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problems: application to deformable
microcapsules in a Stokes flow

Claire Dupont1, Florian De Vuyst2 and Anne-Virginie Salsac1,†
1Biomechanics and Bioengineering Laboratory (UMR 7338), Université de Technologie de Compiègne –
CNRS, 60203 Compiègne, France
2Laboratory of Applied Mathematics of Compiègne, Université de Technologie de Compiègne,
60203 Compiègne, France

(Received 11 April 2022; revised 23 November 2022; accepted 28 November 2022)

In this paper, we present a generic approach of a dynamical data-driven model-order
reduction technique for three-dimensional fluid–structure interaction problems. A
low-order continuous linear differential system is identified from snapshot solutions
of a high-fidelity solver. The reduced-order model uses different ingredients, such as
proper orthogonal decomposition, dynamic mode decomposition and Tikhonov-based
robust identification techniques. An interpolation method is used to predict the capsule
dynamics for any values of the governing non-dimensional parameters that are not in the
training database. Then a dynamical system is built from the predicted solution. Numerical
evidence shows the ability of the reduced model to predict the time evolution of the
capsule deformation from its initial state, whatever the parameter values. Accuracy and
stability properties of the resulting low-order dynamical system are analysed numerically.
The numerical experiments show very good agreement, measured in terms of modified
Hausdorff distance between capsule solutions of the full-order and low-order models,
in the case of both confined and unconfined flows. This work is a first milestone to
move towards real-time simulation of fluid–structure problems, which can be extended
to nonlinear low-order systems to account for strong material and flow nonlinearities. It is
a valuable innovation tool for rapid design and for the development of innovative devices.
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1. Introduction

Fluid–structure interaction (FSI) problems often occur in engineering (aircraft and
automotive industries, wind turbines) as well as in medical applications (cardiovascular
systems, artificial organs, artificial valves, medical devices, etc.). Today, the design
of such systems usually requires advanced studies, and high-fidelity (HF) numerical
simulations become an essential tool of computed-aided analysis. However, computational
FSI is known to be very time-consuming even when using high-performance computing
facilities. Usually, engineering problems are parametrized, and the search for suitable
designs requires numerous computer experiments leading to prohibitive computational
times. For particular applications, such as the tracking of drug-carrier capsules flowing
in blood vessels, it would be ideal to have real-time simulations for a better understanding
of the behaviour of the dynamics and for efficiency assessment. Unfortunately, today
HF real-time FSI simulations are far from being reached with current high-performance
computing facilities.

A current trend is to use machine learning (ML) or artificial intelligence tools such
as artificial neural networks (ANNs). Such tools learn numerical simulations from HF
solvers and try to map entry parameters with output criteria in an efficient way, with
response times far less than HF ones, say three or four orders of magnitude smaller. In
some sense, heavy HF computations and the training stage are done in an offline stage,
and learned ANNs can be used online for real-time evaluations and analysis. However,
ML and ANNs today are not fully satisfactory for dynamical problems, and/or the training
stage itself may be time-consuming, thus requiring more central processing unit (CPU)
time. Another option is the use of model-order reduction (MOR). Reduced-order models
(ROMs) can be seen as a ‘grey-box’ supervised ML methodology, taking advantage of
the expected low-order dimensionality of the FSI mechanical problem. By ‘grey-box’
we mean that the low-dimensional encoding of the ML process is based on mechanical
principles and a manmade preliminary dimensionality reduction study. This allows better
control of the ROM accuracy and behaviour. There are two families of MOR: intrusive and
non-intrusive approaches. The intrusive approaches use physical equations. The low-order
model is derived by setting the physical problem on a suitable low-dimensional space.
The accuracy can be very good, but the price to pay is the generation of new code, which
can be a tedious and long task. The non-intrusive approach does not require heavy code
development. It is based on HF simulation results used as entry data. Although it is not
based on HF physical equations, a non-intrusive approach can include a priori physical
information, such as e.g. meaningful physical features, prototypes of systems of equations,
pre-computed principal components, or consistency with physical principles.

In the recent literature, efficient intrusive ROMs for FSI have been proposed, e.g.
in Quarteroni, Manzoni & Negri (2016). But to our knowledge there are far fewer
contributions in non-intrusive ROMs dedicated to FSI.

In this paper, we propose a data-driven MOR approach for FSI problems that is
consistent with the equations of kinematics and is designed from a low-order meaningful
system of equations. As a case study, we focus on the motion of a microcapsule – a droplet
surrounded by a membrane – subjected to confined and unconfined Stokes flow.

Artificial microcapsules can be used in various industrial applications, such as
in cosmetics (Miyazawa et al. 2000; Casanova & Santos 2016), the food industry
(Yun, Devahastin & Chiewchan 2021) and biotechnology, where drug targeting is a
high-potential application (Ma & Su 2013; Abuhamdan et al. 2021; Ghiman et al.
2022). Once in suspension in an external fluid, capsules are subjected to hydrodynamics
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Data-driven reduced-order model for fluid-structure interactions

forces, which may lead to large membrane deformation, wrinkle formation or damage.
The numerical model must be able to capture the time evolution of the nonlinear
three-dimensional (3-D) large deformations of the capsule membrane. Different numerical
strategies are possible to solve the resulting large systems of equations (Lefebvre &
Barthès-Biesel 2007; Hu, Salsac & Barthès-Biesel 2012; Ye et al. 2017; Tran et al. 2020).
However, they all have long computational times.

Different approaches have been used over the past decade to accelerate the
computations, such as high-performance computing (e.g. Zhao et al. 2010) and graphics
processing units (e.g. Matsunaga et al. 2014). More recently, ROMs have been proposed
to predict the motion of capsules suspended in an external fluid flow. In Quesada,
Villon & Salsac (2021), the authors used the large amount of data generated by
numerical simulations to show how relevant it is to recycle these data to produce
lower-dimensional problem using physics-based ROMs. However, their method can predict
only the steady-state capsule deformed shape. Boubehziz et al. (2021) show for the first
time the efficiency of data-driven MOR techniques to predict the dynamics of the capsule
in a microchannel. However, the method is cumbersome as it requires two bases, one to
predict the velocity field, the other to capture the shape evolution over time. And then they
reconstruct the solution in the parameter space thanks to a diffuse approximation strategy.

The proposed method serves different objectives. We have designed the method to
be non-intrusive for practical uses of existing HF FSI solver (also referred to as the
full-order model, or FOM). That means that the ROM methodology should be data-driven.
We also want the ROM to be consistent with the equations of kinematics. The model
must thus return the displacement {u} and velocity {v} fields from a few snapshots
provided by the FOM. It must otherwise be able to predict the solution for any parameter
vector in a predefined admissible domain. Finally, the kinematics-consistent data-driven
ROM of capsule dynamics must ideally open the way to real-time simulations. To do
so, we use a coupling between methods that have been devised to analyse complex
fluid problems, namely proper orthogonal decomposition (POD) (Lumley 1967; Sirovich
1987) and dynamic mode decomposition (DMD) (Schmid 2010), along with a Tikhonov
regularization for robustness purposes. An interpolation method is implemented to predict
the solution for any values of governing parameters that are not present in the training
database.

As indicated above, we consider mainly the case of an initially spherical capsule
flowing in a microfluidic channel with a square cross-section. The corresponding FOM
was developed by Hu et al. (2012) and used to get a complete numerical database of the
3-D capsule dynamics as a function of the parameters of the problem: the capsule-to-tube
confinement ratio, hereafter referred to as size ratio a/�, and the capillary number Ca,
which measures the ratio between the viscous forces acting onto the capsule membrane
and the membrane elastic forces. For clarity reasons, different ROMs are introduced with
increasing levels of generality, as detailed in table 1. First, we consider a fixed-parameter
vector, and get a space–time ROM in the form of a low-order dynamical system. Next,
we generate N such ROMs for the N parameter samples that fill the admissible parameter
domain, and then assess the uniform accuracy (space–time accuracy over the whole sample
set). Finally, we propose a strategy to derive a general space–time-parameter ROM for any
value of the parameter vector (Ca, a/�) in the admissible space. To conclude the results
section, we apply the ROM to a capsule in a simple shear flow.

