

for some n € N. By (4.2), we have
(V—Vj) . (a)j+wj_1) <0

forallv € Sp \ {v,}, since w;_1 and w; are linearly independent. Taking

1
= o _ - . o+ . > ()’
7 VE§21\I{1W} dj (vj =v) (@) + @)
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one sees, by (4.2) again, that

n N
(a,b)-(v—v;) = d—ja)j_l . (v—vj)+d—j(a)j+wj_1) ~(v=-vj) < -0jN

for all (a, b) € S{V (7)- This immediately yields (4.11) and the proof is finished. O

For any 7 > 1 using the decomposition (4.6), we may write

,
Dy x Dy =|_JS: (), (4.12)
j=1
where

Sc(j) =A{G", ") € Dy xDy : (n1,n2) € S(j)},  for  j e [r]. (4.13)

Using (4.9), we can further write
s-() = sV (ol sY,0, (4.14)

NeN NeN

where for any j € [r], one has

S ={(T",7") € De x Dy : (n1,m2) € SY ()},

4.15)
S]Tv,z(j) ={(z", ™) € Dr x D¢ : (n1,m) € SY ()}

In view of decomposition (4.12), our aim will be to restrict the estimates for oscillations to sectors
from (4.13).

Theorem 4.16. Let P € Z[m, my ]| be a non-degenerate polynomial (see (1.14)) such that P(0,0) = 0.
Let r € Z, be the number of corners in the corresponding Newton diagram Np. Let f € P (Z) for some

1 < p < oo, and let Af,ll M2~Zf be the average defined in (3.18). If 1 < p < oo andt > 1l and j € [r],

and S+ (j) is a sector from (4.13), then one has

sup  sup |01 (A apzf T (M1 Ma) € Sc(D)ller2) Sporp 1 ller () (4.17)
JE€Z, 1€6,(S()))

The implicit constant in (4.17) may only depend on p, T, P.

The proof of Theorem 4.16 is postponed to Section 7. However, assuming momentarily Theorem
4.16, we can derive Theorem 3.19.

Proof of Theorem 3.19. Assume that (4.17) holds for all j € [r]. By (4.12) and (2.11), one has

sup  sup (|01 (A of M eD)lenzy < D sup sup [0r (A f M €S (7lerzy-
J€Zs [ €&, (D2) jelr] Y €2+ 1€, (D%)

Step 1. If suffices to show that for every j € [r], every J € Z, and every I € S,;(D?), one has

~ . 1/2

2 ‘ P P 2
H( sub (Avzf = Apzf| ) r(Z
ieN.; MeBI P (D

Li]nS<(j)

< Z sup  sup  [|0r s (A 2f M € Sc(]o iz (4.18)
je[r]]EZ+IGGJ(ST(j))
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We can assume that J > Cr for a large C > 0; otherwise, the estimate in (4.18) easily follows from

maximal function estimates. Let us fix a sequence I = (Io, ..., I;) € S;(D?) and a sector S, (). Let
w, = max{w;1,w; : i € [r]} and we split the set N; into O(r) sparse sets Ji,...,Jor) € Ney,
where each J € {J1,...,Jo(,)} satisfies the separation condition:

log, Ij,1 —log, I(;,+1y1 2 100rw. and  log, I;)» —log, I(;+1)2 = 100rw. 4.19)

for every i1,ip € J such that i; < ip. Our task now is to establish (4.18) with the summation over J
satisfying (4.19) in place of N.; in the sum on the left-hand side of (4.18).

Step 2. To every element I; = ([;1,I;;) with i € N.; in the sequence I (which say lies in the
sector S;(j;)), we associate at most one point P;(j) € S;(j) in the following way. If j; < j and
the box B[/, ] intersects the sector S-(j), then the box intersects the sector along the bottom edge.
We set P;(j) = (I],I2), where I/ is the least element in D, such that (I],15) € S-(j). If j < j;
and the box B[/, z] 1ntersects the sector S; (), then it intersects the sector along the left edge. We set
P;(j) = (111,1 ), where I] is the least element in D, such that (Ill,IJ) € S¢(j). Finally if j; = j, we
set P;(j) = I;. The sequence P(j) = (P;(j) : i € N.y) forms a strictly increasing sequence lying
in S;/(S¢(j)) for some J’ < J and each P;(j) = (P;1(j), Pi2(J)) is the least element among all the
elements (M, M) € B[I,i] NS+ (j).

Step 3. We now produce a sequence of length at most r+2, which will allow us to move from 7; to P; ()
when I; # P;(j). More precisely, we claim that there exists a sequence u’ := (ul, : m € Nem,) € D2
for some mj, € [r + 1], with the property that
and o,y <u, (4.20)

i i i
Ug > up > ... >”mz,-fl’

where (uf), i,” ) = (I;, P;(j))or (uf), in[ ) = (P; (), I;). Moreover, two consecutive elements ul in+l

of this sequence belong to a unique sector S (i ul, i ) except the elements u , and u

U -
which may belong to the same sector. Suppose now that B[I, z] N ST(]) # ({) and I e ST(],) and Ji < ]
Let “0 = I; be the startmg point. Suppose that the elements ”0 Ul > > Uy, have been chosen for
some m € N, so that u lies on the bottom boundary ray of S+ ( Jji+ts—1) and uy < u_, for each
s € [m]. Then we take u!, and move southwesterly to u, .- the nearest point on the bottom boundary
ray of S¢ (ji+m) such that Uy, < Uy, Continuing this way after my,—1=j—ji+1 < rsteps, we arrive

at umlfl € S¢(j) which will allow us to reach the last point of this sequence ui"l,j := P;(j) as claimed

in (4.20). Assume now that B[7,i] N S;(j) # 0 and I; € S;(j;) and j; > j. We start from the point

uf) := P;(j) and proceed exactly the same as in the previous case until we reach the point u!, p = I;.
Step 4. To complete the proof, we use the sequence from (4.20) for each i € J and observe that

(DO S

] MeB[1,i]nSz(j)

_“( sup ALz f — 4] zf|)
iel MeB[P(j),i]nSz(j)

( oop |Avizf = Ap,yaf |2)
iel MeB[P()),i1nS<())

(X v r-an )"

i€l meN<ml

P (Z)

P (Z)

1/2

<

tr(Z)

Clearly, the first norm is dominated by the right-hand side of (4.18). The same is true for the second
norm. It follows from the fact that for two consecutive integers i; < i, such that B[Z,i1] NS+ (j) 7& 0 and
B[1,i2] N S(j) # 0, if we have u”1 and u’J2 belonging to the same sector, they must satisfy u < u’2
by the separation condition (4.19). This completes the proof of the theorem. D
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5. Exponential sum estimates

This section is intended to establish certain double exponential sum estimates which will be used later.
We begin by recalling the classical Weyl inequality with a logarithmic loss.

Proposition 5.1. Let d € Z,, d > 2 and let P € R[m] be such that P(m) := cqm® + ...+ cim. Then
there exists a constant C > 0 such that for every M € Z,, the following is true. Suppose that for some
2 <j<d, therearea,q € Z such that1 < g < M7 and (a,q) =1 and

a 1
C]' - 5‘ < ;
Then for o (d) := 2d* - 2d + 1, one has
| > e(Pm)| < cM10g(2m Loa) 52
§e( () < CMttogm( 2+ -4 2L) 52)

For the proof, we refer to [70, Theorem 1.5]. The range of summation in (5.2) can be shifted to any
segment of length M without affecting the bound. We will also recall a simple lemma from [52, Lemma
A.15, p. 53] (see also [58, Lemma 1, p. 1298]), which follows from the Dirichlet principle.

Lemma 5.3. Let 6 € R and Q € Z \ {0}. Suppose that
o-5l< 5
AN

for some integers 0 < a < g < M with (a,q) = 1 for some M > 1. Then there is a reduced fraction
a’/q’ sothat (a’,q") =1 and

1
2q'M

oo~ =

with q/(2|0]) < ¢’ <2M.
We now extend Weyl’s inequality in Proposition 5.1 to include the j = 1 case.

Proposition 5.4. Let d € Z, and let P € R[m] be such that P(m) := cqm®+. . .+cym. Then there exists
a constant C > 0 such that for every M € Z., the following is true. Suppose that for some 1 < j < d,
there are a,q € Z such that 1 < g < M7 and (a,q) = 1 and

a 1
|Cj—5|ﬁ ? (5.5)
Then for certain 7(d) € Z,, one has
1 qg \™@
| Z e(P(m))‘ <CcM log(ZM)( o+ MJ) . (5.6)

Proof. We first assume that d = 1. Then P(m) = ¢ym and j = 1. We can also assume that g > 2;
otherwise, (5.6) is obvious. Now it is easy to see that

| Z e(clm)) < ”

Thus, (5.6) holds with 7(1) = 1. Now we assume that d > 2. If (5.5) holds for some 2 < j < d, then
(5.6) follows from Proposition 5.1 with 7(d) = o (d), where o (d) is the exponent as in (5.2). Hence,
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we can assume that j = 1. Define k := min{q, M/q}, and let y € (0, (4d)~"). We may assume that
k > 100; otherwise, (5.60) obviously follows. For every 2 < j’ < d, by Dirichlet’s principle, there is a
reduced fraction a - /q ; such that

aj/ K)(

ey~ U< 2
qj Qj’MJ

(5.7)

with (a;/,q;) and 1 < q;. < M7 k™X. We may assume that 1 < gy < k¥ forall2 < j' < d, since
otherwise the claim follows from (5.2) with 7(d) = [o(d)x~']. Let Q :=lem{q;  : 2 < j’ < d} < x9X
and note that O < M follows from the definition of x. We have

M o
[ Derem|< )| D etroe+n)|
m=1

=1 _r M-r
Q<£<
=1

" )
o
= Z| Z Afo‘,

U<tV

where U := —é, V= Mér and Ay := e(c10¢) and

d

d d
. . a i .
— , 7= , J i i
By =e E cji(Qt+r) e EQQ] (Qt+r) + Eij/r ,
= =

=2

where « := cj» — aj /q satisfies the estimate (5.7). Using the summation by parts formula (2.1), we
obtain

Z A¢Bp =Sy By + Z S¢(Be — Bey1),
U<t<v te(U,V-1]nz

with S¢ := Yiew 10z Ak-
From above, since Q < M, we see that

|Bs1 — Be| < k¥QM™L

By Lemma 5.3 (with M = g), there is a reduced fraction a’/g’ such that (a’,g’) = 1 and

’

a 1
|01Q——,
q

- and K2 < g <2g <2M k.
2499

<

Hence, ¢’ > 7% /2 > 2 and so

[Se| < 1 <q s Mk
llci0ll

Consequently, we conclude that

M
| D e(P(m))| < Mi2,
m=1

This implies (5.6) with 7(d) = 2, and the proof of Proposition 5.4 is complete. O

We shall also use the Vinogradov mean value theorem. A detailed exposition of Vinogradov’s method
can be found in [35, Section 8.5, p. 216]; see also [70]. We shall follow [35]. For each integer s > 1 and
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k,N > 2 and for Ay,...,Ax € Zlet Js x(N;2y,...,A) denote the number of solutions to the system
of k inhomogeneous equations in 2s variables given by

X{1+...+ X =y —...—ys =41
x%+...+x§—y%—...—y%=/lz
. (5.8)
x{‘+...+x§—y{‘—...—y’§=/lk,
where x;,y; € [N] for every j € [s]. The number J,  (N; A1, ..., Ax) can be expressed in terms of a
certain exponential sum. Let Ry (x) := (x,x2,...,xX) € R¥ denote the moment curve for x € R. For
E=(&,...,¢8K) € R, define the exponential sum
N N
SK(EN) = D e - Re(m) = D e(@n+ ...+ &),
n=1 n=1
One easily obtains
SkENPT = DT Y T(Ns Ay, e (€ - ), (5.9)
[A1|<sN | Ak | <sNK
which by the Fourier inversion formula gives
S Widieooo ) = [ ISu(eiN)Pe(-£ - e, (5.10)
[0,1)
Moreover, from (5.10), one has
JS,k(N;Ali e ’/lk) S JS,k(N) = ‘]S,k(N;09 .. ’0)’ (5'1 1)

where the number J; i (N) represents the number of solutions to the system of X homogeneous equations
in 2s variables as in (5.8) with A} = ... =4, =0.
Vinogradov’s mean value theorem can be formulated as follows:

Theorem 5.12. For all integers s > 1 and k > 2 and any € > 0, there is a constant Cz > 0 such that
for every integer N > 2, one has

k(k+1)
T +E

Jsk(N) < Co(N** + N*~ ). (5.13)

Moreover, if additionally s > %k(k + 1), then there is a constant C > 0 such that

k(k+1)
2 .

