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Abstract. Harte (1982, Math. Z. 179, 431–436) initiated the study of Fredholm
theory relative to a unital homomorphism T : A → B between unital Banach algebras
A and B based on the following notions: an element a ∈ A is called Fredholm if 0 is not
in the spectrum of Ta, while a is Weyl (Browder) if there exist (commuting) elements
b and c in A with a = b + c such that 0 is not in the spectrum of b and c is in the
null space of T . We introduce and investigate the concepts of r-Fredholm, r-Weyl and
r-Browder elements, where 0 in these definitions is replaced by the spectral radii of a
and b, respectively.

2010 Mathematics Subject Classification. 46H30, 47A10, 47A53.

1. Introduction. In the early 1980’s Harte [10] introduced Fredholm, Weyl and
Browder theory relative to a unital homomorphism T : A → B between general unital
Banach algebras A and B. Several authors have continued this investigation (see [4, 5,
11, 12, 15] and [17–19]).

In certain applications, it is necessary to study the elements a ∈ A with the property
that the spectral radius r(a) of a is an isolated point of the spectrum σ (a) of a but
outside the spectrum σ (Ta) of Ta ∈ B (see [1,2] and [5]). In symbols, this property can
be expressed as follows:

0 ∈ (iso σ (a − r(a)1))\σ (T(a − r(a)1)),

which in the language of Fredholm theory says that a − r(a)1 is almost invertible
Fredholm (excluding, here, the trivial case where r(a) /∈ σ (a)). Introducing the notions
‘a is almost r-invertible if r(a) is not an accumulation point of σ (a)’ and ‘a is r-Fredholm if
r(a) /∈ σ (Ta)’, this becomes (the non-trivial case of) ‘a is almost r-invertible r-Fredholm’.

In studying elements b with the property that 0 ∈ (iso σ (b))\σ (Tb), the spectral
idempotent p(b, 0) associated with b and 0 plays an important role (see [19]). However,
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information about this spectral idempotent is scarce, and, especially in the context
of ordered Banach algebras, more information is available about p(a, r(a)) (if r(a) ∈
iso σ (a))—see, for instance, [20]. It therefore seems useful to study the related concepts
of ‘r-Fredholm theory’. However, it is not obvious if, and when, the concept ‘a − r(a)1
is Weyl (Browder)’ coincides with a being ‘r-Weyl (r-Browder)’, where an element a is
r-Weyl (r-Browder) if there exist (commuting) elements b and c in A with a = b + c
such that r(b) / σ∈ (b) and Tc = 0. (We recall that this is the definition of ‘a is Weyl
(Browder)’, where the condition 0 /∈ σ (b) is replaced by the condition r(b) /∈ σ (b).)

As a result, in this note we investigate what happens to Harte’s Fredholm theory if
we replace the group A−1 of invertible elements of a unital Banach algebra A with the set
Ar = {a ∈ A : a − r(a)1 ∈ A−1}. We say that the elements of Ar have the spectral radius
invertibility property, or simply that they are r-invertible. We shall study r-Fredholm,
r-Weyl and r-Browder elements, prove analogues of important results of Harte [10]
concerning Browder elements, and show that if the relevant homomorphism has the
Riesz property, then a − r(a)1 is Browder if and only if a belongs to a particular subset
of the r-Browder elements (see Theorems 7.2 and 7.4).

Our paper is organised as follows: In Section 2, the necessary background is given,
including important results and examples regarding Fredholm, Weyl and Browder
elements. Section 3 introduces r-Fredholm, r-Weyl and r-Browder elements formally
and provides some basic properties of these elements, while, in Section 4, a number of
illustrative examples are given. Some additional properties are obtained if the relevant
homomorphism is spectral radius preserving. This is the topic of Section 5, and an
important observation in Proposition 5.2 leads to the definition and investigation of
certain special sets of r-Weyl and r-Browder elements in Section 6. Finally, the main
results and some applications are presented in Section 7.

2. Preliminaries. All our Banach algebras will be complex and unital (with unit
1). We denote the set of all invertible elements of a Banach algebra A by A−1 and
the radical of A by Rad(A). By ‘ideal’ we will always mean ‘proper two-sided ideal’.
If A and B are Banach algebras, then a linear operator T : A → B (not necessarily
continuous) is called a (unital algebra) homomorphism if T(ab) = TaTb (a, b ∈ A) and
T maps the unit of A onto the unit of B. Clearly, TA−1 ⊆ B−1. The null space (kernel)
of T will be indicated by N(T).

