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Diffraction of planetary waves
by a semi-infinite plate

P.F. Siew and D.G. Hurley

In this paper the diffraction of a planetary wave by a

semi-infinite plate of arbitrary inclination is investigated

using a 3-plane approximation. The Wiener-Hopf technique is

used to obtain an integral representation of the solution and an

asymptotic description of the diffracted wave is obtained by the

method of steepest descent.

1. Introduction

This paper is concerned with the planetary waves that can occur in a

thin layer of fluid on the surface of a rotating sphere. These waves are

of interest both because of their applications in meteorology and

oceanography and in their own right as an example of anisotropic waves.

Anisotropic waves can exhibit properties that are quite different from

those of the more well-known isotropic waves such as light waves and sound

waves , and it is highly desirable that for each type of wave there should

be available an appreciable number of solutions that display their

properties. An example of the need for such solutions is provided by the

work of Robinson [7] and [£] and Hurley [7] who investigated the

diffraction of internal gravity waves and obtained some quite unexpected

results.

Many of the properties of planetary waves have been established by
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Longuet-Higgins in a notable series of papers [3], [4], [5], [6], but

problems in which diffraction is important do not appear to have been

considered. In the present paper, the simplest such problem is considered,

namely the diffraction of planetary waves by a half-plane.

2. Basic equations

Consider a thin layer of liquid of uniform depth h on the surface of

a sphere that is rotating with angular velocity fi about a diameter.

Longuet-Higgins [5] has shown that the well-known B-plane approximation

holds for planetary waves in the liquid provided that their absolute wave

number n is large. In this case, [6], the velocity components are nearly

geostrophic and a stream function

exists such that

« > « - * • • • - £ •

Here (x, y) are rectangular co-ordinates with x increasing to the east

and y to the north, (u, u) are the corresponding velocity components,

5 the surface elevation assumed small, g the acceleration due to gravity

and / = 2ftsinX the Coriolis parameter where X is the latitude. The

function if satisfies the equation

(3) i^r (v2-a2) + B -r-H = 0 ,

, 32 32 , f2

where Vz = + , a = ""-r , and it has been assumed that
3z2 3y2 gh

f = fo + By ,

where /g an<^ ̂  a r e constants.

If — r — is small, where L is the wave length, (3) reduces to

(h) ;£ V2^ + B U = 0 ,

in which case the planetary waves are referred to as being divergenceless.

The condition that the plane wave
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(5) y = e

should satisfy (3) yields the dispersion relation

(6) (Z+Y)2 + m2 = Y 2 - a2 ,

g
where Y = ~ZZ • The wave-number locus is a circle, centre

shown in Figure 1.

(-Y, 0) , as

Figure 1. Wave-number locus as defined by equation (6).

Waves whose wave number vectors OW lie on the arc TBT' are called

planetary waves [5] and their group velocity is in the direction WC .

3. Formulation of the problem

Suppose that there is a semi-infinite impermeable plate inclined at an

angle a (-IT < a < IT) to the Oy axis as shown in Figure 2 on page lU8.

In terms of rectangular axes 0X1 with 01 along the barrier, the

equations corresponding to (2) and (3) are

I n ~ $$L v ~ "ty
3Y ' ~~ — <IX

and

(8) Ji\•dxz ar2
e c o s a | | - B s i n a
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where (U, V) are the velocity components in the X and Y directions

respectively.

(9)

where

(10)

Figure 2. Notations.

Let the total stream function he

-iat

J = e
iKcos{B-a)X+iKsin(Q-a)Y

represents the incident wave whose wave number vector has magnitude K and

is inclined at an angle 9 to the Ox axis. Figure 1 shows that 6 must

satisfy the re la t ion 90 < 9 < 2TT-60 where 8Q = IT - arcsin

I t follows from (8) that

, . 32iii 32U) , , 3tLp 3ii
(11) — r + — r - ar<Jj + 2tycosct •& - 2^Ysina -rz = 0 .

On the plate the total normal velocity must vanish so that

(12) H (0, J) = - -KJ- = -iKsinte-cOe1"*3 "" , Y > 0 .