Jox(N) < CN?s~ (5.14)

Apart from the N® loss in (5.13), this bound is known to be sharp. Inequality (5.13) is fairly simple
for k = 2 and follows from elementary estimates for the divisor function. The conclusion of Theorem
5.12 for k > 3, known as Vinogradov’s mean value theorem, was a central problem in analytic number
theory and had been open until recently. The cubic case k = 3 was solved by Wooley [69] using the
efficient congruencing method. The case for any k > 3 was solved by the first author with Demeter and
Guth [17] using the decoupling method. Not long afterwards, Wooley [68] also showed that the efficient
congruencing method can be used to solve the Vinogradov mean value conjecture for all k£ > 3. In fact,
later we will only use (5.14), which easily follows from (5.13); the details can be found in [17, Section 5].
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5.1. Double Weyl’s inequality

Let K1, K, € N, My, M, € Z, satisfy K} < Mj and K, < M;. Let Q € R[m, m;] be given and define
double exponential sums by

M, M-
Sk onn(Q) = D, > e(Qimi,m)), (5.15)

m1=Ki+1 my=K>+1

M, M,
Sk (@ = Y | D, e(@mim)), (5.16)

m=K;+1 my=Kr+1
M, M,
Sanin@ = Y | DL e@m,m))| (5.17)
my=Kr+1 m;=Kj+1
If K1 = Ky =0, we will abbreviate (5.15), (5.16) and (5.17), respectively, to
S (Q)s Shy (@), and Sy 4, (0). (5.18)
By the triangle inequality, we have

ISy .1 k001 (D] < Skt ko, (@) and Sk, w00 (D] < Sk g kons, (@) (5.19)

We now provide estimates for (5.15), (5.16) and (5.17) in the spirit of Proposition 5.1 above. We first
recall a technical lemma from [39, Chapter IV, Lemma 5, p. 82].

Lemma 5.20. Let @ € R and suppose that there are a € Z, q € Z,. such that (a,q) = 1 and

o= <
gl = ¢*
Then for every € R, U > 0 and P > 1, one has
P 1 P
Zmin{U,—} < 6(1 + —)(U+qlogq). (5.21)
po llan + Bl q

Estimate (5.21) will be useful in the proof of the following counterpart of Weyl’s inequality for
double sums.

Proposition 5.22. Let d|,d, € Z, and Q € R[m, my] be such that

d

— Y, 7 _
Q(my,my) = Z Z Cyrypmymy’,  and  coo=0.
¥1=0 y2=0

Then there exists a constant C > 0 such that for every K1, K, € N, My, My € Z, satisfying K1 < M,
and Ky < My, the following holds. Suppose that for some 1 < p1 < dy and 1 < py < d, there are
Ao € Zyqp,,p, € Zy such that (ap, p,, qp, p,) = 1 and

a 1
P1,P2
Coi.p2 ~ < B . (5.23)
qpl P2 qp] .02
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Set ki := di(d; +1) fori € [2], M_ := min(M}"', M5?) and M, := max(M}"', My?). Then fori € [2],

1
' 1 4pi.p: 108 4p1.0 1 log gp, p, \ %2
SlK M. K».M (Q) < CM1M2 + i > + , .
e - MY M5 dpi1.p2 M,

(5.24)
In view of (5.19), estimates (5.24) clearly hold for |Sk, m, .k,.m,(QO)|-

Remark 5.25. The bracketed expression in (5.24) is equal to min(A, B) where

1 lo 1 lo
+ qp1.p2 108 4p1.p; + + g 4pi1.02

A= —
M;Z Mfl MZPZ Qpl,pz Mlpl

and

1 dp1.m 102 Gp, p, + 1 + log qp,.p,

B=—
Mfl Milol MgZ Ap1.pa M§2

Multi-parameter exponential sums were extensively investigated over the years. The best source about
this subject is [1]. However, here we need bounds as in (5.24), which will allow us to gain logarithmic
factors on minor arcs (see Proposition 5.37) in contrast to polynomial factors, which were obtained in [1].
We prove Proposition 5.22 by giving an argument based on an iterative application of the Vinogradov
mean value theorem.

Proof of Proposition 5.22. We only prove (5.24) for i = 1. The proof of (5.24) for i = 2 can be obtained
similarly by symmetry. To prove inequality (5.24) when i = 1, we shall follow [35, Section 8.5., p. 216]
and proceed in five steps.

Step 1. For i € [2], let us define the d;-dimensional box

d.
By (M;) = ( [—k,-Ml.j,kl-Ml.j]) nzd.
1

~

Observe that
dy
Q(my,my) = Z Cy,(m)m)?* = c(my) - Ra,(my) + co(my),
v2=0
where for v, € [d2] U {0}, one has
d;
c(my) = (c1(my), ..., cq,(my)) and Cy,(my) = Z Cyrym] .
v1=0

Recall that Ry, (m2) = (ma, m3, . .., mgz). By (5.16), we note that

S}<1,M1,K2,M2(Q) < 511\41,M2(Q) + Sjl\/[l,Kz(Q) < Nznelfll\)/(lz] Szlvjl,NZ(Q)-
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For any k, € Z,, by Holder’s inequality and by (5.9), we obtain

M,
2ky—1
S}{l M;,K>,M> (Q)2k2 S Ml ’ max Z |Sd2(c(m1);N2)|2k2
MK Naelby] £

M, (5.26)
_ ap2ke—1 . .
=M, Ngf{ﬁ)}ﬂ EBZ Jiy.dy (N2j 1) Z e(c(my) - u).
u 112(N2) my=1
Step 2. We see that
d
clmp)-u= Y ey yitym]" =B (1) - Ray(my) + B (w),
71=0 y2=1
where for u = (uy, ..., ug) € Z% and y; € [d1] U {0} we set
d
B'(w) = (Bl(w).....B5 W)  and Bl (u):= Z Cyrplly,-
v2=1
Similarly, for v = (vi,...,vg,) € Z% and y; € [dy] U {0}, we also set
d
B(v) = (B(v).....05,(»))  and B2 (v):= Z Corma V-
vi=1
This implies, raising both sides of (5.26) to power 2k, for any k; € Z,, that
~ 2k
Skt ks, (@)% < MPRRT2R max D0 i (N3 )8, (B' (w); M1)|)
T Nr€[M:] well
@, (N2)
< mflehyphk2h N Z iy (N2 u)|Sa, (B (u); My) PR
? ? u€Bq, (N2)
(5.27)
In (5.27), we used Holder’s inequality and
Z Jio,as (N23u) = N3
u€Bg, (N2)
Step 3. For v = (v,...,v4,) € Z4, we have
& d
Bl v=" 3 cymimity, = (V) . (5.28)
y2=lyi1=1

Applying (5.9) and (5.11) to the last sum in (5.27), we obtain

A Z T, (N23 1) |Sa, (B (u); My) R
h€[M] ueBay (N2)

< T (M2) Y 1S4 (B (u); My) P
MEBdZ(Mz)
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=Tt (M2) ) D Tk (Mizv)e(B () - v)
u€Ba, (M>) veBa, (M)

<aa (M) a (M) > | Y e w)|,  (5.29)

v EBdI (M]) uEBd2 (Mz)

where we used (5.28) in the last inequality. In a slightly more involved process, we now obtain a different
estimate for the last sum in (5.27). We apply (5.9) twice to obtain

JIAX D Ty (N2iw)|Sa (B (u): M) P
he[ 2]uede(N2)

max Z Jiosds (N23 u) iy (M1 v)e (B (u) - v)
2] el (V) veBay ()

max Z Ji,a (M1;v) Z Jio.dy (N2s u)e (B2 (v) - u)

N2€[M:] veEBg, (M) u€Bg, (N2)
= max >0 Ty (M) |Sa, (B (0): o) P,
2T e

where we used (5.28) in the penultimate equality. Hence, by (5.9), (5.11) and (5.28),

max > Jiay (Nasu)| S, (B (); M)

N2€[Mz]u€de(N2)
S i (M) max > [Sa (B (v): No) P
€| 2]veBdl(M1)
=Jk1,d1(M1)NmaA7/(I Z Jiy dy (N25 1) Z e(B'(u)-v)
2] ey (v veBa, (My)
< Jr,di (M) Jry,a,(M>) Z | Z e(B'(w) - v)|- (5.30)

u€Bq, (Mz) veBg, (M)

Step 4. In this step, we prove (for g = q,, p,)

| ( 1( : )| 3 2 dj<‘;j+l)( 1 qloggq 1 logq) (5.31)
e B u)-v M. + + -+ 3
z : ~ | | J M2 P pgP2 q L1
uEde(Mz) vEBdl (M) Jj=1 2 Ml 2 Ml

and

’ ( 2( ) )| < ’ dj(c;jﬂ) ( 1 qloggq 1 logq) (5.32)
E e(B°(v)-u ||M. — + + -+ . .
~ VP! MP! P2 MP?
VGBdl (M[) uEde(Mz) j=1 ! 1 1 2 ) 2

We only establish (5.31). The symmetric bound (5.32) is similar. The exponential sum

dy
Doew =[] D e, vy

veBa (M) Y=l |<k M)
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is a product of geometric series which we can easily evaluate to conclude

d;

1
Z | Z e(B'(u)-v)| < Z ]_[ min{zdlM”, 1—}
ueBa, (Ma) veBa, (My) ueBa, (M) y1=1 1185, (Wl
d(d 1 D_ . 0 1
< (2d1M1) P Z mln{ZdlM l,m}.
ueBa, (M) o1 (U
Since (5.23) holds and
dy
ﬂ},l(u) = Cp.plp, + B(1), where Bu) = Z Cpryathyss

=1

)?;2#)2

we can apply (5.21) with P = kyM%?, U = 2d\M"" and g = g, ,, and obtain

1 P13 1P2
Z min{ZdlM’”,l—}st‘+qlogq+¥+M§210gq
18, ()l q

ye
|up2 | SkzMz 2

1 1 11
Mpl Mpz( ot qp?g zz -+ Ogmq)'
ME MM g MY

Hence

| E e(B' (u) )|<(|2|Md(d+l))( ! +—qlogq +1+logq)
u)-v) s _ ,
My MU'MS? g MY

uEde (Mz) VEBdl (M]) ]=l 1

establishing (5.31).
Step 5. We use the bound (5.31) in (5.30) to conclude

I dkyk dkyky=2ky 3 g4k ky—2k
Sk ko, (@) S MM TRy (M) kg, a0, (M)

BB gletg 1 lag)

XM, * M
1 P2 P13 P2 P1
My” MMyt g M

2

From Vinogradov’s mean value theorem (or more precisely from (5.14) with s = k; := d;(d; + 1) and
k = d; for i € [2]), we conclude from (5.14), Ji, 4, (M;) < CM;*/? i = 1,2 and so

1 lo 1 1lo
4k k Akyky 3 phk k q10gq g4q
SKIMIMZMZ(Q) 12<M IZM 12(M92+Mf1M2p2+5+Mf1)

In a similar way, using (5.32) in (5.29), we also have

1 lo 1 1lo
4k k Akyky 3 phk k q10gq g4q
SKIMIMZMZ(Q) 12<M IZM 12(M91+Mf1M2p2+5+M§2)

Therefore, S}q’ M, Mo, MZ(Q)‘”“"2 is bounded from above by the minimum of these two bounds. By

Remark 5.25, this completes the proof of Proposition 5.22. O
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5.2. Double Weyl’s inequality in the Newton diagram sectors

Throughout this subsection, we assume that P € Z[m, m;] and P(0, 0) = 0. Moreover, we assume that
P is non-degenerate in the sense of (1.14); see the remark below Theorem 1.11. Then for every & € R,
we define a corresponding polynomial Ps € R[mj, m;] by setting

Pg(ml,mg) = §P(m1,m2). (5.33)

It is clear to see that the backwards Newton diagrams of P and P are the same Np = Np .- Letr € Z,
be the number of vertices in the backwards Newton diagram Np. In view of (4.7) and (4.8) from Remark
4.5 for r > 2, we have

log M <logM, if (M;,M;) e S:(1),

logM; ~logM, if (M;,Mp)eS;(j)forl<j<r, (5.34)

logM, slogM, if (M, M) € S¢(r).