The spectrum of an element a in a Banach algebra A will be denoted by σ (a), the
sets of isolated and accumulation points of σ (a) by iso σ (a) and acc σ (a), respectively,
and the spectral radius of a by r(a). In addition, we will denote the peripheral spectrum
{λ ∈ σ (a) : |λ| = r(a)} of a by σper(a). Note that this is a non-empty, closed subset
of σ (a). For λ ∈ �\acc σ (a), we write p(a, λ) for the spectral idempotent of a ∈ A
relative to λ. An element a ∈ A is said to be almost invertible if 0 /∈ acc σ (a), and
the set of all almost invertible elements of A is denoted by AD. In the literature,
almost invertible elements are also called generalised Drazin invertible elements (see
[13], Theorem 4.2), motivating this notation. An ideal I in A will be called inessential
whenever acc σ (a) ⊆ {0} for all a ∈ I . If T : A → B is a homomorphism and N(T) is an
inessential ideal of A, then T is said to have the Riesz property. Clearly, σ (Ta) ⊆ σ (a)
for all a ∈ A. In addition, T is said to be spectrum preserving if σ (Ta) = σ (a) for all
a ∈ A, and T is spectral radius preserving if r(Ta) = r(a) for all a ∈ A.

If X �= {0} is a Banach space, thenL(X) will denote the Banach algebra of bounded
linear operators on X with unit the identity operator I on X . If dim X = ∞, then K(X)
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will denote the closed inessential ideal in L(X) of all compact operators on X . The
Banach algebra of all upper triangular 2 × 2 matrices with complex entries will be
denoted by Mu

2(�), while C(K) will be the Banach algebra of all continuous complex-
valued functions on a compact Hausdorff space K , with unit the constant function
1(x) = 1 for all x ∈ K . If � is the open unit disc in the complex plane, then A(�)
denotes the disc algebra, i.e., the closed subalgebra of C(�) consisting of the functions
which are analytic on �.

The following result (which is obvious if T is bounded) holds for any
homomorphism.

PROPOSITION 2.1 ([8], Proposition 2.1). Let T : A → B be a homomorphism. If
a ∈ A and � is a contour in �\σ (a) having winding number 0 or 1 around each point of
σ (a), then

T
(

1
2π i

∫
�

(λ1 − a)−1dλ

)
= 1

2π i

∫
�

(λ1 − Ta)−1dλ.

We now recall Harte’s definitions of Fredholm, Weyl and Browder elements in
Banach algebras.

DEFINITION 2.2 ([10], pp. 431–432). Let T : A → B be a homomorphism. An
element a ∈ A is called
� Fredholm if Ta ∈ B−1,
� Weyl if there exist elements b ∈ A−1 and c ∈ N(T) such that a = b + c,
� Browder if there exist commuting elements b ∈ A−1 and c ∈ N(T) such that a =

b + c,
� almost invertible Fredholm if it is Fredholm and almost invertible.

Denote by FT ,WT ,BT and AD ∩ FT the sets of Fredholm, Weyl, Browder and
almost invertible Fredholm elements of A relative to T, respectively. If A is commutative
then, obviously, WT = BT .

The above definitions are motivated by the following classical results in operator
theory (see, e.g., [6]).

EXAMPLE 2.3. Let X be an infinite-dimensional Banach space and π : L(X) →
L(X)/K(X) the canonical homomorphism. If U ∈ L(X), then

(1) U ∈ Fπ if and only if dim N(U) < ∞, U(X) is closed and dim(X/U(X)) < ∞.
(2) U ∈ Wπ if and only if U ∈ Fπ with index zero (i.e., dim N(U) = dim (X/U(X))), if

and only if there exist operators V ∈ L(X)−1 and W ∈ K(X) such that U = V + W .
(3) U ∈ Bπ if and only if U ∈ Fπ with finite ascent and descent (in the operator

theoretic sense), if and only if there exist commuting operators V ∈ L(X)−1 and
W ∈ K(X) such that U = V + W .

The following example is due to Harte.

EXAMPLE 2.4 ([10], p. 432). Let K and L be compact Hausdorff spaces and A :=
C(K) and B := C(L) the Banach algebras of continuous complex-valued functions on
K and L, respectively. Consider the homomorphism T : A → B defined by Tf = f ◦ θ,

where θ : L → K is a continuous map. Then

(1) FT = {f ∈ A : 0 /∈ f (θ (L))}.
(2) f ∈ WT if and only if its restriction to θ (L) has an invertible extension to K .
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The non-trivial parts of the following result were proven by Harte for bounded
homomorphisms, and generalised to unbounded homomorphisms in [19].

THEOREM 2.5 ([10], (1.4), Theorem 1, [19], p. 19). Let T : A → B be a
homomorphism. Then

A−1 ⊆ AD ∩ FT ⊆ BT ⊆ WT ⊆ FT .

Moreover, AD ∩ FT = BT if and only if T has the Riesz property.

Clearly, if T is spectrum preserving, then all the above inclusions are equalities. If
T is only spectral radius preserving, then N(T) ⊆ Rad(A), and hence

A−1 = AD ∩ FT = BT = WT ,

since Rad(A) = {a ∈ A : a + A−1 ⊆ A−1} (see [14], Theorem 2.5). In this case, the
inclusion WT ⊆ FT is, however, in general strict. This can be seen by considering the
homomorphism T : A(�) → C(�) from the disc algebraA(�) into the Banach algebra
C(�) of continuous complex-valued functions on the unit circle �, where Tf = f|�.
This homomorphism is spectral radius preserving but not spectrum preserving, and
if f (z) = z for all z ∈ �, then f ∈ A(�) is Fredholm, but not invertible, so that
f ∈ FT\WT . (See ([9], Example 3).)