The paper is organized as follows. First, we present the physics of the problem and the
FOM in § 2. The strategy used to develop a non-intrusive space–time ROM is detailed
in § 3. We first present the results for an initially spherical capsule flowing in a square
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No. of parameter Verification Related section(s)
samples for data ROM output type (accuracy) in the paper

1 1 space–time ROM Space–time
accuracy

§§ 3 and 4

N N space–time ROMs Uniform
space–time
accuracy on the
sample set

§ 5

N 1 space–time-parameter
ROM (any parameter
couple)

Uniform
accuracy

§ 6

Table 1. Stepwise procedure for ROM construction of increasing level of generality.

Sin

Sout

y

0

x

z

W

M
a

2�

Figure 1. Sketch of the model geometry showing an initially spherical capsule of radius a placed in a channel
with a constant square section of side 2�.

channel. We show the results for a given configuration in § 4, generalize them in § 5 on the
entire database, formed by all the cases that have reached a stationary state, and present
in § 6 the methodology of the space–time parameter ROM. In § 7, we apply the ROM to a
capsule in a simple shear flow, before discussing the advantages and limits of the method
in § 8.

2. Full-order microcapsule model, parameters and quantities of interest

2.1. Problem description for a spherical capsule in a channel flow
An initially spherical capsule of radius a flows within a long microfluidic channel having a
constant square section of side 2� (figure 1). The suspending fluid and capsule liquid core
are incompressible Newtonian fluids with the same kinematic viscosity η.

The capsule liquid core is enclosed by a hyperelastic isotropic membrane. Its thickness
is assumed to be negligible compared to the capsule dimension. The membrane is thus
modelled as a surface devoid of bending stiffness with surface shear modulus GS. The
two non-dimensional governing parameters of the problem are the size ratio a/� and the
capillary number

Ca = ηV/GS, (2.1)

where V is the mean axial velocity of the undisturbed external Poiseuille flow.
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Data-driven reduced-order model for fluid-structure interactions

The flow Reynolds number is assumed to be very small. We solve the Stokes equations in
the external (β = 1) and internal (β = 2) fluids, together with the membrane equilibrium
equation to determine the dynamics of the deformable capsule within the microchannel.

For the fluid problem, we denote by v(β), σ (β) and p(β) the velocity, stress and pressure
fields in the two fluids. These parameters are non-dimensionalized using � as characteristic
length, �/V as characteristic time, and GS� as characteristic force. The non-dimensional
Stokes equations

∇p(β) = Ca ∇2v(β), ∇ · v(β) = 0, β = 1, 2 (2.2a,b)

are solved in the domain bounded by the cross-sections Sin at the tube entrance and Sout
at the exit. These cross-sections are assumed to be both located far from the capsule. The
reference frame (O, x, y, z) is centred at each time step on the capsule centre-of-mass O in
the HF code, but the displacement of the capsule centre-of-mass along the tube axis Oz is
computed.

The boundary conditions of the problem are as follows.

(i) The velocity field is assumed to be the unperturbed flow field on Sin and Sout, i.e. the
flow disturbance vanishes far from the capsule.

(ii) The pressure is uniform on Sin and Sout.
(iii) A no-slip boundary condition is assumed at the channel wall W and on the capsule

membrane M:

∀x ∈ W, v(x) = 0; ∀x ∈ M, v(x) = ∂u
∂t

. (2.3a,b)

(iv) The normal load n on the capsule membrane M is continuous, i.e. the
non-dimensionalized external load per unit area q exerted by both fluids is due to
the viscous traction jump

(σ (1) − σ (2)) · n = q, (2.4)

where n is the unit normal vector pointing towards the suspending fluid.

To close the problem, the external load q on the membrane is deduced from the local
equilibrium equation, which, in the absence of inertia, can be written as

∇s · τ + q = 0, (2.5)

where τ is the non-dimensionalized Cauchy tension tensor (forces per unit arc length in
the deformed plane of the membrane), and ∇s· is the surface divergence operator. We
assume that the membrane deformation is governed by the strain-softening neo-Hookean
law. The principal Cauchy tensions can then be expressed as

τ1 = GS

λ1λ2

[
λ2

1 − 1
(λ1λ2)2

]
(likewise for τ2), (2.6)

where λ1 and λ2 are the principal extension ratios measuring the in-plane deformation.

2.2. Numerical procedure
The FSI problem is solved by coupling a finite element method that determines the capsule
membrane mechanics with a boundary integral method that solves for the fluid flows
(Walter et al. 2010; Hu et al. 2012). Thanks to the latter, only the boundaries of the
flow domain, i.e. the channel entrance Sin and exit Sout, the channel wall and the capsule
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membrane, have to be discretized to solve the problem. The mesh of the initially spherical
capsule is generated by subdividing the faces of the icosahedron (regular polyhedron with
20 triangular faces) inscribed in the sphere until reaching the desired number of triangular
elements. At the last step, nodes are added at the middle of all the element edges to obtain
a capsule mesh with 1280 P2 triangular elements and 2562 nodes, which correspond to a
characteristic mesh size �hC = 0.075 a. The channel mesh of the entrance surface Sin and
exit surface Sout, and of the channel wall, is generated using Modulef (INRIA, France). The
central portion of the channel, where the capsule is located, is refined. The channel mesh
comprises 3768 P1 triangular elements and 1905 nodes.

At time t = 0, a spherical capsule is positioned with its centre-of-mass O on the channel
axis. At each time step, the in-plane stretch ratios λ1 and λ2 are computed from the node
deformation. The elastic tension tensor τ is then deduced from the values of λ1 and λ2.
The finite element method is used to solve the weak form of the membrane equilibrium
equation (2.5) and determine the external load q.

Applying the boundary integral method, the velocity of the nodes on the capsule
membrane reads (Pozrikidis 1992)

v(x)= v∞(x) − 1
8πμF

[∫
M

J (r) · q dS(y) +
∫

W
J (r) · f dS(y)− �P

∫
Sout

J (r) · n dS(y)
]

(2.7)

for any x in the spatial domain when the suspending and internal fluids have the same
viscosity. The vector f is the disturbance wall friction due to the capsule, �P is the
additional pressure drop, and r = y − x.

To update the position of the membrane nodes, the nodal displacement u is computed
by integrating equation (2.3a,b) in time. The procedure is repeated until the desired
non-dimensional time VT/�.

For later development, it is more convenient to work on the condensed abstract form of
the system. The full-order semi-discrete FSI system to solve consists of the kinematics and
the membrane equilibrium algebraic equations:

{u̇} = {v}, t ∈ [0, T], (2.8)

{v} = ϕ({u}), (2.9)

where ϕ is a nonlinear mapping from R3d to R3d, and d is the number of nodes on the
membrane. Regarding time discretization, a Runge–Kutta Ralston scheme is used:

{ûn+2/3} = {un} + 2
3 �t {vn}, (2.10)

{v̂n+2/3} = {ϕ}({ûn+2/3}), (2.11)

{un+1} = {un} + �t
(

1
4 {vn} + 3

4 {v̂n+2/3}
)

, (2.12)

{vn+1} = {ϕ}({un+1}), (2.13)

{u0} = {0}, {v0} = {ϕ}({0}), (2.14)

where �t > 0 is a constant time step, and {u}n and {v}n respectively represent the discrete
membrane displacement field and the discrete membrane velocity field at discrete time
tn = n �t. The initial condition is simply {u}0 = {0}.

The whole numerical scheme is subject to some Courant–Friedrichs–Lewy type stability
condition on the time step (Walter et al. 2010) because of its explicit nature. The numerical
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Figure 2. Simulation time of the dynamics of the capsule over a non-dimensional time Vt/� = 10 (a/� = 0.7)
according to the time step �t. Simulations were performed on a workstation equipped with two Intel® Xeon®

Gold 6130 CPU (2.1 GHz) processors.

method is conditionally stable if the time step �t satisfies

V
�

�t < O
(

�hC

�
Ca

)
. (2.15)

From the computational point of view, the resolution of (2.9) at each time step requires
(i) the computation of the disturbance wall friction f at all the wall nodes, (ii) the
additional pressure drop �P, (iii) the traction jump q at the membrane nodes, and
(iv) the boundary integrals for each node. The resulting numerical FOM may thus be
time-consuming, depending on the membrane discretization and the number of time steps.
Figure 2 shows that the evolution of the computational cost when a/� = 0.7, considering
the mesh discretization described above and a workstation equipped with two Intel®

Xeon® Gold 6130 CPU (2.1 GHz) processors. A week of computation is sometimes
necessary to simulate the dynamics of an initially spherical capsule in a microchannel
over the non-dimensional time VT/� = 10.