Consequently, we may define a quantity M} ;as follows. If r = 1, we simply set

Mik,l =My vM, if (M;,M)eS;(1)=D;xD;. (5.35)
If r > 2, we set
M, if (M, M5) € S;(1) for j =1,
M:,j ={ M|V M, if(Ml,Mz)EST(j) forl <j<r, (5.36)
M, if(M],Mz)EST(r)fOI'jZF.

The quantity log M iy will always allow us to extract the larger parameter (larger up to a multlphcatlve
constant as in (5.34)) from log M and log M>. We estimate |Sk, a1, k,,m, (P¢)| in terms of log M e
whenever (M|, M>) € S (j) for j € [r], and (K|, K;) € N? satisfying M; < Ky < M, and M, < K, <
M;.

Proposition 5.37. Let P € R[m(,my] be the polynomial in (5.33) corresponding to a polynomial
P € Z|my, my] with the properties above. Let r € Z, be the number of vertices in the backwards Newton
diagram Np. Let T > 1, @ > 1, j € [r] be given. Let vj = (v} 1,v;2) be the vertex of the backwards
Newton diagram N p. Then there exists a constant By := Bo(a) > a such that for every 8 € (By, ©0) NZ,,
we find a constant 0 < C = C(a,Bo,B,J,7,P) < oo such that for every (M, M) € S:(j) and
(K1, K>) € N? satisfying My < Ky < My and My < Ko < M> the following holds. Suppose that there
area € Z,q € Z, such that (a,q) = 1 and

(log M; )P < q < M"' M,"*(logM; )7, (5.38)
and
(log M; )P
e - —| e V, —— (5.39)

where M * lS defined in (5.36). Then one has
ISk) My, K2, (Pe)| < CMi Mo (log My )™ (5.40)

Proof. We note that the following three scenarios may occur when r > 1:

1. If j =1,wehave vi; =0orv;| € Z, X Z,. In this case, we also have log M| < log M>.
2. If j =r,wehave v, o =0orv, € Z, X Z,. In this case, we also have log M| > log M5.
3. If 1 < j<r,wehavev; € Z, X Z,. In this case, we also have log M =~ log M.
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Note that if » = 1, then S;(1) = D X D; and v| € Z, X Z,, since P is non-degenerate in the sense of
(1.14). Throughout the proof, in the case of r = 1, we will additionally assume that log M; < log M5.
Taking into account (5.35) and (5.36), we can also assume that log M| V log M, is sufficiently large
(i.e., log M, V log M, > Cy, where Cy = Cy(a, Bo, j, T, P) > 0 is a large absolute constant). Otherwise,
inequality (5.40) follows. The proof will be divided into three steps.

Step 1. We first establish (5.40) when j = 1 and vi; =0 or j = r and v, » = 0. Suppose that j = 1
and vi,; = 0 holds. The case when j = r and v, » = 0 can be proved in a similar way, so we omit the
details. As we have seen above, log M| < log M;. By (5.38) and (5.39), we obtain

Applying Lemma 5.3 with Q = ¢o,y,, and M = g, we may find a fraction a’/q" such that (a’, q") = 1
and q/(2co,v,,) < q’ < 2q and

CU,Vl,zf -
Thus, by Proposition 5.4, noting that vy » > 1, we obtain

ISk, My Ko, (Pe)| < S}{I,MI,KZ,MZ(P‘.‘E)

1 q/ ‘r(delgP)
< MM, IOg(Mz) — + ﬁ + —— MV] 3

< MM, (log M:J_)—,(Tgp)ﬂ’

since log M} . by =~ log M;. It suffices to take 8 > T(deg P)(a + 1) and the claim in (5.40) follows.

Step 2. We now establish (5.40) when 1 < j < r and v; € Z, X Z, (note that when 1 < j < r,
we automatically have v; € Z, X Z,). If r = 1, then we assume that log M| < logM. If r > 2, we
will assume that 1 < j < r, which gives that log M; < log M>. The case when j = r can be proved
in much the same way (with the difference that log M| > log M,), we omit the details. In this step, we
additionally assume that M) < (log Mj’j))( for some 0 < y < B/(8deg P) with 3 to be specified later.

Notice that (5.38) and (5.39) imply

1
< —.

e-dl=

By (5.38) and M, < (log Mj’j)X, we conclude
(log M;"j)B <g< M;j‘z(log M;‘,j)_w/4
since y < B/(8deg P). We note that the polynomial P can be written as

v;
P(ml’ mz) = Pij[ (ml)mz.”z + Z CYIJ’Zm}/lm%’z’

(y1,72)€Sp
Y2#EV) 2

where Py, | € Z[m;] and deg P\, = v; 1.
Observe that for every 1 < m; < M; < (log M:J.)X, one has

[Py, (m1)| < #Sp " n;a)x ey, 1M, degP (log M;' ; B4,
1
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Applying Lemma 5.3 with M = M;j'z(log M;ﬁ,j)_m/4 and Q = P,; (my) for each K1 < m; < M,
(noting that P, (m) # O for large m,), we find a fraction a’ /¢ so that (a’, ¢") = 1 and (log M;*,j)w/4 <
q’ < 2M,"*(log M;"j)‘w/4 and

(logM* )35/4 L !
Zq’M (q/)zl

a/

Vj 1(m1)§ - -

We apply Proposition 5.4 for each 1 < m; < My, noting that v; > > 1, to bound

M, 1 q’ 7(deg P) _ 3B +1
J— _ * 47 (de;
E e(Pf(ml,mz))‘ < M» IOg(Mz) 7 + A + —— MVJ > < Mz(lOng’j) WegP) "

my=Kr+1

since log M}’ oy =~ log M, for j € [r — 1]. It suffices to take 8 > T(deg P)(a + 1) and (5.40) follows.
Step 3. As in the previous step, 1 < j < r (orr = 1 and log M; < log M,) and we now assume
that (log M} )X < M, < M, for some 0 < y < B/(8deg P), which will be further adjusted. The case
when j =r can be established in a similar fashion keping in mind that log M| > log M>. In fact, we
take y := B/(16deg P) + 1, which forces 8 > 16 deg P.
Applying Lemma 5.3 with Q = ¢, | ,;, and M = g, we find a fraction a’/q" so that (a’, ¢") = 1 and
(log M} )P <p q(2Q)7' < ¢’ < 2q and

’

a’ 1

(q )%

Cojpvia€ =
From Proposition 5.22, we obtain (with M_ = min(Mlvj‘] , szj‘z) and M, = max(Mlvj" , szj‘z))

1
1 q’logq’ 1 loggq’\ 4 p)s
ISk K0, (P )] <M1M2(M_ Mv,l—sz_,-,zJ’;’f M,

_ B
< M, Mz(]og M;kj) 64(1+deg P)°

Taking 8 > 64(1 +deg P)°(a + 1), we obtain (5.40). This completes the proof of Proposition 5.37. 0O

5.3. Estimates for double complete exponential sums

In this subsection, we provide estimates for double complete exponential sums in the spirit of Gauss.
We begin with a well-known bound which is also a simple consequence of Proposition 5.22.

Lemma 5.41 [1]. Let P € Q[m{, my] be a polynomial as in (4.1) and let a,, , € Z and q € Z, satisfy
Cyiys = Gy, 7,14 for each (y1,7y2) € Sp such that

ged({ay, 5, : (v1.72) € SprU{q}) = 1.

Consider the exponential sum Sq 4 from (5.18). Then there are C > 0 and 6 € (0, 1) such that
1Sq.4(P)| < Cq*~° (5.42)
holds. The constant C can be taken to depend only on the degree of P.
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We now derive simple consequences of Lemma 5.41 for exponential sums that arise in the proof of
our main result. Let P € Z[m, m;] be such that

P(my,my) := Z c;’”mly‘m?, (5.43)
(71,72)€Sp
where cfo 0 = 0. We additionally assume that P is non-degenerate (see the remark below Theorem

1.11). That is, we have Sp N (Z; X Z,) # 0. Using the definition of P from (5.33), we define the
complete exponential sum by

| & @
Glalg)i=— > > e(Pasg(rir2)),  a/geq, (5.44)
q r1:1 r2:1
and we also have partial complete exponential sums defined by

q

1
G (a/q) 1= ) e(Pag(misr2). alg €Qomi€Z,
1 - (5.45)
Gro(a/g) =2 ) e(Pajq(rim)). ajqeQ m€Z.
ri=1

Proposition 5.46. Let P € Z[m|, my]| be a polynomial as in (5.43) which is non-degenerate (that is,
SpN(Zy XZy) #0). Then there is Cp > 0 and § € (0, 1) such that the following inequalities hold. If
a/q € Qand (a,q) =1, then

|G(a/q)| < Cpq°. (5.47)

Moreover, for every sufficiently large Ky, M| € Z, depending on P, one has

M,

1 ]

o >, |G ala)l<Crg™, (5.48)
m=K;+1

and similarly, for every sufficiently large K,, My € Z, depending on P, one has

M,
1 -
i 2 lGh(@/al<Cra. (5.49)
m2:K2+l

Proof. We prove Proposition 5.46 in two steps.
Step 1. In this step, we establish (5.47). Fix a/q € Q such that (a, g) = 1. For any (y1,7y2) € Sp, we
letay, 5, := acil’n/(cfwz, q) and g, 4, = q/(cg,)l’n, q). Now with this notation, we see that

di

a
V1,72
Pujg(ri,ra) = Q(ri,r2) = Z Z ——=r"r),
71=0 72=0 drin

for some integers dy,d, > 1. Furthermore, G(a/q) = q‘qu,q(Q); see (5.44). We take (p1,p2) €

Sp N (Zy XZy) # 0 and use (5.42), which yields

1G(a/q)| = q7*ISq.4(Q)| <p q~°.