Also, <C must satisfy the Sommerfeld radiation condition, and the
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singularities of rrp and -rt at the origin must be no worse than i?

1
where R = U2+y2)2 and 6 > -1 .

4. Method of solution

Let

(13) ~ty(X, X) = -̂ - 4>{X, Y)eL YdY

be the Fourier transform of ^ with respect to Y . Applying (13) to (11)

gives

• + -i2Ycos(X TT^ — (X = 0 ,

so that

(lit) ${X, X) = A(\)exv<,-iYcosaX-/(\+Ysina)2-b2\x\\ ,

• ) • > • } 341

where i> = Y - <zz and use has been made of the cont inui ty of -jrr and

hence of t|> a t X = 0 . Here the branch of /(X-Xj )(X-X2) , where

Xj = -ys ina + b and X2 = -Ysina - b , i s t ha t which i s r e a l pos i t i ve as

X •*• •»«> and Lighthi I I' s method [2] of pu t t ing

(15) a = a0 + i£ where 0 < e « 1

and then taking the limit £ •* 0 is used to determine the branch cuts.

The result is shown in Figure 3 on page 150.

To determine /1(X) in (lit) we introduce two functions, f{Y) and

g(Y) , by the equations

f/U) U < 0)
(16) |f (0, y) = ,

and

C (Y < 0)

(J) U > 0) ,
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where f-jr (0±, I) denotes the limit of f| (X, Y) as X •*• ±0
OA OA

eo-r

COT

(18)

Figure 3. Location of branch cuts.

Transforming (l6) and using (lU) gives

i#sin(8-ct)
Xyl(A) = if (X) +

where subscripts "+" denote a function regular for

ImX > e' - cos 6 where Y = Yo -

and "-" a function regular for ImX < ImX2

and the transform of (IT) give

(19) -2

(18) and (19) imply

(20) i?_(X) +

Writing
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X+Ksin(6-a)

\_A2-/-X2-&in(6-a)

X+#sin(9-a)

(20) gives, after rearrangement,

(21)
A-X2-/-X2-Xsin(9-a)

iiCsin(e-a)/-X2-Xsin(e-a)

= £(A) , say,

where £(X) is an entire function. Now the condition on the behaviour of

•jj and X near the origin (see end of §3) implies £(X) =

as X -*- <*> , so by the extended form of Liouville's Theorem,0 < q < 1

( ) is a polynomial of degree less than one, hence, a constant C , say.

(21), ( l8) , (lU) and the Fourier inversion formula give

(22) MX, Y) = — exp{-iYcosaX-Ax+Y$ina)2-b2\x\-iXy}

XA+ysina+b

2TT

f
> -a

exp{-iYcosay-/(X+Ysina)2-fe2UI-z:Xy}

XA+Ysina+i>[X+Xsin(6-a)]
dX ,

where the indentations along the ReX axis are below X = X2 and above

X = Xj, X = 0 and X = -#sin(9-a) , and the unknown constant C will be

determined in the next section.

5. Asymptotic behaviour of solution

The method of steepest descent is used to determine the behaviour of

(22) at large distances from the origin. Putting X = ifcosT and

X = i?sinT , it is found that each integrand in (22) has a single saddle

point at

(23) X = -Ysina + 2>sinT ,s
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and that the path of steepest descent through it is given by

(2l») v = - I (v+YsinoQsinT-fcH (y+Ysina)-fcsinT] ^

|COST | [(y+ysina-bsinT)2+fc2cos2T]2

where X = y + i\) .

This path crosses the ReX axis at X = X and
8

X = XQ = - Ysina . Figure k shows the integration path T and the

paths of steepest descent T , V*, and F* corresponding to sinx > 0 ,
8 S 0

sinx < 0 and sinT = 0 respectively for various values of sina .