For that reason, an MOR strategy is studied in this paper, in order to reduce the
computational time by several orders of magnitude. ROMs try to approximate solutions
of the initial problem by strongly lowering the dimensionality of the numerical model,
generally using a reduced basis of suitable functions, then derive a low-order system of
equations.

In the case of differential algebraic equations (DAEs) such as (2.8)–(2.9), the reduced
system of equations to find should also be of DAE nature. We remark that it is often
possible to reformulate DAEs as a system of ordinary differential equations (ODEs)
(Ascher & Petzold 1998). In the next section, we give details on the chosen ROM
methodology for the particular case and context of the FSI capsule problem.
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3. Non-intrusive space–time MOR strategy

In this section, the parameter couple θ = (Ca, a/�) is fixed, thus we omit the dependency
of the solutions with respect to θ for the sake of simplicity. For the derivation of the ROM,
we consider the semi-discrete time-continuous version of the FOM, i.e. (2.8)–(2.9).

3.1. Dimensionality reduction and reduced variables for displacements and velocities
Assume first that for any t ∈ [0, T], the discrete velocity field can be approximated
accurately according to the expansion

{v}(t) ≈
K∑

k=1

βk(t) {φk} (3.1)

for some orthonormal modes {φk} ∈ Rd and real coefficients βk(t). The truncation rank
K ≤ d is, of course, expected to be far less than d as expected in a general ROM
methodology. From the kinematics equations, we have

{u}(t) =
∫ t

0
{v}(s) ds

≈
∫ t

0
βk(s) {φk} ds, (3.2)

so the displacement field can be represented accurately by

{u}(t) ≈
K∑

k=1

αk(t) {φk}, (3.3)

where αk(t) = ∫ t
0 βk(s) ds. The coefficients (αk(t))k and (βk(t))k are called the reduced

variables. For the sake of readability and mental correspondence between full-order
unknowns and reduced ones, we will use the convenient notations

α(t) = (α1(t), . . . , αK(t))T, β(t) = (β1(t), . . . , βK(t))T, (3.4a,b)

where the superscript T denotes the transpose of the matrix. The condensed matrix forms
of (3.3) and (3.1), respectively, are

{u}(t) ≈ Q α(t), {v}(t) ≈ Q β(t), (3.5a,b)

where Q = [{φ1}, . . . , {φK}] ∈ MdK . Since the modes {φk} are assumed to be
orthonormal (for the standard Euclidean inner product), the matrix Q is a semi-orthogonal
matrix, i.e. QTQ = IK . In particular, we have α(t) ≈ QT {u}(t) and β(t) = QT {v}(t).

Note that the modes {φk} and reduced variables α, β are determined for each parameter
set (Ca, a/�), but a common value of the truncation rank K is chosen for all the sets. Its
practical computation will be detailed in a next subsection, as well as that of the modes
{φk}.

3.2. ROM prototype
The expressions {ũ}(t) = Q α(t) and {ṽ}(t) = Q β(t) provide low-order representations
of displacement and velocity fields, respectively. We can now write equations for the
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reduced vectors α(t) and β(t). In this subsection, let us consider a projection Galerkin-type
approach. Let us denote by 〈·, ·〉 the standard Euclidean scalar product in Rd. Considering
a test vector {w} in W = span({ϕ1}, . . . , {ϕK}), we look for an approximate displacement
field {ũ}(t) solution of the projected kinematics equations〈

d
dt

{ũ}(t), {w}
〉

= 〈{ṽ}(t), {w}〉, ∀ {w} ∈ W. (3.6)

By considering each test vector {w} = {ϕk}, we get the consistent reduced kinematics
equation

α̇ = β. (3.7)

Consider now the projected field {ṽ}(t) that is a solution of the system of algebraic
equations (Galerkin approach)

〈{ṽ}(t), {w}〉 = 〈ϕ({ũ}(t)), {w}〉, ∀ {w} ∈ W. (3.8)

Again by taking the test vector {w} = {φk}, we have

{φk}TQ β(t) = {φk}Tϕ(Q α(t)). (3.9)

Considering all k in {1, . . . , K}, since Q = [{φ1}, . . . , {φK}] and QTQ = IK we get

QTQ β(t) = β(t) = QT ϕ(Q α(t)). (3.10)

This is in the form

β(t) = ϕrz(α(t)), (3.11)

with the mapping ϕr : RK → RK defined by ϕr(α) = QT ϕ(Qα). We get a reduced-order
algebraic equilibrium equation. Unfortunately, because of the nonlinearities in ϕ, the
computation of ϕr(α) requires high-dimensional O(d) operations, making this approach
irrelevant from the performance point of view. A possible solution to deal with the
nonlinear terms would be to use, for example, empirical interpolation methods (Barrault
et al. 2004), but from the algorithm and implementation point of view, this would lead to an
intrusive approach with specific code developments. We here rather adopt a linearization
strategy in the following sense: by differentiating (3.11) with respect to time, we get

β̇(t) = ∂ϕr

∂α
(α(t)) α̇(t). (3.12)

Thanks to the reduced kinematics equation (3.7), we get

β̇(t) = ∂ϕr

∂α
(α(t))β(t). (3.13)

Since ϕr is hard to evaluate, it is even harder to evaluate its differential. But the differential
(∂ϕr/∂α)(α(t)) can be approximated itself, or replaced by some matrix A(t). Then we get
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a ROM structure (ROM prototype) in the form

α̇ = β(t), (3.14)

β̇(t) = A(t)β(t). (3.15)

The differential system (3.14)–(3.15) is linear with variable coefficient matrix A(t) ∈
MK(R). It can be written in matrix form as

d
dt

(
α(t)
β(t)

)
=

(
[0] IK
[0] A(t)

)
︸ ︷︷ ︸

=A(t)

(
α(t)
β(t)

)
. (3.16)

The spectral properties of the differential system (3.16) are related to the spectral properties
of matrix A(t). In particular, if all the (complex) eigenvalues λk(t) of A(t) are such that
Re(λk(t)) < 0 for all k (uniformly distributed in time), then the system is dissipative.

3.3. Non-intrusive approach, singular value decomposition and POD modes
One of the requirements of this work is to achieve a non-intrusive ROM, meaning that
the effective implementation of the ROM does not involve tedious low-level development
of the FOM code. For that, a data-based approach is adopted: from the FOM code, it
is possible to compute FOM solutions ({u}n, {v}n) at discrete times tn, n = 0, . . . , N
(tN = N �t = T), then store some snapshot solutions (called snapshots) into a database
for data analysis and later design of a ROM. Proper orthogonal decomposition (POD)
(Berkooz, Holmes & Lumley 1993) is today a well-known dimensionality reduction
approach to determine the principal components from solutions of partial differential
equations. The Sirovich snapshot variant approach (Sirovich 1987) is based on snapshot
solutions from a FOM to get a posteriori empirical POD modes {ϕk}. For the sake
of simplicity, assume that the snapshot solutions are all the discrete FOM solution at
simulation instants. Applying a singular value decomposition (SVD) to the displacement
snapshot matrix

S
u = [u1, u2, . . . , uN] (3.17)

of size d × N, we get the SVD decomposition

S
u = UΣV T, (3.18)

with orthogonal matrices U ∈ Md(R), V ∈ MN(R) and the singular value matrix
Σ = diag(σk) ∈ Md×N(R), with σk ≥ 0 for all k organized in decreasing order:
σ1 ≥ σ2 ≥ · · · ≥ σmin(d,N) ≥ 0. From SVD theory, for a given accuracy threshold ε > 0,
the truncation rank K = K(ε) is computed as the smallest integer such that the inequality

min(d,N)∑
k=K+1

σ 2
k

min(d,N)∑
k=1

σ 2
k

≤ ε (3.19)

holds (Shawe-Taylor & Cristianini 2004). Proceeding like that, it is shown that the relative
orthogonal projection error of the snapshots {v}n onto the linear subspace W spanned by
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Data-driven reduced-order model for fluid-structure interactions

the K first eigenvectors of U is controlled by ε. Denoting by πW the linear orthogonal
projection operator over W, we have

N∑
n=1

‖{v}n − πW{v}n‖2 ≤ ε

N∑
n=1

‖{v}n‖2. (3.20)

The matrix Q is obtained as the restriction of U to its first K columns.