This completes the proof of (5.47).
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Step 2. We only prove (5.48); the proof of (5.49) is exactly the same. We fix a/q € Q such that
(a,q) =1, and we also fix (p1,p2) € Sp N (Z+ XZ,) # 0. Using Lemma 5.3, we find a reduced fraction
Apy.pr/Gp1.py 50 that (ap, p,. qp,.p,) = 1 and

P
prpr _Gprpn| 1
q o' 24p1.p4

with ¢/ (2¢p,.0,) < Gp1.p, < 2qg. We fix y > 0 and assume first that M; > g¥. Appealing to inequality
(5.24) with M, = g, we obtain for some ¢ € (0, 1) that

TR

w2 G @/lse g,

m=K+1

We now establish a similar bound assuming that M| < ¢¥ for a sufficiently small y > 0, which will
be specified momentarily. Our polynomial P from (5.43) can be rewritten as

dy
P(ml,mz) = Z P),z(ml)m%/2 +P0(m1),
v2=1

for some d» > 1 where P, € Z[m] and deg P,, < degP. Take 0 < y < m and observe that for
every 1 <y, < dp and forevery 1 < m; < M; < g¥, one has

deg P
|P,,2(m1)|$#Sp( max oy, 5| M} < g/

Y1,72)E€Sp

) (5.50)

whenever ¢ is sufficiently large in terms of the coefficients of P.

Assume first that d» > 2, and we may take p, = do. Applying Lemma 5.3 with Q = P, (m1) for
each K; < my < M (noting that P,,(m1) # O for sufficiently large m; > K), we find a fraction a’/q’
so that (a’,g’) = 1 and %q3/4 < g’ <2gand

a a
‘sz(ml)a—?

1 1
< ’ YA
29'q — (q)

Then we apply Proposition 5.4 for each K| < m; < M\, which gives

1
1 1 l ql sz) -7 3(1 -0
|G, (a/q)| < log(2q) 7 + 7 + ps < (logg)g ) < q7°,

for some § € (0, 1) and (5.48) follows, since dp > 2.
Assume now that d, = 1. Then

M,

1 1
i 2 G (@@l = 3-#Ky <my < My 2 Piom) = 0mod g} =0,
m=K;+1
in view of (5.50), which ensures that {m; € [M;] : P{(m;) = 0 mod ¢} = 0. O

6. Multi-parameter Ionescu—Wainger theory

One of the most important ingredients in our argument is the Ionescu—Wainger multiplier theorem [34]
(see also [46]), and its vector-valued variant from [52] (see also [62]). We begin with recalling the
results from [34] and [52] and fixing necessary notation and terminology.
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6.1. Ionescu—Wainger multiplier theorem

Let P be the set of all prime numbers, and let p € (0, 1) be a sufficiently small absolute constant. We
then define the natural number

D =D, :=[2/p]+1,
and for any integer / € N, set
Ny = N(gl) =2°21+1, and Qg := Q(()l) = (NP
‘We also define the set

Py :={q=0w:0Q|Qpand w € Wq; U{1}},

where

Wy = U U {p7' P ipr,....pi € (N(()l),Zl] N P are distinct}.
ke[D] (y1,....yx)€[D]*

In other words, W; is the set of all products of prime factors from (N, (l), 2! ] NP of length at most D,
at powers between 1 and D.

Remark 6.1. For every p € (0, 1), there exists a large absolute constant C,, > 1 such that the following
elementary facts about the sets P; hold:

(i) Ifl; < I, then Po, € Py,

(ii) One has [2!] € P<; C [257"].
(iii) If g € P, then all factors of g also lie in P«;.
(iv) One has Q<; :=1lcm(P<) S 262,

By property (i), it makes sense to define P; := P<;\P<;—1, with the convention that P; is empty for
negative /. From property (ii), for all g € P;, we have

21 < g <267, (6.2)
Let d € Z, and define 1-periodic sets
24 = {g € (@NT)?:qePyand(a,q) = 1}, and 3¢ :=3d)\34 (6.3)
where (a,q) = (ay,...,aq,q) = 1 forany a = (ay,...,aq) € 74 Then by (6.2), we see
#xd, < 2 (@2, (6.4)

Let k € Z, be fixed. For any finite family of fractions £ C (T N Q)* and a measurable function
m : RK — B taking its values in a separable Banach space B which is supported on the unit cube
[-1/2,1/2)k, define a 1-periodic extension of m by

Oz[ml(§) = > m&-alg), ¢£eTh

a/gex
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We will also need to introduce the notion of I'-lifted extensions of m. For d € Z, consider I' :=
{i1,...,ix} C [d] of size k € [d]. We define a I'-lifted 1-periodic extension of m by

ey [m](é) := Z m(&, —ai/q,.... & —ax/q), for €=(&1,...,64) €T

alqgex
We now recall the following vector-valued lonescu—Wainger multiplier theorem from [52, 62].

Theorem 6.5. Let d € Z, be given. For every p € (0,1) and for every p € (1,0), there exists an
absolute constant C,, , ¢ > 0, that depends only on p, p and d, such that, for every | € N, the following
holds. Let 0 < g1 < 2‘10C1’22p[, and let m : R — L(Hy, H,) be a measurable function supported on
g1[=1/2,1/2)¢, with values in the space L(Hy, H1) of bounded linear operators between separable
Hilbert spaces Hy and H;. Let

Ap = Tralm]llLe ra;my)—Lr (rR:H,) - (6.6)
Then the 1-periodic multiplier
Opa [ml(§) = > m(&-alq) for £eT, ©.7)
h a/qEZ‘Sll

where Z‘Sl | s the set of all reduced fractions in (6.3), satisfies
1724 [@)zgl [m1] fller za:m,) < Cpop.aApllfller za:m) (6.8)

for every f € €P(Z%; Hy).

The advantage of applying Theorem 6.5 is that one can directly transfer square function estimates
from the continuous to the discrete setting, which will be useful in Section 7. The hypothesis (6.6),
unlike the support hypothesis, is scale-invariant, in the sense that the constant A, does not change when
m is replaced by m(A-) for any invertible linear transformation A : R¢ — R4,

Theorem 6.5 was originally established by Ionescu and Wainger [34] in the scalar-valued setting with
an extra factor (I + 1)? in the right-hand side of (6.8). Their proof is based on an intricate inductive
argument that exploits super-orthogonality phenomena. A slightly different proof with factor (/ + 1) in
(6.8) was given in [46]. The latter proof, instead of induction as in [34], used certain recursive arguments,
which clarified the role of the underlying square functions and orthogonalities (see also [52, Section
2]). The theorem in the context of super-orthogonality phenomena is discussed in a survey by Pierce
[55] in a much broader context. Finally, we refer to the recent paper of Tao [62], where Theorem 6.5 as
stated above, with a uniform constant A, is established.

For future reference, we also recall the sampling principle of Magyar—Stein—Wainger from [44],
which was an important ingredient in the proof of Theorem 6.5.

Proposition 6.9. Let d € Z, be given. There exists an absolute constant C > 0 such that the following
holds. Let p € [1,c00] and q € Z,, and let By, B> be finite-dimensional Banach spaces. Let m : R? —
L(By, By) be a bounded operator-valued function supported on [—1/2,1/2)%/q and let mger be the
periodic multiplier

M (€)= Y mE-n/q), £eT,

nezd

Then

1 Tza (e llop 248,y 20 (z4:8,) < CllTra [Ml|Lo (ra:By)— L (R4:8,)-
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The proof can be found in [44, Corollary 2.1, pp. 196]. We also refer to [50] for a generalization of
Proposition 6.9 to real interpolation spaces. We emphasize that B and B; are general (finite dimensional)
Banach spaces in Proposition 6.9, in contrast to the Hilbert space-valued multipliers appearing in
Theorem 6.5, and so Proposition 6.9 includes maximal function formulations and can also accommodate
oscillation semi-norms.

6.2. One-parameter semi-norm variant of Theorem 6.5
Let A := {4;,...,4x} C Z, be a set of size k € Z, of natural exponents, and consider the associated
one-parameter family of dilations which for every x € R¥, is defined by

(0,00) 31> tox = (tYxy,...,1%x;) e R¥.

Let Y := (Y, : R — C : n € N) be a sequence of measurable functions which define a positive
sequence of operators in the sense that for every n € N, one has

Tex [Yu]f >0 if f>0. (6.10)

Furthermore, suppose there exist Cy > 0,0 < éy < 1 and 1 < 7 < 2 such that for every ¢ € R¥ and
n € N, one has

1Y, (€)] < Cymin {1, 7" 0 £]7°" }, (6.11)

1Y, (¢) = 1] < Cymin {1, 7" 0 £]°" }. (6.12)

The condition (6.10) implies that the operator Tgx [Y,,] f = f * u, is convolution with positive measure
4y and condition (6.12) implies Y, (0) = 1 and so each y,, is a probability measure. Hence, for every
p € [1,00),

A) = sup | Tax [ Yol llpp gy iy < 1. (6.13)

neN

In this generality, L” (R¥) estimates with 1 < p < oo for the maximal function sup,, . |Trx [ Y] £ (%)]
were obtained in [22] and corresponding r-variational and jump inequalites were established in [38]
(see also [51]). Here we extend these results further.

For d € Z,, consider I := {i,...,ix} C [d] of size k € [d] and define a I'-lifted sequence of
measurable functions Y := (Y} : RY — C: n € N) by setting

Y (€)= Y(éiyn. . &) for  E=(E1,...,6q) €RL
Our first main result is the following one-parameter semi-norm variant of Theorem 6.5.

Theorem 6.14. Let d € Z, and T’ C [d] of size k € [d] be given. Let Y = (Y, : R¥ - C: n e N)
be a sequence of measurable functions satisfying conditions (6.10), (6.11) and (6.12), and let Y' :=
(YL : R — C : n € N) be the corresponding T-lifted sequence. For every p € (0, 1) and for every
p € (1, 00), there exists an absolute constant 0 < C = C(d, p, p, 7, T, Ag, Cy) < oo such that for every
integerl € N and m < —10Cp22pl, the following holds. If

supp Y, C 2™ [-1/2,1/2)% forall neN, (6.15)
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then for every f = (f, : 1 € N) € €P(Z4; £2(N)), one has

sup  sup

< CU+ D fller za:e2 ) »
JeZy 1€y (N)

" 1/2
(D015 (T2a[@gs [YERT, 11 fo 2 m € 1))
N er(z)

teN

(6.16)

with @241 defined in (6.7). In particular, (6.16) implies the maximal estimate

(7 suple [ (YEAE5 1)

(eNT1E

< CU+DfNlep za.e2 vy -
gp(Zd)

Some remarks about Theorem 6.14 are in order.

1. Theorem 6.14 is a semi-norm variant of the Ionescu—Wainger [34] theorem for oscillations. The proof
below works also for r-variations or jumps in place of oscillations as well as for norms corresponding
to real interpolation spaces. We refer to [50] for definitions.

2. In practice, Theorem 6.14 will be applied with I = [d]. However, the concept of I'-lifted sequences
is introduced here for further references.

3. A careful inspection of the proof below allows us to show that the conclusion of Theorem 6.14 also
holds in R¥. For every d € Z,, every sequence Y = (Y, : R? — C : n € Z) of measurable functions
satisfying conditions (6.10), (6.11), (6.12) and (6.13), and forevery p € (1, o), there exists a constant
C > 0 such that for every f = (f, : t € N) € L?(R%; ?>(N)), one has

(Z Or.y(Tra[Y,lf in e Z)z)'/2

teN

sup sup

< ClfNler resez ) - (6.17)
J€Z, 16, (Z)

Lr (R4)

An important feature of our approach is that we do not need to invoke the corresponding inequality
for martingales in the proof. This stands in a sharp contrast to variants of inequality (6.17) involving
r-variations, where all arguments to the best of our knowledge use the corresponding r-variational
inequalities for martingales.