Thus

( 2 5 )

where n = ' ' and ijj fi/j ) is the contribution from

(2>sinT-Ysina)/l+sinT

the pole at -Xsin(6-a) (0) and must be included if the point

-Xsin(e-a) (0) is crossed as V is deformed into T , V* or T* .
s s u

It may be shown that -Xsin(6-a) always lies between \1 and X2 ,

and hence UL is non-zero if
a

(26) -Jfein(6-a) < X ,
8

an inequality which is satisfied for the regions of the Oxy plane that

are denoted by I and II in Figure 5 on page 15**- Region II is the shadow

region bounded by the plate and the extension of the line VO which is in

the direction of the group velocity of the incident wave. In it 1/1 = -lji.
K 0

as expected.

In region I the residue calculation gives

(27) ^ = -exp{-i2Ycoscrf-iXcos(9-a)Z+iA:sin(e-a)Y} .
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Cc")

Figure 4. Paths of steepest descent for various values of sina . -»-

denote the path for sinx > 0 , - • - » • • - for sim = 0 and
- •*• - for sinT < 0 .

This represents a reflected wave with wave number vector as shown in Figure

6 and the boundary of region I is a ray from the origin in the direction of

the group velocity of this wave, again as expected.

Each of the integrands in (22) has a pole at X = 0 , so that typ is

non-zero when either

(38a)
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or

(28b)
sin80

sinT > — , Isinal > sin80
sina

Figure 5. The shadow region (II) and the region (I) in which the reflected
wave is found, the plate being along OY . The group velocity
of the incident wave is in the direction VO .

W

Figure 6. Wave number locus with OXY axes superimposed. OW and OW'
correspond to the incident and reflected wave number vectors.
PQ is parallel to OY . \0N\ = 2Ycosa + Xcos(B-a) is the
X-component of the wave number in the reflected wave.

When (28a) is satisfied,

(29a) = Dexp|-iYcosctf-iY>'cos2a-cos2e0|x| V ,
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, _ /fsinct+b-Ksin(8-a)-iJznC /„„ , . „ ,
where D = —' ^ —* . [29a 1 represents plane waves found

/ysina+fc

on both sides of the plate that have wave number vectors normal to the

plate irrespective of the direction of the incident wave.

When (28b) is satisfied,

(29b) i|ip = 0expW*
/cos2eo-cos

2a \x\ - -t

which represents edge waves, independent of the Y-direction but decaying

exponentially away from the barrier.

Now if, following Longuet-Higgins [5], it is assumed that the energy

flux in a wave is the product of its group velocity and the energy density

associated with it, then it can be shown that the incident and reflected

waves have energy fluxes equal in magnitude and equally inclined to, but

on either side of the normal to the plate. If it is also assumed that the

energy fluxes of two waves is the sum of that due to each, then the nett

energy flux of the incident and reflected waves in the direction of the

normal to the plate is zero. Since the group velocity of the wave

represented by (29a) is not parallel to the plate it will give rise to a

normal energy flux unless

(30) D = 0 , C = - ^Ysina+fc-*sin(6-al > _

Since the plate should not act as a source of energy it then follows that

C is determined by (30) when typ is given by (29a). It also seems likely

that C is determined by (30) when typ is given by (29b).

With the help of (30) we now obtain from (22):

i exp{-iYcosar-/U+vsina)2-b2UI-iXr}1 —T^^^^^
[X+fein(6-a) ] A+ysina+ii

with the property

(32) 1>(0, 7) = 0 , U > 0)

which is consistent with the boundary conditions imposed in Section 3.

https://doi.org/10.1017/S0004972700044348 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700044348


156 P.P. Siew and D.G. Hurley

(25) now gives that the diffracted wave is

(33) ,g

-i I COST I /ysina+b-Xsin (6-a)exp{-iRb [l+¥cos (a+T)] +iVf
= — 1 ° j ±L +

which together with the time dependence factor e represents waves

with hyperbolic crests moving towards the West, the Ox-axis being the

transverse axis of the hyperbolae. The result may be applicable to the

effect of a promontory on planetary waves in the ocean.

The corresponding result for the divergenceless case may be obtained

from the foregoing if we put a = 0 wherever it occurs. The asymptotic

form of the diffracted wave has crests which are parabolae rather than

hyperbolae.
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