3.4. Data-driven identification of coefficient matrix
The system (3.14)–(3.15) is still not closed since the coefficient matrices A(t) are
unknowns. From FOM data, one can try to identify the matrices by minimizing some
residual function that measures the model discrepancy. The simplest linear model
corresponds to the case where A(t) is searched as a constant-time matrix A. In this case,
(3.15) becomes β̇(t) = A β(t). This is the scope of this paper. From the continuous-time
problem, one could determine the matrix A by minimizing the least squares functional

min
A∈MK(R)

1
2

∫ T

0
‖β̇(t) − A β(t)‖2 dt. (3.21)

But practically, we have velocity snapshot data only at discrete times, and we do not have
access to the time derivatives of the velocity fields. So the following numerical procedure
is adopted. From the velocity snapshot matrix Sv = [{v}1, . . . , {v}N], we compute first the
reduced snapshot variables

βn = Q {v}n, n = 1, . . . , N. (3.22)
Next, we determine a matrix A that minimizes the least squares cost function

min
A∈MK(R)

1
2

N−1∑
n=1

∥∥∥∥∥βn+1 − βn

�t
− Aβn

∥∥∥∥∥
2

. (3.23)

In (3.23), the finite difference (βn+1 − βn)/�t is a first-order approximation (in �t)
of β̇ at time tn. In Appendix A, we provide a mathematical analysis of the effect of
time discretization in (3.23) about the impact on the stability of the resulting identified
differential system compared to the initial one.

The minimization problem (3.23) can be written in condensed matrix form

min
A∈MK(R)

1
2

‖Y − AX‖2
F, (3.24)

with the two data matrices

X = [β1, β2, . . . , βN−1], Y =
[

β2 − β1

�t
, . . . ,

βN − βN−1

�t

]
. (3.25a,b)

Because X and Y store reduced variables (of size K), for a sufficient number of discrete
snapshot times, these two matrices are horizontal ones. We will assume that the rank of X

is always maximal, i.e. equal to K. The least squares solution A of (3.24) is then given by

A = YX
†, (3.26)

where X† = XT(XXT)−1 is the Moore–Penrose pseudo-inverse matrix of X. This least
squares approach has close connections with SVD-based DMD (Schmid 2010; Kutz et al.
2016).
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3.5. Tikhonov least squares regularized formulation
From standard spectral theory arguments, it is expected that the POD coefficients decay
rapidly when k increases as soon as both displacement and velocity fields are smooth
enough. A possible side effect is the bad condition number of the matrix X, since the
last rows of X have small coefficients (thus leading to row vectors close to zero ‘at the
scale’ of the first row of X). Even if the solution A in (3.26) always exists, the solution
may be sensitive to perturbations, noise or round-off errors. In order to get a robust
identification approach, one can regularize the least squares problem (3.24) by adding
a Tikhonov regularization term (see e.g. Aster, Borchers & Thurber 2019)

min
A∈MK(R)

1
2

‖Y − AX‖2
F + μ

2
‖X‖2

F ‖A‖2
F, (3.27)

where the scalar μ > 0 is the regularization coefficient. The factor ‖X‖2
F in the

regularization term has been added for scaling purposes. The solution Aμ of (3.27) is
given by

Aμ = YX
T(XX

T + μ‖X‖2
F IK)−1. (3.28)

3.5.1. Choice of optimal regularization coefficient
Of course, the solution matrix Aμ depends on the regularization coefficient μ, and one can
ask what is the optimal choice for μ. There is a trade-off between the approximation quality
measured by the residual ‖Y − AμX‖F and the norm solution ‖Aμ‖F. The minimization
of ‖Aμ‖F should ensure that unneeded features will not appear in the regularized solution.
When plotted on the log-log scale, the curve of optimal values μ 
→ ‖Aμ‖F versus the
residual μ 
→ ‖Y − AμX‖F often takes on a characteristic L-shape (Aster et al. 2019). A
design of experiment with the test of different values of μ (starting, say, from 10−12 to
10−3) generally allows us to find quasi-optimal values of μ located at the corner of the
L-curve, thus providing a good trade-off between the two criteria.

3.6. Reduced-order continuous dynamical system
Once the matrix Aμ has been determined, we get the reduced-order continuous dynamical
system

α̇ = β, (3.29)

β̇ = Aμ β (3.30)

with initial conditions α(0) = 0, v(0) = QT ϕ({0}). At any time t, one can go back to the
high-dimensional physical space using the POD modes: {u}(t) = Q α(t), {x}(t) = {X } +
{u}(t), {v}(t) = Q β(t). As already mentioned, the system can be written in condensed
matrix form

ẇ = Aμ w, (3.31)

where

w(t) = (α(t), β(t))T and Aμ =
(

[0]K IK
[0]K Aμ.

)
. (3.32a,b)

The exact analytical solution of (3.31) is

w(t) = exp(Aμt) w(0). (3.33)
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The stability of the differential system depends on the spectral structure of Aμ, or
equivalently on the spectrum of Aμ. Because of the stability of the fluid–capsule coupled
system, and from accurate solutions of the FOM solver, one can hope that the solution
Aμ of the least squares identification problem has the expected spectral properties. This
will be studied and discussed in the numerical experimentation section. From the kinetic
energy point of view, it is shown in Appendix B that the stability of the kinetic energy is
linked to the property of the (real) spectrum of the symmetric matrix (Aμ + AT

μ)/2.

3.6.1. Model consistency with steady states
A steady state in our context is defined by a capsule that reaches a constant velocity {v}∞,
so that the motion becomes a translation flow in time in the direction {v}∞. From (3.1),
this shows that β(t) also reaches a constant vector β∞, and β̇ = 0 at steady state. As a
consequence, from (3.30), we get Aμβ∞ = 0, meaning that 0 is an eigenvalue of Aμ, with
β∞ as eigenvector. As a conclusion, the matrix Aμ must have zero in its spectrum in order
to be consistent with the existence of steady states.

3.7. Reduced-order discrete dynamical system
Of course, it is also possible to derive a discrete dynamical system from the continuous
one by using a standard time advance scheme. For example, the explicit forward Euler
scheme with a constant time step �t gives

αn+1 = αn + �t βn, (3.34)

βn+1 = βn + �t Aμβn. (3.35)

By multiplying (3.34) by Q, we get the space–time approximate solution

{u}n+1 = {u}n + �t {v}n, (3.36)

so the ROM is completely consistent with the kinematics equation. Stability properties of
the discrete system are linked to the spectral properties of the matrix

A�
μ =

(
IK �t IK

[0]K (IK + �t Aμ)

)
. (3.37)

For unconditional stability in time, it is required for the eigenvalues of IK + �t Aμ to stay
in the unit disk of the complex plane.

More generally, it is possible to use any other time advance scheme, according to the
expected order of accuracy or stability domain.

3.8. Accuracy criteria and similarity distances between ROM and FOM solutions
In order to quantify the error induced by approximations, we introduce three accuracy
criteria. The first accuracy criterion is the relative information content (RIC), defined by

RIC(K) =

min(d,N)∑
k=K+1

σ 2
k

min(d,N)∑
k=1

σ 2
k

, (3.38)
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(b)(a)

Figure 3. Dynamics of a microcapsule flowing in a microchannel with a square cross-section predicted by
FOM in the vertical cutting plane represented in grey in (a). The in-plane capsule profiles are shown for
Ca = 0.13 and a/� = 0.8 at the non-dimensional times Vt/� = 0, 0.4, 2, 4, 6 in (b). The horizontal lines in
(b) represent the channel borders. The capsule will always be represented flowing from left to right.

which quantifies the relative amount of neglected information when truncating the number
of modes at rank K. The truncation rank is determined such that the RIC is inferior to the
accuracy threshold ε. The accuracy threshold ε is fixed at 10−6.

The second accuracy criterion is the relative time residual R. It quantifies the relative
error induced by the minimization of the least squares cost function (3.23) using Aμ, and
is given by

R(j) = ‖AμXj − Yj‖2

‖Yj‖2 , (3.39)

where Xj represents the jth column of X, and Yj the jth column of Y. The index j is thus
linked to the snapshots (j ∈ {1, . . . , N}). To better draw a parallel between the evolution of
this parameter and the capsule dynamics, this parameter will be represented as a function
of the non-dimensional time Vt/� hereafter.