Proof of Theorem 6.14. Fix p € (1,00) and a sequence f = (f, : ¢ € N) € €*(2%;¢*(N)) n
£P(Z4; £>(N)). For each [ € N, define an integer

k1 := | (100C, +log, (5 log, 7)™ ) (1 + 1) | +2, (6.18)

where C, is the constant from Remark 6.1; see property (iv). By (2.17), it only suffices to establish
(6.16), which will follow from the oscillation inequalities, respectively, for small scales

. 1/2
(D010 (Ta[O5s YIRS, 11 fot m € Nz )P
1eN B

sup  sup

S L+ DI fller zaze2 oy s
JE€Zy T€G; (N_yx)

£r(Z4)

(6.19)

and large scales

sup sup

§ 12
(Z 01,5 (Tza [®Zd, [Yon5,1]fo € Naow )2)
J€Zy 1€65 (N, ynp) :

teN

S W fllew zae2 vy -
P (Z4)

(6.20)
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Step 1. We now prove inequality (6.19). We fix J € Z, and a sequence I € S; (N« ). Then, by the
Rademacher—Menshov inequality (2.14), we see that

12
(Z 01,y (Tza [®>:d hnl,l)fine N<2“l)2)
teN

Ki
<2,

r(zd)
2617V ]

(Z Z |Z TZ"[GZG’ ( n+1_Y'l:)nl;”]]ﬁ'Z)l/2

teN  u=0 neU)

bl

P (Z4)

where U)] = [u2", (u+ 1)2") N Z. Hence, it suffices to prove

2KV — . 12
(> > |Z Tza [Og0 (Y = X511 1) SWfllerzeognys (62D
teN  u=0 neU) P (Z4)

uniformly in v. By Theorem 6.5 and by our choice of «; in (6.18), since m <

< —10C,2%!, (6.21) will
follow if for every sequence (f, : ¢ € N) € L>(R4; £2(N)) N L? (R%; £2(N)),

2[(1 v _
c 2\ 1/2
(> > IZ Toa [0S,y = Y05, 1 1) Sl acany  (622)
teN  u=0 neUy LP (R4)

holds uniformly in v.
To prove inequality (6.22), in view of Lemma 2.3, it suffices to show that for every p € (1, o0) and
for every f € L”(R%), one has

264 -1
sup 0 Taa [0 = Yo S Al I lr e (6.23)
(wu)e{-1,1}7 ;) d (u1)2 uar Alsm ]LP(R") P RS

unformly in v € [0, k;] and I. The proof of (6.23), using conditions (6.10), (6.11), (6.12) and (6.13),
follows from standard Littlewood—Paley theory as developed in [22]. We refer, for instance, to [51] for
details in this context.

Step 2. We now prove inequality (6.20). By the support condition (6.15), we may write (see property
(iv) from Remark 6.1)

Tza [GEZI [Y,rmgn]] Tza [G)):d [Yr(l < 22c,,1)77<m ] + Tza [®2d Y 77< 22cp177<m]]

where 77< pcpl [lier n(i) L y2Cp1 (see definition (2.2)). The proof of (6.20) will be complete if
we show (6.20) with Tya [@Zd YL - n__ zchz)’km]]’ and Tya [@Zd anz zch,ngm]] in place
of Tya [@Zd [Yin,1]. To establish (6.20) with Tya [@Ed (YL - . 22Cp,)17<m]] it suffices to
prove that for every p € (1,00), there exists 6, € (0,1) such that for every n > 2% and every
f=(f:1eN) e >z 6>(N)) n£P(Z4; £*(N)), one has

S 7" fller (za-e2 ) - (6.24)
£ (24)

(Z'TZ" ezd [Y,(1- M. 22Cﬂ’)77 ]]f‘|2)1/2

teN

Inequality (6.24), in view of Lemma 2.3 and Theorem 6.5, can be reduced to showing that for every
P € (1, 00), there exists §,, € (0, 1) such that

1T [, (1 = n._ 22Cpl)77<m]f||Ll’(Rd) 0| fllp may (6.25)
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holds for every n > 2*. By interpolation, it suffices to prove (6.25) for p = 2 and by Plancherel’s
theorem, this reduces to showing that

5, () (1= 15, (N (6)] 5 702
holds uniformly in ¢ for all n > 2%?. This follows from the deﬁnitiqn of k; and (6.11). .
Step 3. We now establish (6.20) with T [@Zgl r nz ~ 22Cp,77§m]] in place of Ta [@221 r ngm]]
Taking Q <; from property (iv), note that

c d
T30 (@5 0. el | = T2a[©0 1 YanZ eyl T2 [Oa [51]-

Using this factorization, it suffices to show that

ONACHEERI Y

teN

1/2
S W fllep za.e2 vy (6.26)
P (24)

and

12
(Z 01.1(Tza[0 110, Yan_pepllfiin e sz”l)z)
teN B N

sup sup
J€Z, 16y (Nypn;)

P (Z4) (6.27)

S S ller (zae2 ay) -

By Lemma 2.3 and Theorem 6.5, the bound (6.26) follows from

[Tea S £l o ety S 1FMLo e

which clearly holds for all p € [1, co]. To prove (6.27), we can use the sampling principle formulated in
Proposition 6.9 to reduce matters to proving

sup sup

S N Flle ®re2 oy - (6.28)
JeZi 1 EGJ (szkl )

172
Z Or1.5 (Tex [Y,]f, : n € Nyyw) )
teN

LP (RK)

To do this, we carefully choose the finite dimensional Banach spaces B and B; in Proposition 6.9 to
accommodate the oscillation semi-norm Oy ;. See the remark after Proposition 6.9.

Step 4. Let n be a smooth function with 1_; jj« <5 < 1_; 1« and set x,, (£) := n(77" o &) Using
conditions (6.10), (6.11), (6.12) and (6.13), we see that Theorem B in [22] implies

(3 1 = el P)

neN

S A llze ey (6.29)
LP (RK)

for 1 < p < oo since |Y,,(¢) — y_n(&)| < min(]7" o &|,|t" o &)%Y and both maximal functions
sup,,cp [Tk [Yn] ] and sup,, <y | Trk [x—-n] £ are both bounded on all L4 (R¥) for all 1 < ¢ < oo.
Using Lemma 2.3, we see that inequality (6.29) reduces (6.28) to proving

(Z Or,7(Tre xnlfiin € Z)2)1/2

LteN

sup sup
J €L, 1€6,; (N)

S W llee ko2 vy - (6.30)
LP (RK)

To prove (6.30), we note that for every m < n, we have

XmXn = Xm-
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We fix J € Z, and a sequence I € S;(N). Then

J-1 12
01y (T linl foine W) < (3 sup [T Lien = a1 i)

=0 Ij<n<ljy

J-1 172
sup [T DT Liry = 11,117

j:() Ij <n<1j+1

172
< (Zsup (SOn*'TRk[/\/IjH _le]fLD ) s
jen nez
where ¢, (x) = |Trr[xn](x)|. Using this estimate and the Fefferman-Stein vector-valued maximal
function estimate (see [57]), we conclude that
N 1/2
sup  sup ZOI,J(TR" [xulf. :n€Z) )
JeZi 1€6; (NI ey LP (RF)
N\ 1/2
< Sup (Zzsup (‘Pn*’TRk[XIjH _le]fti) )
1€G (NI ey jeN nez LP (RK)
2 1/2
<o s [0 D e by = a1 1) . (6.31)
18 M ey jen LP (RF)
As above, using Theorem B in [22], we see that for every p € (1, c0),
n1/2
sup (3 [T Lty = x1,1T) <p Il - (6.32)
res. ™ iy LP (RK)
Then invoking (6.32) and Lemma 2.3, we obtain
2 1/2
sup ||( " 3" [T Ly = 11,1 1) $p Ifller sy - (633)
16 M1 ey jen LP (RK)

Combining (6.31) with (6.33), we obtain the desired claim in (6.30), and this completes the proof of
Theorem 6.14. o

6.3. Multi-parameter semi-norm variant of Theorem 6.5

We will generalize Theorem 6.14 to the multi-parameter setting for a class of multipliers arising in our
question. We formulate our main result in the two-parameter setting, but all arguments are adaptable to
multi-parameter settings.

Let P € R[m;, m;] be a polynomial with deg P > 2 such that

POmi,mo) = > ey pm]'m), (6.34)
(71,72)€Sp

where ¢ (g,0) = 0. In addition, we assume that P is non-degenerate in the sense that Sp N (Z; x Zy) £ 0;
see the remark below Theorem 1.11. Let r € Z, be the number of vertices in the backwards Newton
diagram Np corresponding to the polynomial P from (6.34). For any vertex v; = (v 1,v;2) of Np, we
denote the associated monomial by

Pj (ml, mz) = C(Vj’l,vjyz)mrj’lm;jl. (635)
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From Section 4 (see Remark 4.5), we know that P/ is the main monomial in the sector S(j)
for j € [r].

We fix the lacunarity factor 7 > 1. Throughout this subsection, we allow all the implied constants to
depend on 7. For real numbers M1, M, > 1 and € € R, we consider the multiplier

| 1opl
My, (€) o= =] /Til /Ti] e(Ps(Myyy, Mays))dydy-, (6.36)

where recall P¢ € R[my, m;] is defined as Pg(my, my) = EP(my, my).
As an application of Theorem 6.14, we obtain the following two-parameter oscillation inequality.

Theorem 6.37. Let T > 1 be given and let (m};l’M2 : (M, M,) € Dy X D;) be the two-parameter
sequence of multipliers from (6.36) corresponding to the polynomial P from (6.34). Let r € Z, be the
number of vertices in the backwards Newton diagram Np. For every p € (0,1) and p € (1, o) and any
j € [r], there exists an absolute constant 0 < C = C(p, p, 7, j, P) < co such that for every integers
leNandm < —10Cp22pl and for every f = (f, : 1 € N) € €P(Z; €*(N)), one has

» 12
ZOI,J(TZ[G)Zg My, s, 1<m] | fo 2 (M1, My) € S2())) )
teN

sup sup
JeZ, 1€6;(S:()))

tr(Z) (6.38)
< CU+ D fNler z:e2 vy

with Os_, defined in (06.7). In particular, (6.38) also implies the maximal estimate

< C(L+ DI fller z:e2 ) -
P (Z)

12
(Z Sup iTZ [6231 [mzl,Manm]]fL|2)
ren (M1,M3) €Sz (j)

Some remarks about Theorem 6.37 are in order.

1. Theorem 6.37 is the simplest instance of a multi-parameter oscillation variant of the Ionescu—Wainger
theorem [34]. More general variants of Theorem 6.37 can be also proved. For instance, an analogue
of Theorem 6.37 for the following multipliers

1 pl
mZ],M2(€1,§2,§3)=/0 /0 e(E1(Miy1) + & (Mayz) + E3P(Miy1, Mays))dyidy>

can be established using the methods of the paper. However, this goes beyond the scope of this paper
and will be discussed in the future.

2. In contrast to the one-parameter theory, it is not clear whether multi-parameter r-variational or jump
counterparts of Theorem 6.37 are available. As far as we know, it is not even clear if there are useful
multi-parameter definitions of r-variational or jump semi-norms. From this point of view, the multi-
parameter oscillation semi-norm is an invaluable tool allowing us to handle pointwise convergence
problems in the multi-parameter setting.