The third accuracy criterion, εShape(Vt/�), measures the difference between the 3-D
reference capsule shape given by the FOM (SFOM) and the 3-D shape predicted by
the ROM (SROM). It is defined at a given non-dimensional time Vt/� as the ratio
between the modified Hausdorff distance (MHD) computed between SFOM and SROM ,
and non-dimensionalized by �:

εShape(Vt/�) = MHD(SFOM(Vt/�),SROM(Vt/�))
�

. (3.40)

The MHD is the maximum value of the mean distance between SFOM and SROM , and the
mean distance between SROM and SFOM (Dubuisson & Jain 1994).

4. Numerical experimentation on a given configuration

The method is first applied to a given configuration, in order to set the model parameters
and to study its stability and precision. We consider the dynamics of an initially spherical
capsule flowing in a microchannel when Ca = 0.13 and a/� = 0.8. The time step between
each snapshot �t equals 0.04. The dynamics predicted by the FOM is illustrated in
figure 3 up to a non-dimensional time VT/� = 10. As the capsule flows, its membrane
is gradually deformed by the hydrodynamic forces inside the channel during a temporary
time until a steady state is reached. We assume that the capsule has reached its steady-state
shape when the surface area of the capsule varies by less than 5 × 10−4 × (4πa2) over a
non-dimensional time Vt/� = 1. For Ca = 0.13, a/� = 0.8, the steady state is reached at
VTSS/� = 6.2 and is characterized by a parachute capsule shape (figure 3).
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Figure 4. Evolution of the relative amount of neglected information 1 − RIC, as a function of the number of
modes (Ca = 0.13, a/� = 0.8).

4.1. Proper orthogonal decomposition, truncation and modes
The SVD is first applied to the displacement snapshot matrix. To determine the truncation
rank, the evolution of 1 − RIC is illustrated in figure 4 as a function of number of modes
considered. The RIC is approximately 1 % only with one mode. The more modes kept,
the less information is neglected. In the following, we fix the number of modes to 20. The
accuracy threshold ε is thus equal to 10−6.

The modes are determined from the displacement snapshot matrix. They are added to
the sphere of radius 1 and amplified by a factor 2 to be visualized. The first six modes are
represented in figure 5 for Ca = 0.13, a/� = 0.8.

The first six modes are mostly dedicated to changing the shape of the rear of the capsule.
The following modes appear to become noisy (not shown). However, these modes are not
negligible if one wants to get an accuracy of 10−6.

4.2. Dynamic mode decomposition: empirical regularization
Before determining the matrix A, we check the condition numbers of the matrices X and
XX

T. They are respectively equal to 6.5 × 104 and 4.3 × 109. The condition numbers of
these matrices are very high, and the matrix A, determined by solving (3.26), may be
sensitive to perturbations or noise. To improve the robustness, a Tikhonov regularization
is applied to solve the least squares problem (3.23), and the matrix Aμ is computed using
(3.28), which depends on the regularization coefficient μ. To determine the optimal value
of μ, the relative least squares error ‖AμX − Y‖F/‖Y‖F is represented according to the
norm solution ‖Aμ‖F when 20 modes are considered and when μ is varied between 10−12

and 10−3 (figure 6). The least squares error ‖AμX − Y‖F and the norm solution ‖Aμ‖F

are minimal when μ = 10−9. In the following, μ is thus fixed to μ = 10−9 and the number
of modes to 20.
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Figure 5. Representation of the first six modes of the capsule dynamics when a/� = 0.80 and Ca = 0.13. To
be visualized, the modes of displacement were added to the sphere of radius 1 and amplified by a factor 2.
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Figure 6. Evolution of the norm solution ‖Aμ‖F as a function of the least squares error ‖AμX − Y‖F/‖Y‖F
when the number of modes is fixed to 20 and (Ca = 0.13, a/� = 0.8).
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Figure 7. Eigenvalues λk of Aμ (Ca = 0.13, a/� = 0.8, 20 modes, μ = 10−9). Note that the maximum real
part of the eigenvalues is exactly equal to zero.
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Figure 8. Temporal evolution of the normalized time residual with Ca = 0.13, a/� = 0.8, 20 modes and

μ = 10−9.

4.3. Validity check of the ROM: spectral study of the resulting matrix
In order to detect anomalies, a spectral analysis of the ROM learned by the DMD method
is carried out. The spectrum of the matrix Aμ is represented in figure 7. All the eigenvalues
λk of the matrix Aμ have non-positive real parts. The resulting linear ROM is thus stable.

The temporal evolution of the residual R (figure 8) shows that the error is less than
0.7 %. The maximal value is reached at the beginning of the simulation (Vt/� < 0.3),
and R decreases afterwards. When Vt/� � 6, i.e. before the capsule has reached its steady
state, high-frequency oscillations are observed. This probably means that a high-frequency
mode is neglected, even if 20 modes are considered. For Vt/� > 6, R is of order 10−7. The
stationary state is thus well predicted by the model, and the error during the transient stage
is more than acceptable.
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Figure 9. Dynamics of a microcapsule flowing in microchannel with a square cross-section predicted by the
ROM at the non-dimensional times Vt/� = 0.4, 2.8, 5.2, 7.6, 10, with Ca = 0.13, a/� = 0.8, 20 modes and
μ = 10−9. The initial spherical capsule is shown on the left by transparency.

Figure 10. Comparison of the capsule contours given by the FOM (dotted line) and estimated by the ROM
(orange line). The capsule is shown for Ca = 0.13, a/� = 0.8 at the non-dimensional times Vt/� = 0, 0.4, 2,
4, 6. The horizontal lines represent the channel borders. The number of modes is fixed at 20, and μ = 10−9.

4.4. ROM online stage and accuracy assessment
The displacement of all the nodes of the capsule mesh estimated by the ROM is then added
to the corresponding node of the sphere of radius 1 to visualize the temporal evolution
of the capsule shape in three dimensions. Figure 9 shows the capsule dynamics for the
reference case (Ca = 0.13, a/� = 0.8). The ROM allows us to reproduce the capsule
deformation from the initial state up to the parachute-shaped steady state. For the FOM and
the ROM, the capsule profile is then determined in the cutting plane passing through the
middle of the microchannel. Figure 10 shows that the two capsule profiles overlap perfectly
at Vt/� = 0, 0.4, 2, 4, 6. The temporal evolution of εShape is shown in figure 11(a). The
maximum value of the error committed on the 3-D shape εShape equals 0.004 %. The error
on the capsule shape εShape is thus negligible. The deformation of the capsule from its
initially spherical shape to its steady state over a non-dimensional time Vt/� = 10 can
thus be estimated very precisely with the developed ROM.

The DMD method predicts the capsule displacement at time tn+1 from that at time tn.
The model has been constructed until now by considering the dynamics of the capsule
over a non-dimensional time Vt/� = 10.

In order to study the sensitivity of the ROM to the learning time VTL/�, i.e. the
non-dimensional time over which the model is trained, we modify it with values between
2 and 8, knowing that the time to reach the steady state is in this case VTSS/� = 6.2. We
estimate the capsule dynamics using the ROM up to a non-dimensional time Vt/� = 10.
The number of modes is always equal to 20, and μ = 10−9. The comparison of the
estimated shape at Vt/� = 10 with the one simulated with the FOM (figure 11a) shows that
VTL/� ≥ 4 is sufficient to predict very well the capsule dynamics. Figure 11(b) confirms
that the error on the capsule shape is negligible when VTL/� ≥ 4. It is interesting that the
ROM could predict the steady state even when TL < TSS. This could be due to the fact
that the maximum real part of the eigenvalues is exactly equal to zero from VTL/� ≥ 4.
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Figure 11. (a) Comparison of the capsule contours given by the FOM (dotted line) and estimated by the ROM
(orange line) for the different learning times VTL/�. (b) Evolution of εShape measured at Vt/� = 10 as a function
of the learning time VTL/�. (c) Influence of the learning time VTL/� on the temporal evolution of the error on
the capsule shape εShape. The error during the learning time is shown with a solid line. For this case, the
parameters are 20 modes, μ = 10−9, Ca = 0.13 and a/� = 0.8.
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Figure 12. (a) Values of Ca and a/� included in the training database. (b) Evolution of the time VTSS/� needed
to reach the steady state, on the training database. The dashed line delimits the domain where a steady-state
capsule deformation exists for capsules following the neo-Hookean law.

The maximum real part of the eigenvalues is negative and close to zero for VTL/� = 2.
Figure 11(c) shows that in the worst case (VTL/� = 2), the error on the capsule shape
increases with time but reaches a plateau from time Vt/� = 8. The system is thus stable
without exponential drift, as proven by the negative value of the maximum real eigenvalue.
In the inset, the error also increases for the other learning times but remains very small
(below 0.2 %).

5. Space–time ROM accuracy assessment over the full parameter sample set

The capillary number Ca and the size ratio a/� are now considered as variable parameters.
A database of 119 simulations of the deformation of an initially spherical capsule in a
microchannel has been generated using the FOM with the same time step and mesh size
as in § 4. Figure 12(a) shows the different values of Ca and a/� for which the simulations
have been computed to create the training database. When the capsule initial radius is
close to or larger than the microchannel cross-dimension (a/� ≥ 0.90), the capsule is
pre-deformed into a prolate spheroid to fit in the channel. For a given a/�, a limit value of
Ca exists beyond which a capsule does not reach a steady state (figure 12). This is due to
the softening behaviour of the neo-Hookean law.

For the following, we have considered a learning time VTL/� = 10. The evolution of
the time VTSS/� needed to reach the steady state is illustrated in figure 12(b) on the whole
training database. The steady state is reached on average at a time VTSS/� = 6.2. However,
we notice that for the cases close to the steady-state limit, VTSS/� increases and exceeds
the considered learning time.

For all the couples (Ca, a/�) of the training database, the capsule shape is reconstructed
from the ROM results at given non-dimensional times, and compared to the shape
predicted by the FOM at the same non-dimensional time. The evolution of the error
committed on the capsule shape εShape on the full database is illustrated in figure 13 at
Vt/� = 0, 0.4, 1, 2, 5, 10. Here, εShape is null at Vt/� = 0. The ROM is therefore able to
predict the initial capsule shape correctly, whether it is spherical or slightly ellipsoidal.
Until Vt/� ≤ 2, εShape essentially remains zero on the majority of the database. Otherwise,
it is equal to 0.15 % at maximum. At Vt/� = 5 and 10, the error εShape increases slightly for
most of the couples (Ca, a/�) of the database. It remains fully acceptable since it is equal
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Figure 13. Heat maps of εShape on the training database as functions of Ca and a/� at Vt/� values (a) 0, (b)
0.4, (c) 1, (d) 2, (e) 5, ( f ) 10 (obtained with 20 modes and μ = 10−9). The dashed line delimits the domain
where a steady-state capsule deformation exists.

to 0.35 % at maximum. When considering 20 modes and μ = 10−9, the developed ROM
allows us to estimate with great precision the dynamics of an initially spherical capsule in
a microchannel with a square cross-section.

To respect the stability condition (see (2.15)), the time step imposed to simulate the
capsule dynamics with the FOM decreases, when Ca decreases. The lower Ca, the longer
the simulation lasts (figure 2). The time needed to calculate the capsule shape and write
the results was estimated on the same workstation used to simulate and generate the result
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Figure 14. Evolution of the speedup as function to the time step imposed to simulate the capsule dynamics
with the FOM (a/� = 0.7).

files with the FOM (2-CPU Intel® Xeon® Gold 6130, 2.1 GHz). The speedup is the ratio
between the FOM runtime and the ROM runtime. Its evolution according to the FOM time
step is illustrated in figure 14. It was estimated from the ROM and FOM simulation time
obtained when a/� = 0.7. The speedup varies between 52106 for a FOM time step 10−4

(i.e for the lowest value of Ca tested) and 4200 for 5 × 10−4 (i.e Ca ≥ 0.05). It is thus
possible to estimate the capsule dynamics very precisely with the developed ROM, while
reducing the computational time considerably.

Another significant advantage is the gain in storage of the simulation results. By storing
only the reduced variables α, β, the modes {φk} and the initial position of the nodes of
each couple θ = (Ca, a/�), the training database is reduced from 1.9 GB, when computed
with the FOM, to 0.15 GB with the ROM. It can therefore be shared more easily.

6. Full space–time parameter ROM (for any admissible parameter value)

6.1. General methodology
It is here again assumed that a training database of N pre-computed FOM results is
available. Now we would like to derive a ROM for any parameter couple θ = (Ca, a/�) in
the admissible parameter domain. The proposed space–time-parameter ROM is made of
two steps. The first step consists in predicting the space–time solution {u}(t; θ) by means
of a robust interpolation procedure. The second step consists in deriving a ROM in the
form of a low-order dynamical system by using the predicted solutions of the first step
as training data. Then we apply the former procedure detailed in § 3. Below, we give a
detailed explanation of the two steps.

6.1.1. Step 1: predictor step
Considering a parameter couple θ , we first search the three nearest neighbour parameters
in the sample set that form a non-degenerate triangle in the plane (Ca, a/�). Let us denote
them by θ1, θ2 and θ3. We will define a linear operator in the triangle (θ1, θ2, θ3). For
that, let us introduce the barycentric coordinates (λ1, λ2, λ3), λ ∈ [0, 1], i = 1, 2, 3, such
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that

λ1 + λ2 + λ3 = 1, (6.1)

θ1λ1 + θ2λ2 + θ3λ3 = θ . (6.2)

The 3 × 3 linear system (6.1) and (6.2) is invertible as soon as the triangle (θ1, θ2, θ3)
is non-degenerate. Notice that the λi (i = 1, 2, 3) are actually functions of θ . Let us now
denote by {u1}, {u2} and {u3} the displacement fields for the parameter vectors θ1, θ2 and
θ3, respectively. Then we can consider the predicted velocity field û(t; θ) defined by

{û}(t, θ) = λ1{u1}(t) + λ2{u2}(t) + λ3{u3}(t). (6.3)

6.1.2. Step 2: low-order dynamical system ROM
Expression (6.3) can be evaluated at some discrete instants in order to generate new
training data. Then the SVD-DMD ROM methodology presented in § 3 can be applied
to these data to get a reduced dynamical system in the form

α̇(θ) = β(θ), (6.4)

β̇(θ) = Aμ(θ)β(θ). (6.5)

We also have a matrix Q(θ) of orthogonal POD modes, and we can go back to the
high-dimensional physical space by the standard operations

{û}(t, θ) ≈ Q(θ)α(t, θ), {v̂}(t, θ) ≈ Q(θ)β(t, θ). (6.6a,b)

Notice that the capsule position field {x}(t, θ) is given by

{x}(t; θ) = {X }(θ) + {û}(t, θ), (6.7)

with an initial capsule position {X }(θ) that may depend on θ because of the
pre-deformation pre-processing if a/� ≥ 0.90.

A testing database is created using the FOM as in § 5 and considering (Ca, a/�)

couples that are not in the training database. A set of 110 (Ca, a/�) couples are included
in this database (figure 15). For all the (Ca, a/�) couples of the testing database, the
capsule dynamics is interpolated from the dynamics of the three closest neighbours at
a given non-dimensional time. Capsule shapes obtained by the ROM are compared to
the ones predicted by the FOM at the same non-dimensional time. Figure 16 represents
the evolution of the error committed on the capsule shape εShape on the training database
at Vt/� = 0, 0.4, 1, 2, 5, 10. At the initial time, εShape is zero. The interpolation method
is therefore able to capture the initial capsule shape. When the time increases, εShape
increases and is greater than if we apply directly the POD-DMD method on the FOM
results and reconstruct the dynamics. However, εShape remains less than 0.3 % on the
majority of the testing database. It remains fully acceptable. Here, εShape is more important
near the steady-state limit and when we approach the lowest values of Ca because we are
close to the limits of the training base.

7. Application of the ROM to a capsule in simple shear flow

To prove the generality of the proposed approach, we additionally apply the ROM to a
capsule in simple shear flow. This classical case has been studied extensively over the
past years (Ramanujan & Pozrikidis 1998; Lac & Barthès-Biesel 2005; Li & Sarkar 2008;
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Figure 15. Values of Ca and a/� included in the testing database (open circles). The filled squares represent
the cases in the training database. The dashed line delimits the domain where a steady-state capsule deformation
exists for capsules following the neo-Hookean law.

Barthès-Biesel, Walter & Salsac 2010; Walter et al. 2010; Foessel et al. 2011; Dupont et al.
2015). The FOM results of an initially spherical capsule subjected to a shear rate γ̇ are
simulated using the unconfined version of the boundary integral/finite element method
presented in § 2 (see Walter et al. (2010) for a detailed description of the method). The
time step �t between each snapshot is equal to 0.04.