3. A careful inspection of the proof allows us to establish an analogue of Theorem 6.37 in the continuous
setting. Namely, for every p € (1, o), there is a constant C > 0 such that for every f = (f, : ¢t €
N) € L?(R; £2(N)), one has

ZOI,J (Telmyy, a1 S0 : (My, Mp) € Sr(j))z)l/z
teN

sup sup

< ClfllLe mee2 vy -
JE€Z, 1€6;(S<(j))

LP(R)

Proof of Theorem 6.37. We will only prove Theorem 6.37 for j =r =1lorforl < j <r withr > 2.
The same argument can be used to prove the case for j = r. In view of (2.17), it suffices to prove (6.38).
We divide the proof into two steps to make the argument clearer.
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Step 1. We prove that for every p € (1, 0) and every f = (f, : t € N) € £P(Z; £*(N)), one has

< W fller z:e2 ) -
r ()

H( Z Z|TZ[®ESI[(mIZI,M2 _mlj\‘;l,Mz)nSm]]sz)l/z

(M, M>) €S (j) teN

Using (4.14) and (4.15), it suffices to prove that for every p € (1, ), there is o; , € (0, 1) such that
forevery N € N, i € [2] and every f = (f, : t € N) € £P(Z; (*(N)), one has

|2)l/2

H( Z Z'TZ[G)ZSI[(mﬁh,Mz _mlf/lj;,Mz)nSm]]fL

(M,M) €SV (j) teN

< 77PN fligw ze2 oy -
tr(Z)

(6.39)

We only prove (6.39) for i = 1, as the proof for i = 2 is the same. By the construction of the sets SITV, ()

(see definition (4.15)), the problem becomes a one-parameter problem. Indeed, if (M}, M>) € SIT"’ ()5
then (M, M») = (7™, 7™) and

n N
(n1,n2) = ij,l + Z(wj +wj_1) forsome neZ,.
J j

Defining (n%,n}) := dﬁjwj_l + dﬂj(wj +wj_y) for any k € Z,, inequality (6.39) can be written as

1/2 o
ST 7PN fller o2y -
7 (2)

( Z Z |TZ [9231[(mpn{< né‘ - mf,:{c T,,g)’ls;n]]ft\z)

k€Z, 1eN T

By Lemma 2.3 and Theorem 6.5, it suffices to prove that for every p € (1, ), there is oj , € (0, 1)
such that for every N € N and f € LP(R), one has

sup D ede[m”, —mPL ]f <N fllr @) (6.40)
(ex:k€Z,)€{0,1}2+ kez, ER I i) E R I i) LP (R)
By (6.34), (6.35) and Lemma 4.10, we obtain
PGy T2y~ Py )l € DL eyt

(y1,72)€Sp\{v;}
< ( sup |CV|)T(n]’”2)'Vj Z T(nl,n2)~(v—vj)
veSp veSp\ (v}

< #Sp(sup |Cv|)T("1’"2)"’f7-_‘TfN
veSp

whenever |y1], [y2| < 1, with 7; > 0 defined in (4.11). Consequently, we have

m? @ —mP (@) sp TN (2 Vi g (6.41)
2 2

nk n
T1l,7 T 1,7

Moreover, by van der Corput’s lemma (Proposition 2.6), we can find a ¢ € (0, 1) such that

n

|mPk
1

j T
SO =mh @) sp (V) (6.42)
T

,T
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for sufficiently large N € N. A convex combination of (6.41) and (6.42) gives

m? (@ —mP (@) <p v TN min {01 g%, (Vi) TRY, (6.43)
L, T2

T” Tnz Tnl

for some 6, 0'; € (0,1).
Using (6.43) and Plancherel’s theorem, we obtain (6.40) for p = 2. Standard Littlewood—Paley theory

arguments (see, for example, Theorem D in [22]) allows us then to obtain (6.40) for all p € (1, o).
Step 2. The argument from the first step allows us to reduce matters to proving

_ 12
ZOI,J(TZ (O, [my; ap<ml | fo 2 (M1, M) € Di)z)
teN

sup  sup
J€Zs [ €&y (D2)

tr(Z)
< L+ DS ller z:e2 auy)-

We define a new one-parameter multiplier
P 1 ! ! Vil Vj2
S (f) = (1 _ 7‘1)2 » . e(C(Vj,l,Vj,z)M‘fyl Yy )dyldy2~
T T

Observe that by Theorem 6.14, we obtain

, 12
201,1 (T2[®s., [mﬁ,MﬂSm]]ft s (M, My) € DQT)2)
teN

sup  sup
JEZi €5y (D2)

tP(Z)

. 172
(Z 01,5 (T2 [nglgﬁ,nﬁm]ft ‘M e D‘r)2)
teN

< sup sup
J€Z, 16 (Dy)

< L+ DS ller z:e2 auy)-
tr(Z)

This completes the proof of the theorem. O

7. Two-parameter circle method: Proof of Theorem 4.16

Throughout this section, 7 > 1 is fixed, and we allow all the implied constants to depend on 7. Let
P € Z[m|,my] be a polynomial obeying P(0,0) = 0, which is non-degenerate in the sense that
Sp N (Zy X Zy) # 0; see (1.14). For every real number N > 1, define

1

= —]l —
X (%) (NN nZ] NN

1(x), xeR.

For every real number M|, M, > 1 and ¢ € R, we consider the multiplier

ma (€)= Y > e(Pe(mi,m))xaa, (m1)xar, (m2),

m| €EZ my€el

with Pg(my, myp) = EP(my, my). The corresponding partial multipliers are defined by

My a, (€) 1= Z e(Pg(my,m2)) xm,(m2), my € Z,

my ez

M,y (€) 1= Z e(Pg(mi1,m2)) xm, (mi), my € Z.

m| €L

(7.1)
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We fix further notation and terminology. For functions G : QNT — C, m : T — C, a finite set
X cQNT,anyn € Zand any ¢ € T, we define the following 1-periodic multiplier:

©Z,[G.m](6) = Y. Gla/g)m(é —alq)nzn(é - alq). (1.2)

alqex

In a similar way, for any [ € N, n € Z, any ¢ € T, we define the following projection multipliers
(recall the definition of £<; := X!, from (6.3))

A <n(€) = Z N<n(€ —alq), and <1 <n(§) =1-Aq <n(é).

alqeXyq

All these multipliers will be applied with different choices of parameters. For 8 > 0, M|, M, M > 0,
N >0,and v = (vi,v,) € Z2, we define

1 (M) :=log, ((log, M)P), and s, v, (N) = 10gy (M M) = N. (7.3)
Using (7.3), we also set
nM| Mz(M) - nM Mz(lﬁ(M)) - IOgZ(MV] MV2 (logT ) ﬁ) (74)

Definitions (7.3) and (7.4) will be applied with v € Z? being a vertex of the backwards Newton diagram
Np. In this section, we shall abbreviate mill M, 1O

| 1 el
M m, (€) = m/_l /_] e(Ps(Myy1, Mayy,))dydy, £eR

We also define the following two partial multipliers:

1 1
M, (€) = 1—_1/ e(Pgs(my, Mays))dys, € €R, my €Z,
T (1.5)

1 1
mlzvll’mz(f) = m‘/ 1 e(Pg(Myy1,ma))dyi, EeR, myeZ.
-

Our main result of this section is Theorem 7.6, which is a restatement of Theorem 4.16.

Theorem 7.6. Let r € Z, be the number of vertices in the backwards Newton diagram Np. Then for
every p € (1,00) and j € [r] and for every f € €P(Z), one has

sup  sup |07 s (Tz[mumy 1 f 2 (My, M2) € Sz () lerzy Sp.e 1 fller z)- (7.7)
JEZL 1€6;(Sc()))

The proof of Theorem 7.6 is divided into several steps. We apply iteratively the classical circle
method, taking into account the geometry of the backwards Newton diagram Np.

7.1. Preliminaries

The number of vertices » € Z, in the backwards Newton diagram Np is fixed. Let v; = (v 1,v;2)
denote the vertex of Np corresponding to j € [r].

It suffices to establish inequality (7.7) for j = r = 1 assuming additionally that log M| < log M;
when (M, M) € S;(1), or for any r > 2 and any 1 < j < r. Both cases ensure that

log M, < logM, whenever (M, M;) € S:(j), (7.8)
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which means that M; < MZK 7 for some K j > 0; see Remark 4.5. The case when j = r with 7 > 2 can be
proved in much the same way, with the difference that log My > log M, whenever (M, M>) € S, (r).
We only outline the most important changes, omitting the details, which can be easily adjusted using
the arguments below.

From now on, p € (1, ) is fixed and we let po € (1,2) be such that p € (po, p{). The proof will
involve several parameters that have to be suitably adjusted to p € (po, p())-

We begin by setting

1 1 11\
0, =|—-——||—=-=] €(0,1).
i (Po mm{p,p’})(po 2) D
We will take
@ > 1006, and B> 1000max {57!, (1 +deg P)’} (a + 1), (7.9)

where 8 € Z, plays the role of the parameter 8 € Z, from Proposition 5.37, and § € (0, 1) is the
parameter that arises in the complete sum estimates; see Proposition 5.46.

Finally, we need the parameter p > 0, introduced in the Ionescu—Wainger multiplier theorem (see
Theorem 6.5 as well as Theorem 6.14 and Theorem 6.37), to satisfy

1
—_— 7.10
pB < 1000 (7.10)
7.2. Minor arc estimates
We first establish the minor arcs estimates.
Claim 7.11. For every 1 < j < r and for every (M1, M>) € S;(j), one has
< - 2 )
7z [ma,,m,A¢ B (b)) Z(MZ)]f“[Z(Z) <7 (log M2)™ || flle2(z)» fet(2), (7.12)

with a as in (7.9). The same estimate holds when j =r = 1, as long as log My < log M.

The case j = r > 2 requires a minor modification. Keeping in mind that log M, < log M1, it suffices
to establish an analogue of (7.12). Namely, one has

T A <. (log M) , € %(Z).
1Tz [m a1, 1, <IB(M)<nM1M2(M)]f||€2(Z) « (log M)™ || flle2(z) feti(z)

Proof of Claim 7.11. Since log M| < log M3, one has log M oy ~ log M>, where M . was defined in
(5.36). We can also assume that M, is a large number. To prove (7.12), by Plancherel s theorem, it
suffices to show for every ¢ € T that

b OB (O1 5 o M) (7.13)

For this purpose, we use Dirichlet’s principle to find a rational fraction ag/qg such that (ag, gg) = 1 and

Vio nv.f'ﬁ (M* )
1 <qo<CM”"M,”" log(M:j)_B =2y Mr ) and

Vi1

’ ao < log(M* ')'B 1
a0~ qoCM"'M)’* ~ ¢}
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for a large constant C > 1 to be specified later. If g < log(M>)?, then ag/qo € Y8 (M, and
consequently the left-hand side of (7.13) vanishes (if C > 1 is large enough) and there is nothing
to prove. Thus, we can assume that log(M; )¥ < qo < M M, log(M; ;). We now can apply
Proposition 5.37 and obtain (7.13) as claimed. ]

7.3. Major arcs estimates
Recalling (7.2), we begin with a simple approximation formula.

Lemma 7.14. Suppose that 1 < j < r and (M1, M) € S;(j). Then for every 0 < 1,1’ < I3(M,) and
(M’,Mz’) € S¢(j)andm; = Ml’ such that 1 < Ml’ < M, and 2% < Mz’ < M>, one has

m] M'(g)A<l <— n M (l)(é:) S VJ

gy @)

[Ghas My a1 (©) + 0 (MY, (7.15)

where nM M (N), Gml, i Mo and mm M, Were defined respectively in (7.4), (5.45), (7.1) and (7.5).
In partlcular (7.15) lmmedlately yields

g OB (@) = 2, o, iy LG My g1 ) xaa; (1)
M miez MM (7.16)

+02%%" (Mp)™).
The same claims hold when j =r = 1, as long as log M| < log M5.