We first build a ROM that predicts the capsule dynamics until γ̇ t = 10 with 15 modes,
learning time γ̇ TL = 10 and μ = 10−6. We retrieve that the initial spherical capsule
elongates under the effect of the external flow in the straining direction and that the
membrane rotates around the deformed shape due to the flow vorticity (figure 17). The
ROM is thus able to recover the tank-treading motion. Very good agreement between the
ROM and FOM is seen in figure 18 for the capsule profiles in the shear and perpendicular
planes. Figure 19 shows the evolution of the maximum error on the capsule shape for
different values of Ca. At Ca = 0.1, the ROM predicts well the time evolution of the global
capsule shape but not precisely the wrinkle formation, leading to 2 % error on average. But
from Ca ≥ 0.3, the error is reduced by an order of magnitude and is below 0.2 %.

We then perform some tests to be sure that the model is able to predict the tank-treading
motion correctly after the learning time. Since the period is equal to 17.6 for Ca = 0.3,
the learning time TL = 10 appears to be too short to capture the periodical motion. We
consider a (safe) learning time TL = 20 and increase the number of modes to 60 to
capture the Lagrangian motion of the mesh along the capsule (Eulerian) steady shape. This
convection-dominated motion of the capsule is known to be an unfavourable condition for
dimensionality reduction, and this is the reason why it is adequate to increase the number
of modes. We have obtained the best trade-off between accuracy, numerical conditioning
and complexity using 60 modes.

The error on the 3-D shape εShape, represented in figure 20(a), does not exceed 2 %.
Indeed, after a quasi-monotonic increase, it reaches value 1.7 at the end of the learning
time (γ̇ t ≤ 20) and remains almost constant during the extended prediction time (20 <

γ̇ t ≤ 30). This is very comforting for long-time stability and accuracy of the simulation.
Furthermore, we study the spectral structure of the matrix Aμ and plot its eigenvalues in the
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Figure 16. Heat maps of εShape on the testing database as functions of Ca and a/� at Vt/� values (a) 0, (b)
0.4, (c) 1, (d) 2, (e) 5, ( f ) 10. The dashed line delimits the domain for which a steady-state capsule deformation
exists.

complex plane in figure 20(b). All the eigenvalues have non-positive real parts, showing
the asymptotic stability property of the dynamical system.

One may still wonder whether the DMD ROM is accurate only for capsule flows
that converge towards a steady state. To answer the question, we have investigated the
feasibility of applying the method to an initially ellipsoidal capsule in simple shear flow.
Depending on the parameters, such a capsule exhibits a variety of dynamical regimes,
which are periodical in many cases (Walter, Salsac & Barthès-Biesel 2011; Dupont, Salsac
& Barthès-Biesel 2013; Dupont et al. 2016). We apply the ROM to the full dataset of FOM
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Figure 17. Snapshots of a capsule subjected to a simple shear flow estimated by the ROM (Ca = 0.3, 15 modes
and μ = 10−6), for γ̇ t values (a) 0, (b) 1.6, (c) 4.8, (d) 6.4. A red point is placed on the membrane to visualize
the tank-treading motion.
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Figure 18. Capsule subjected to a simple shear flow for Ca = 0.3: comparison of the contours in the shear and
cross planes given by the FOM (dotted line) and estimated by the ROM (orange line, obtained with 15 modes
and μ = 10−6).
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Figure 19. Evolution of the maximum error committed on the shape of a capsule subjected to a simple shear
flow as a function of the capillary number Ca (obtained with 15 modes and μ = 10−6). The capsule dynamics
was simulated up to a non-dimensional time γ̇ t = 10.
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Figure 20. (a) Evolution of the error committed on the shape of a capsule subjected to a simple shear flow
during the learning time (solid line) and the extended prediction time (dotted line). (b) Representation of the
eigenvalues of Aμ when 60 modes, μ = 10−6 and Ca = 0.3 are considered.

simulations for the same initial capsule. It is thus a case where the ergodicity hypothesis
cannot be applied to improve the filling of the state space (see Tu et al. 2014).

At large Ca, when the capsule exhibits a fluid-like behaviour, a large number of modes
are required to capture the membrane rotation around the deformed shape. When the
capsule behaves like a solid particle at low Ca and exhibits a tumbling motion, it is
preferable to place the capsule within its own reference frame before applying the ROM
method. The error is typically of a few per cent, and the capsule motion is well reproduced.
An example of the tumbling dynamics predicted by the ROM is compared to that simulated
by the FOM in figure 21. The ROM is able to reproduce more complex capsule dynamics
(e.g. with periodical motion) and to capture deformation features, including wrinkles, all
this with a speedup of approximately 35 000.

8. Discussion and conclusion

As a summary, in this paper we have considered a θ -parametrized ROM of microcapsule
dynamics in the form

α̇(θ) = β(θ), (8.1)

β̇(θ) = Aμ(θ)β(θ). (8.2)

The vector θ = (Ca, a/�) contains the governing parameters, the coefficients αk(t, θ) and
βk(t, θ) are spectral coefficients of POD decomposition for the displacement and velocity
fields, respectively, and the matrix Aμ(θ) is identified from data using a dynamic mode
decomposition least squares procedure. We have proven numerically for a broad range of
capillary numbers Ca and size ratios a/� that it is able to capture the dynamics up to
the steady state of a capsule flowing in a channel and its large deformations. As a first
approach, we have presently chosen to use a DMD method that is linear in time to build
the ROM. Still, the ROM captures spatial nonlinearity by means of the POD modes. The
resulting ROM is of great fidelity, weak discrepancies being observed only in the early
transient stage. We have also shown that the learning time needs to be larger than the
transient stage duration, and that we can go beyond the FOM time window used for the
training of the ROM.
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Figure 21. Tumbling motion of a prolate capsule (aspect ratio = 2) subjected to a simple shear flow
(Ca = 0.1). (a) Comparison of the 3-D shape given by the FOM (in grey) and estimated by the ROM (in
orange, obtained with 50 modes and μ = 10−6). Comparison of the two-dimensional profile (b) in the shear
plane, and (c) in the cross plane. The time step �t between each snapshot is equal to 0.04.

For generalization, we have computed the capsule dynamics for any parameter set. The
generalization algorithm is based on interpolation: we first pre-calculate the ROM dynamic
model at a finite number of points in the parameter space domain, and determine α, β

and φk (and thus the capsule displacement) at these points. For any other value of the
parameters, we first predict the time evolution of the capsule node displacements using a
linear interpolation procedure in the parameter space, and then build a dynamical system
based on the DMD methodology. The error is mostly below 0.3 % over the entire domain,
which proves the precision and utility of the ROM approach.

Like any other data-driven model, the model requires a certain number of HF
simulations to provide accurate predictions. By discretizing the parameter space in a
regular and homogeneous way (figure 12), we have not presently tried to optimize the
number of FOM simulations. But sampling strategies like Latin hypercube sampling exist
and result in a net reduction in FOM simulation number. The empirical law, conventional
among the data-driven model community, is that one needs between 10 × D and 50 × D
points, where D is the dimension of the problem (D = 2 in our case). This law shows that
the number of HF simulations does not explode with the problem dimension, owing to the
linear dependence of the law.
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The linear differential model is stable as soon as the eigenvalues of Aμ have non-positive
real parts, and is consistent with steady states as soon as zero is an eigenvalue. Numerical
experiments show that identified matrices Aμ from data have eigenvalues with negative
real parts, and one of the eigenvalues is very close to zero.

As is often the case with spectral-like methods, there is a trade-off between accuracy and
ill-conditioning effects: when a large number of POD modes are used (K > 20), the data
matrix X of snapshot POD coefficients is ill-conditioned. For the determination of Aμ,
we have used a Tikhonov regularization in the least squares cost function (see (3.27)) in
order to have a better-conditioned problem and an L-curve procedure to determine the best
regularization coefficient μ. Unfortunately, we observe some limitations in the accuracy. A
perspective would be to use a proximal approach: within an iterative procedure, at iteration
( p + 1), compute the matrix A( p+1)

μ solution of

A( p+1)
μ = arg min

A∈MK(R)

1
2

‖Y − AX‖2
F + μ

2
‖X‖2

F ‖A − A( p)
μ ‖2

F (8.3)

using A(0)
μ = 0. At convergence, one can observe that the regularization term vanishes, so

that one can expect better accuracy with this approach. This will be investigated in a future
work.