A similar conclusion holds when j = r > 2. Taking into account that log M» < log M| whenever
(M1, M) € S;(r) and assuming that 0 < [,I” < I3(M;), one has for every (M{,M;) € S¢(j) and
my = M} satisfying 262 < M{ < My and 1 < M] < M, that

Mty OB 2y s 1y () = @7 (Ghs My, 1(€) + 0 (MDY (7.17)

<- an M» (l')

In particular, (7.17) yields

M OA (@) = ) @ (G202, 1€ xnay(ma) + 025" (M),

<— ’
my€Z Ml Mz(l)

Proof of Lemma 7.14. For every a/q € X<, we note
e(Pg(mi,my)) = e(Pg_qjqg(my,gm+r2))e(Pyq(mi,r2)), (7.18)

whenever m; € Z, my = gm + r, and r; € Z,. Then, by (7.18), since g < 262 < M}, we have

q
Z e(Pg(mi,my)) xp;(m2) = Z e(Pajq(mi,r2)) Z e(Pg_ajq(mi,gm+712)) xpm;(gm +12).

my€Z r=1 mez

(7.19)

The summation in m ranges over m, < m < m.,, where m, /m.. is minimal/maximal with respect to
T‘le’ < gm+ry < MJ. We will use Lemma 2.7 to compare

My

the sum Z e(f(m)) to the integral / e(f(s))ds,

M <M <My .
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where f(m) = Pz_q/q(m1,qgm +r3)). Suppose that a/q € X; approximates £ in the following sense:

B
)5_ al _ (log, M>) (7.20)

q MM,
From the definition of X;, we see that g < 262", Therefore, by (7.20), the derivative f’ satisfies
|f"(m)| < qlé = a/ql(M])" (M)"i2~" < g(log, Ma)P M;" < 1/2

since v > 1,l0g, g < 201" (M2) < (log_ M,)PP and pB < 1/10 by (7.10). By Lemma 2.7, we have
M;

0 Y, ePeagmegnrr) - [ ey tmnd < a.

M;

My <M <M, 77

and hence by (7.19), we obtain

| " e(Petmi, mo)) g (m) - Gl (afgyml, (€~ a/g)| < (M),
mp €z
which by g < 26%" proves (7.15) as desired. O

Fori € [2] and j € [r] let M| = My, M5 = M|,
ST(j) == {M; € D, : (M1, M2) € S,(j) for some M}
and for M, M, € D, we also let

SL(ji My) :={M, € D, : (M}, Ma) € S-(j)},
S2(js M) :={Ms € Dy : (My, M2) € S,(j)}.

7.4. Changing scale estimates

In our next step, we will have to change the scale (or more precisely, we will truncate the size of
denominators of fractions in X ;s (p,)) to make the approximation estimates with respect to the first
variable possible.

We formulate the change of scale argument as follows.

Claim 7.21. For every 1 < j < r and for every M, € SL(j), one has

I sup Tzlgy a, = i a1l Se Gog M)W f @), feE@),  (722)
M €Sz (jsMy)

with a as in (7.9), where

N
= >
ng,Mz . mM]’M2A<lﬁ(N) < an MZ(N) N > 1,

Z<
Do [Ghamh aEx (m), N2 1

my €Z <= an Mz(N)

(7.23)

M] M, (6)

The same estimate holds when j = r =1, as long as log M| < log M>.
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The case j = r > 2 requires a minor modification. Keeping in mind that log M> < log M, it suffices
to establish an analogue of (7.22). Namely, for every M, € S2(j), one has

I sup |Tzley 4 = Maran ) Flllez) S (0g Ma) ™| flle2z)- (7.24)
M, €Sk (j;My)

We only present the proof of (7.22); inequality (7.24) can be proved in a similar way.

Proof of Claim 7.21. The proof will proceed in several steps.
Step 1. Using (7.16) from Lemma 7.14, we have

-1/2
IT2Lg0p ag, = Byi ar ) Flleazy <o M5 P11 flleaz) - (7.25)
Hence, by (7.25), it suffices to prove (with @ as in (7.9)) that for every M| € Sl (7), one has

I sup AT v, = gl s )l Se (og MO I ey, f € 6(Z). (7.26)
M, €Sz (ji:My)

Step 2. To prove (7.26), we define for any s € N a new multiplier by

s (8) 1= ) D™ [G g M, aa, 1 (€)xr, (). (7.27)

m €Z <= M1 Mz(N)

In view of (7.8), we may assume that [#(M;) < [#(M,). Then one can write

Wypoan € =g (©) = Y (M () =y )+ D (6.

0<s<IP (M) 1B (M) <s<IP (My)

For sufficiently large s € N, if /8(M;) > s, then by (7.8) we have logT M2 > K;'25F > 28/0F),
Similarly, if #(M,) > s, then log. Ms > 25/A)_Thus, we set Ny := 72 for any s € N and let

§ w, (ss) = {Ma € ST(j; M1) - My = Ny}

The proof will be finished if we can show (with @ and & as in (7.9)) that for every f € ¢?(Z) and for
every M, € SL(j),and 0 < s < I#(M;), one has

I sup |TZ[hMI Mys h%i,Mz,s]ﬂ”f?(Z) S+ 27% (log M)~ || fll 22y (7.28)
M2€SZT,M1 D)

and moreover, for every s € N, one also has

I sup (Tzliyg 4 )l Se 527 flle)- (7.29)
M, ESZT,MI (J:s)

Then summing (7.29) over s > I# (M), we obtain the desired claim by (7.9).
Step 3. We now establish (7.28). If N € {M, M} and (M, M;) € S:(j), then for M, > Ny, we

note that
”s_n;;sz(N)(f) =Tt \(Em__ (N)H(f) 0,
= MZ(N)(f)n 7 vt €
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since 1 < j <randv;, # 0. Using (7.30), we may write

X
@ [GL,m) 4 106)
S Ml MZ(N)
D™ (1,m] 1(6) x @™ (G, 11(£) 70
= =8 o ,m Vi, X v ) ’
S—n,‘v’lst (Ng)+2 ml’MZTIS*"A;fMZ(N) A,J,;ﬁN (No+1

for sufficiently large s such that 0 < s < I# (M), which in turn guarantees that M, > N, as we have
seen in the previous step. Denote

18 (My)-1
I(my, M) := Ty | @™ [1, m) n ] ,
S*"Ivjlst (Ns)+2 N:;M]) .m0 ( = nM] M, (N))
where (see definitions (7.3) and (7.4))
Dy (n_ g M2(N)) Thaony o) T Mg ()

Using the factorization from (7.31), one sees

” ~Sllp |TZ[hM Ma,s hM M, M, S]fl”fz(Z)
MZeSZT,MI (j3s)
s 1
< Z ||1(m1,M2)||52(z)_>z2(z (SZM (s s)))XMl(ml)HTZ[(D [Gml’ 1]]f 202
o= v N (Ng)+1 (Z)

Using the Ionescu—Wainger multiplier theory (see Theorem 6.5), we conclude that

sup ||I(m1aM2)||[2(Z)—>f2(Z(’ (is)) St (log M)~

o (52
mi ("M, M\ |NZ My My

with @ as in (7.9), since using standard square function continuous arguments we have

18 (M>)-1 12
”( Z | R[ Z M 2, DN (1,0 - (N) ]f| ) < (log M) ™Il fllL2wy -
Mye§2 o, (T58) N=IF (M) L2(R)

Thus, by the Cauchy—Schwarz inequality, Plancherel’s theorem and inequality (5.48), we obtain

I sup AT2liyg ag s = Bagt g o) Fllle2)
Mzesi,Ml (J3s)
< (log My)™® ( (m))|T: [q> * (G, 1]] IQ)U2
og My Z:)(M1 my)|iz ; (Nl mp» f 22

m|€Z

< 27%(log M) NI fll2 (2

with @ and ¢ as in (7.9), which yields (7.28).
Step 4. We now establish (7.29). Using notation from the previous step and denoting

o— ZSS 1
T(my, M) =Tz | %, [1’mml’MZUSnJZsz(Mz))]]’

S_nnfjl;,Ns (Ng)+2
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and again using the factorization from (7.31), one sees

I sup |TZ[hM1 Mo, ‘]f|||f2(Z) < Z ||J(m1,M2)||52(z)_>52(z(°° (& o, U S)))XMl(ml)
M2€S3,M] (J3s) my €Z

x||rz[o™ (G, 111£

<-npN (Ns) +1
Using the Ionescu—Wainger multiplier theory (see Theorem 6.14), we conclude that

2 (2)

sup ”J(mlyMZ)”gZ(Z)_)gz(Z (S o (55)) <: S
mye(r'M,M,|NZ .M

Then proceeding as in the previous step, we obtain (7.29). This completes the proof of Claim 7.21. O

7.5. Transition estimates

Our aim will be to understand the final approximation, which will allow us to apply the oscillation
Ionescu—Wainger theory (see Theorem 6.37) from Section 6.

Claim 7.32. For every 1 < j < r and for every My € S.(j), one has

” S;‘lp |TZ [h%: M, Ml Mz]fH’[’z(Z) ST (IOg M]) (I”f”fZ(Z)’ f € fz(z)’ (733)
My €Sz (j3My)

with « as in (7.9), where hln\fll,Mz was defined in (7.23) and

- T
hyg s, =@ *’ﬁi’f; N (G, Mt ] N> 1. (7.34)

__ansz
The same estimate holds when j =r =1, as long as log M1 < log M.

The case j = r > 2 requires a minor modification. Keeping in mind that log M> < log M|, it suffices
to establish an analogue of (7.33). Namely, one has

sup  |Tzlligt ag, = gt s ) Pl zy S0 Qog M)W fllpzys  feC(@). (139
M, €8} (j;My)

We only present the proof of (7.33); inequality (7.35) can be proved in a similar way.

Proof of Claim 7.32. The proof will proceed in several steps as before. Write

M M M M
hM; M, hM: M2 Z hM; Mj,s hMi Mj,s’
0<s<IB(M;)
where h%: M,.s Was defined in (7.27) and
Ryt gy s = @ (G a1, 0,1 (7.36)

S—nx;;sz(Ml)
Then it suffices to show that for sufficiently large s such that 0 < s < I8(M;), we have
sup |TZ[hM1 My,s hMl M, M,, s]f”lfz(Z) ST s27 6Y(10g Ml) Q”f”fz(Z)’ f € fZ(Z)»

M, eS%(j:My)
(7.37)

with @ and ¢ as in (7.9), which will clearly imply (7.33).
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Step 1. Using (7.30), in a similar way as in (7.31), we may write

M

Vi
<- M]N(S+ S=nyp ng (Ns)+

where

li Mz(é:) =My, Mz(é:)n n (M, )(é:)

< Mle

By Theorem 6.14, we may conclude

Z<X
7=l
gy (N5)42

<t S.

1|
Womansnd |l e, @ g

By Plancherel’s theorem and inequality (5.47), we obtain

”TZ [cbfs -, G, 1]]f <2 27 fll2 ) -

< (N e

Inequalities (7.40) and (7.41) and (7.38) imply

“ sup |TZ [E%:’Mz’s]fmng) St S2_6S||f||{’2(Z)’ f € 52(2)

My €S2 (j;M)

Step 2. We now establish (7.37). For 0 < s < I# (M), we note that

Maans &= D0 1 ws (6= alq) Z Gy, (a/q)
alqeZs ri=1
x Z m:;m,m,MQ(f —a/q)xm, (gmy +r7).
m|€Z

, one can expand

Introducing 6 := & —a/q, Uy = % and V| = M]q !

| 1
Mty (0) = T /rl e(Po(gmy +r1, Mays))dys,

and by the fundamental theorem of calculus, one can write

LU J<m <[ V1]

LU1J<m1 <vil

n (/ / / e(Po(gy1 + 11, Mays))dydy;.
LUy Vi

By the change of variable, we have

Vi 1 M (1= T_l 2
/ / e(Pa(gy1 +r1. May2))dyady, = M =T )
U, 71 q
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/ 1 e(Pg(gmi +ri, Myys))dys —/ / 1 e(Po(qy1 +r1, Mays))dy,dy:
. v Je-

Mg, 0, (0).
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(7.38)

(7.39)

(7.40)

(7.41)

(7.42)

m)
/ / / 2migh(01P)(qt + 11, May2)e(Pg(qt + 11, Mays))dy,dtdy;
m—1Jy,
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We now define new multipliers

gt (0)

_ /ml /m‘ /1 27”0(104‘%1‘/11)‘;(511'3)(@+71,M2y2)e(1"9(61t+rl,szz))dyzdtdy1
LU J<m < V1] mi=1Jy ! (1 _T_])MI)NM;JQ'(T_]MLMl] nZ|

and finally

1
"2 — e(Po(gy1 +ri, May2)) dvod
A (/ /m o (=D (-1 My, My nZ] 2P

Then with these definitions, we can write

q
Iy s ) =B () = eI (©+ DD Gl (ala)byy (&~ alq).

te(2] a/qexs n=1

(M} —{v"'M,}

ez 2nd

where yr p, =

Dy ar, (8) = Gy, (B0 (6) and by, (0) =gy, @On_ (0)

v, (M) (M)

M],Mz
and 0<,(0) := (27"0)n<n(0). For £ € [2], we have
B3 3, (O] < glog MPMT and Jyeoun | < M7

M\, M,

Finally, using Theorem 6.14 for each ¢ € [2], we conclude

—65 yq0-3/4
$27%M, / I flle2(z) -

sup [Tz| DD ZGrl(a/q)b;;sz('—a/q)
H |

M, €S%(j3M)) Ce[2] a/qexs ri=

This in turn, combined with (7.42), implies (7.37), and the proof of Claim 7.32 is established. O

7.6. All together: Proof of Theorem 7.6
We begin with a useful auxiliary lemma.

Lemma 7.43. For every p € (1,00) and every j € [r], there exists a constant §,, € (0, 1) such that for
every f € P (Z) and s € N, one has

(AL [G.11¢]] f|

Ns.Ns (Ng)+1

er(z) SpoT 27| fller (2) (7.44)

2/(ﬁ)

where Ng forany s € N, and Hf(f) = [uesp . s L (&) with B > 0 from (7.9).

ng (Ns)+

Proof. We may assume that s > 0 is large; otherwise, there is nothlng to prove. Inequality (7.44) for
p = 2 with §, = ¢ as in Proposition 5.46 follows by Plancherel’s theorem from inequality (5.47) and the
disjointness of supports of H'f (¢ —a/q) whenever a/q € Z;.

We now prove (7.44) for p # 2. We shall proceed in four steps.

Step 1. Let M =~ 210C,2"" gefine

=m o> 1II ).
D MMP s (N)+1[ s
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By the Ionescu—Wainger multiplier theorem (see Theorem 6.5), one has

1Tz (03,1 f llew z) Sue 1 f llew(z)s (7.45)

whenever u € {po, p}. We will prove

s s B
2oy @™ e (G ] fll ) Spor Ifller @) (7.46)

== Nx,Ns( s)

and

72| @™ v NG = a) T fllpp 2 Spe 1 llev 2 (7.47)

Assuming momentarily that (7.46) and (7.47) hold, then (7.45) and the triangle inequality yield

[T e [G. 1] fllpe 2y e 1Nl 2y (7.48)
= N N s

whenever u € {py, p(')}. Then interpolation between (7.44) for p = 2 (that we have shown with > = ¢)
and (7.48) gives (7.44) for all p € (1, c0).
Step 2. We now establish (7.46). For p = 2, it will suffice to show that

_ S5ps
Ima ()™, [1,TIF](¢) - 0> [G.mu T ](6)] £ 27557 (749)
S_nNs,Ns s )+ S_nNs,Ns Ng)+1
Then by (7.49) and Plancherel’s theorem, we obtain for sufficiently large s € N that
_ S5ps
172 (b3 - @ ot 1€ e TG fll 2z S 2792 1z - (7.50)
= N; N s
Moreover, for u € {po, p(’)}, we have the trivial estimate
S _ s B 2C,2°%
72l =07 o G ey Sur P9 WSl Y
due to (6.4). Interpolating (7.50) and (7.51) gives (7.46).
Step 3. To prove (7.49), we proceed as in the proof of Lemma 7.14 and show that
Img v (€) = Galg)mp m (€ —a/g)l < gM~", (7.52)

whenever a/q € X and |¢ — a/q| < min,es,{(log, N5)PN;"' N;**}. Then (7.52) immediately gives
(7.49), since g < ZCP2 if a/q € 2. To verify (7.52), we use Lemma 2.7 twice, which can be applied,
since the derivatives Oy, f and 0,,,, f of f(m1,m2) = Pg_q1q(gmy + 11, gmy + r2) satisfy

|0, f (m1,m2)| 5 qlé —alql Y M“*7! < glog, NO)PN;' < 172, €e 2]

ueSp

for sufficiently large s € N, since M < N1, g < 262" and pB < 1/10 by (7.10), and we are done.
Step 4. We now establish (7.47). Assume that p = 2 and observe that

(1= (€ = a/ @) (€ - a/g)| < 1€ —a/q] ) M“*e g NJI* g 0710627

ueSp
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for sufficiently large s € N, since M =~ 210Cp210ps, and pB < 1/1000. Using this bound and Plancherel’s
theorem, we see that

|7z[0> |, G, (1 =y )T Fll 2 ) S 2792 W flleacz). (7.53)

S_nl\{v’,Ns (Ng)+1

Moreover, by (6.4), for u € {py, p(’)}, we have the trivial estimate

[ [cbzs o O M )Tl 2y Sue 297 1 llen 2. (7.54)

Interpolation between (7.53) and (7.54) yields (7.47), and the proof of Lemma 7.43 is complete. |

Recalling the definition of ﬁ%i M from (7.34), we now prove the following claim:

Claim 7.55. For every p € (1,00) and every 1 < j < r and for every f € P (Z), one has

sup sup 1104y (Balliyg \p 1f 2 (M1, M) € S () ler (@) Spoe 1 llew 2. (7:56)
J€Z, 1€6,(8:()))

The same estimate holds when j =r = 1, as long as log M| < log M.

When j =r > 2, in view of (7.35), we will be able to reduce the problem to the following:

sup  sup ||01,J(TZ[71%T,MZ]J" D (My, Ma) € Sc(j)lerz) Sp.e Ifller z)- (7.57)
JEZL 1€6; (S ()))

We will only prove (7.56); the proof of (7.57) will follow in a similar way. We omit details.

Proof of Claim 7.55. The proof will consist of two steps to make the argument clear.
Step 1. Similarly as in Claim 7.21, we define Ny := 7 P for any s € N and introduce

St(j,5) = {(M1,M>) € S¢(j) : My > Ny}.

For each (M, M>) € S;(j), we have M,”' M)’ > M|" M}® for every u = (u1,u2) € Sp. Hence,

nSMMWgaﬂQMMM“@[]mn oy ©
o | nese (7.58)
=1 &1 (&)

vi-B
5_”1\41,1\42(1"11)

holds for sufficiently large s € N so that 0 < s < I8(M), Where H was defined in Lemma 7.43.
The proof of (7.56) will be completed if we show (with A M Mas defined in (7.36)) that for every
p € (1,00), there is 6, € (0, 1) such that for all f € £P(Z), we have

sup sup ||OI,J(TZ[h%i sy ) (M1, M) € 823G, ) ler(z) <pe 527 fller 2y (7.59)
JE€Zi 1€6,(8:(j.5))

Using My, ps, from (7.39) and (7.58), we may write

Rt agy 5 (€) = @ IRTA GRS [G.TI71(8). (7.60)

<—nN Ns (Nv <- N N< v)

By Lemma 7.43, for sufficiently large s € N, we have

2]

1G.T1) llyo 2 Spoe 27 1f ller 2 - (7.61)
—_NN(N)
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Using factorization (7.60) and (7.61), it suffices to prove that

sup  sup |0y, (5[0

o (L s 0] f 2 (M1, Ma) € S2(j,9)ller (z)
J€Zs 1€, (5+(j,5)) Songg g (Ns)+2

Spor Sl fller z)

which will readily imply (7.59).
Step 2. Appealing to the Ionescu—Wainger multiplier theory (see Theorem 6.37) for oscillation semi-
norms developed in the previous section, we see that

2<§ & .
sup sup 01, (Tz[® [Lmay an]lf : (M, Ma) € S(j, ) ler (2
JEL: 18y (8¢ (j.s)) <y, (No)+2

Sp.r SIfller (z)-

Hence, the last inequality from the previous step will be proved if we establish
sup sup |0y, J(TZ[q)E<v » (1, 8ar, 011 f 2 (My, M) € S:(j, ) ller 2)
JELr 168, (5:(/.9)) Sy, g (No)+2
Sp.e 1 fller 2y, (7.62)

with §ar, M, = Mar, M, — M, m,- By the van der Corput estimate (Proposition 2.6) for maz, a,, there
exists 6 > O (in fact, 5o ~ (deg P)~') such that

980101 (E)] = IMar ary ()1 =1 __ o, (€D] < min (log M), (M) M, €)=}

for (M1, M) € S.(j), since

I1-n (&) < min{1, M| M, |¢]}.

S-"E{f?Mz (My)
Then by Plancherel’s theorem combined with a simple interpolation and Theorem 6.5, we conclude that
for every p € (1, 00), there is @, > 10 such that for every f € £7(Z), one has

3 e e

< N2 Sp.r (log M) ™| fller (z)»
MoeE2(jiM)) <oy (N

P (Z)

completing the proof of (7.62). O

Proof of Theorem 7.6. We fix 1 < j < r as before. To prove (7.7), in view of (7.56) and (2.12), it
suffices to show that

M
DUl s ITzlmam - Ry 1]
Miest()) My€S3(j;Mh)

ez Spox | fller (). (7.63)

For u € {po, py} by the one-parameter theory, which produces bounds independent of the coeflicients
of the underlying polynomials (see, for instance, [52, 47]), we may conclude

sup || sup |Tzlmat, vao) flll e 2y Sue I1F Nz (7.64)
MieZ, MyeZy

and by (2.17) combined with (7.56), we also have

sup || sup |Tz[hMl M, M, fl”[u(z) Sur 1fllew(z)- (7.65)
My €SE(j) MaeS(j;My)
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On the one hand, combining (7.64) and (7.65), we deduce that

| sup  |Tzlmay M, — B%i,MZ]ﬂHfu(z) Su,e I fllew(z)- (7.66)
MeSZ(j;M))

On the other hand, inequalities (7.12), (7.22) and (7.33) imply for every M, € SIT( Jj) that

H sup |TZ[mM1,M2 - ﬁ%i,Mz]f”L’z(Z) St (IOg Ml)_a”f”(,’z(Z) (7.67)
M, €S2 (j;M))

with the parameter @ > 0 as in (7.9). Simple interpolation between (7.66) and (7.67) yields (7.63), and
this completes the proof of Theorem 7.6. O
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