We have proposed a successful and very efficient ROM for FSI problems. It is an
alternative to the use of high-performance computing. It must be seen as a complementary
(and non-competing) approach to full-order models, and has many advantages. Among
them, one can mention the ease of implementation. It leads to a very handy set of
ODEs that are easy to determine from an algorithmic point of view. Furthermore, the
system can be run on any computer. The size of the matrices is, indeed, reduced from
(3 × 2562 nodes × 250 snapshots) to approximately (3 × 2562 nodes × (K + 1)), where
the number of modes is K = 20. The computation required time is a few milliseconds for
one parameter set. The current speedups are between 5000 and 52 000, which out-performs
any full-order model approach. We believe that this work is an encouraging milestone to
move towards real-time simulation of general coupled problems and to deal with high-level
parametric studies, sensitivity analysis, optimization and uncertainty quantification.

The next milestone following this work would be to go towards nonlinear differential
dynamical systems as ROMs. There are three natural ways to do that. The first is to use
kernel dynamic model decomposition rather than DMD. But we have shown recently in
De Vuyst, Dupont & Salsac (2022) that a nonlinear low-order dynamical model does
not provide significant improvement. The second way is to use extended dynamic model
decomposition (EDMD) (Williams, Kevrekidis & Rowley 2015). The EDMD method adds
some suitable nonlinear observables (or features) in the data, so that a linear ‘augmented’
dynamical system is searched for. A third option would be to use artificial neural networks
directly, in particular recurrent neural networks (RNNs) (Trischler & D’Euleuterio 2016).
The RNN training would replace the DMD procedure, and would be trained with the same
POD coefficient matrices X and Y. As shown in the recent study by Lin et al. (2021),
artificial intelligence may prove to be efficient and precise to predict capsule deformation.
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Appendix A. Effects of time derivative discretization on matrix estimation

In § 3.4, we explain how to identify the coefficient matrix A from a least squares problem
that tries to minimize the squared residual

∫ T
0 ‖β̇(t) − A β(t)‖2 dt. For practical reasons

and because of a finite amount of data, we have to discretize the functional and in particular
the time derivatives by means of finite differences. This section is dedicated to the analysis
of the effect of discretization on the estimation on A, and in particular on the effect on the
spectrum of A and the impact on the stability of the identified model.

The notations here are specific to this appendix. Suppose that we have a reference linear
dynamical system whose equations and initial data are

v̇ = Aref v, t ∈ [0, T], v(0) = v0 ∈ R
K, (A1)

where Aref ∈ MK(R). The solution to the differential problem is given by
v(t) = exp(Aref t) v0, t ∈ [0, T]. Suppose that we do not know Aref but we have access
to the exact solutions vn = v(tn) at discrete times tn = n �t, n ∈ {0, . . . , N}, where �t =
T/N. The (vn)n will be used as data for the identification (estimation) of the matrix Aref .
Consider the least squares minimization problem

min
A∈MK(R)

1
2

N−1∑
i=0

∥∥∥∥vn+1 − vn

�t
− Avn

∥∥∥∥
2

. (A2)

Since vn = exp(Aref n�t)v0 for all n, we have also vn+1 − vn = exp(Aref �t) vn. So (A2)
is equivalent to

min
A∈MK(R)

1
2

N−1∑
i=0

∥∥∥∥
(

exp(Aref �t) − I
�t

− A

)
vn

∥∥∥∥
2

= min
A∈MK(R)

1
2

∥∥∥∥
(

exp(Aref �t) − I
�t

− A

)
X

∥∥∥∥
2

F
,

(A3)

with X = [v0, v1, . . . , vN−1] ∈ MKN(R). The first-order optimality conditions are

A XX
T =

(
exp(Aref �t) − I

�t

)
XX

T. (A4)

As soon as X is a full-rank matrix (meaning that N ≥ K and we reasonably have K linearly
independent measurements of vn), the matrix XXT is invertible and we get the estimate

A = exp(Aref �t) − I
�t

. (A5)

Let us denote by λref
k (resp. λk) the (complex) eigenvalues of Aref (resp. A). We have

λk = (exp(λ
ref
k �t) − 1)/�t. Suppose now that we use a small time step �t. From a Taylor
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expansion, we observe that

λk = λref
k + �t

2
(λ

ref
k )2 + o(�t). (A6)

We would like to study the effect of the first-order error term (�t/2)(λ
ref
k )2 on the stability

of the reconstructed dynamical system v̇ = Av. Suppose that the complex number λref
k has

real and imaginary parts a and b, respectively. Then

λk =
(

a + �t
2

(a2 − b2)

)
+ i b(1 + a �t) + o(�t). (A7)

If a = Re(λref
k ) ≤ 0, what are the conditions to keep Re(λk) ≤ 0? We consider two cases.

(i) If a = 0 (with b /= 0), then λref
k is pure imaginary, meaning that the kth field is a

centre for the reference dynamical system. In this case, λk = −(�t/2)b2 + o(�t) <

0 for a small enough �t.
(ii) Consider now the case a /= 0. There are two sub-cases. If a2 ≤ b2, then Re(λk) ≤ 0

for a small enough �t. If a2 < b2, then the condition Re(λk) ≤ 0 gives

�t + o(�t) = − 2a
a2 − b2 . (A8)

So there is again a time step �t� > 0 for which, for any �t < �t�, we have Re(λk) ≤
0.

As a conclusion, starting from a stable linear dynamical system (in the sense that
Re(λref

k ) ≤ 0 for all k), using a small enough time step �t and the forward Euler time
discretization, the identification method leads to an estimated dynamical system that is
also stable.

Let us underline that this could not be the case using another time discretization as e.g.
for the backward Euler time discretization and the associated least squares problem,

min
A∈MK(R)

1
2

N−1∑
i=0

∥∥∥∥vn+1 − vn

�t
− Avn+1

∥∥∥∥
2

. (A9)

Using identical developments, we would get in this case A = (I − exp(−Aref �t))/�t and

λk =
(

a − �t
2

(a2 − b2)

)
+ ib(1 − a �t) + o(�t). (A10)

We observe that for a centre with a pure imaginary eigenvalue λref
k = ib, b /= 0, one gets

λk = (�t/2)b2 + o(�t), therefore λk > 0 for a small enough �t. This is a counter-intuitive
result: for numerical simulations, it is known that the backward Euler scheme s more
stability than the forward one. For system identification with time discretization of the
residual term, it is safer to use the forward Euler scheme for stability of the estimated
dynamical model.
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Appendix B. Kinetic energy dissipation

Another quantity of interest is the capsule kinetic energy ‖{v}‖2. Since the capsules
are expected to reach a steady state after a transient stage in the Stokes pipe flow,
the kinetic energy should also reach a constant value. From the differential equations,
semi-orthogonality of Q and the symmetry property of the scalar product, we successively
have

d
dt

(
1
2

‖{v}‖2
)

= d
dt

(
1
2

〈Qβ, Qβ〉
)

= d
dt

(
1
2

‖β‖2
)

= 〈β, β̇〉
= 〈β, Aμβ〉

= 1
2

〈β, Aμβ〉 + 1
2

〈β, AT
μβ〉

=
〈
β,

Aμ + AT
μ

2
β

〉
. (B1)

So stability properties on the kinetic energy are related to the spectral nature of
the (symmetric) matrix AS

μ = (Aμ + AT
μ)/2. The dissipation property is linked to the

non-positiveness of the (real) eigenvalues of AS
μ.

Appendix C. Practical computation of the pseudo-inverse matrix

The Moore–Penrose pseudo-inverse X† of a matrix X of size d × K, d ≥ K, with
rank(X) = K, is defined by

X
†=X

T(XX
T)−1. (C1)

For an ill-conditioned matrix X, the direct computation of X† by (C1) is unsuitable because
the condition number of XXT is the square of that of X. A more robust procedure can
be derived by help of the QR factorization. There exists a semi-orthogonal matrix Q̂ of
size d × K, and an upper triangular square matrix R of size K × K, such that XT = Q̂R.
Moreover, R is invertible because X is assumed to be a full-rank matrix. Since X† is the
solution of the matrix system

X
† (XX

T) = X
T, (C2)

we get
X

† RTQ̂TQ̂R = Q̂R. (C3)

By multiplying by R−1 on the right, since Q̂TQ̂ = IK , we get

X
†=Q̂ (RT)−1. (C4)
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