Finally, we record the following fact.

PROPOSITION 2.6 ([19], Theorem 2.4). Let T : A → B be a homomorphism. If a ∈
AD ∩ FT , then p(a, 0) ∈ N(T).

3. Basic r-Fredholm theory. An element a in a Banach algebra A has the spectral
radius invertibility property if r(a) /∈ σ (a). We abbreviate this by simply saying that a is
r-invertible. Analogously, a is said to be almost r-invertible if r(a) /∈ acc σ (a). We shall
denote by Ar and ADr the sets of r-invertible and almost r-invertible elements of A,
respectively. Consequently, Ar ⊆ ADr.

As can be seen from Definition 2.2, the set of invertible elements plays a crucial
role in Fredholm theory. Here, we (analogously) introduce notions that make use of
the set of r-invertible elements.

DEFINITION 3.1. Let T : A → B be a homomorphism. An element a ∈ A is called
� r-Fredholm if r(a) /∈ σ (Ta),
� r-Weyl if there exist elements b ∈ Ar and c ∈ N(T) such that a = b + c,
� r-Browder if there exist commuting elements b ∈ Ar and c ∈ N(T) such that a =

b + c,
� almost r-invertible r-Fredholm if it is r-Fredholm and almost r-invertible.

Denote by F r
T ,W r

T ,Br
T and ADr ∩ F r

T the sets of r-Fredholm, r-Weyl, r-Browder
and almost r-invertible r-Fredholm elements of A relative to T , respectively. If A is
commutative then, of course, W r

T = Br
T . We note that the sets of r-Weyl and r-Browder

elements depend only on the null space of the homomorphism in the sense that if
S : A → B and T : A → C are homomorphisms with N(S) = N(T), then W r

S = W r
T

and Br
S = Br

T . (An analogous statement holds, of course, for the sets of Weyl and
Browder elements.) The following inclusions are obvious.
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PROPOSITION 3.2. Let T : A → B be a homomorphism. Then

Ar ⊆ Br
T ⊆ W r

T and Ar ∪ T−1(Br) ⊆ F r
T .

However, in general no relation holds between Ar and T−1(Br)—see Example 4.2.
We shall next describe the elementary connections between the above notions and

their ‘classical’ counterparts in Harte’s Fredholm theory.

LEMMA 3.3. Let T : A → B be a homomorphism. Then

(1) a ∈ Ar if and only if a − r(a)1 ∈ A−1.
(2) a ∈ ADr if and only if a − r(a)1 ∈ AD.
(3) If a ∈ Br

T , then a − r(b)1 ∈ BT , where b is the r-invertible component in a
decomposition of a.

(4) If a ∈ W r
T , then a − r(b)1 ∈ WT , where b is the r-invertible component in a

decomposition of a.
(5) a ∈ F r

T if and only if a − r(a)1 ∈ FT , and hence a ∈ ADr ∩ F r
T if and only if

a − r(a)1 ∈ AD ∩ FT .

The proof of the above lemma follows easily from the definitions of the respective
sets. We note that r(b) in (3) and (4) of Lemma 3.3 cannot be replaced by r(a) in general
(see Example 4.2). Proposition 6.2 will show, however, that this can be done if Br

T
and W r

T are replaced by certain special subsets. In Theorem 7.4, we will show that the
converse of (3), with r(b) replaced by r(a), holds whenever T has the Riesz property.

4. Examples. The situation for function spaces corresponding to Example 2.4 is
as follows.

EXAMPLE 4.1. Let T : A → B be the homomorphism Tf = f ◦ θ , where K and L
are compact Hausdorff spaces, A := C(K), B := C(L) and θ : L → K is a continuous
map, as in Example 2.4. Then

(1) Ar = {f ∈ A : r(f ) /∈ f (K)}.
(2) F r

T = {f ∈ A : r(f ) /∈ f (θ (L))}.
(3) W r

T =
{

Ar if θ (L) = K
A otherwise.

Proof. For (1), we only need to note that σ (f ) = f (K), while (2) follows directly
from the definition of F r

T (or from Example 2.4 and Lemma 3.3(5)).
Towards (3), we note that N(T) = {f ∈ A : f (θ (L)) = {0}}. Hence, if θ (L) = K ,

then N(T) = {0}, so that W r
T = Ar. Otherwise, choose x0 ∈ K\θ (L). By Urysohn’s

Lemma ([21], Theorem 15.6), there exists h ∈ A such that h(θ (L)) = {0}, h(x0) = 1
and 0 ≤ h ≤ 1. Let f ∈ A and consider g = (1 − h)f + i(r(f ) + 1)h. Then g ∈ A and
(f − g)(θ (L)) = {0}. Therefore f = g + u, where u = f − g ∈ N(T).

Since h(x0) = 1, we have that

r(g) = max
x∈K

|g(x)| ≥ |g(x0)| = |i(r(f ) + 1)| = r(f ) + 1.

So, if g /∈ Ar, i.e., r(g) = g(x1) for some x1 ∈ K , then since 0 ≤ h ≤ 1,

r(g) = Re g(x1) = (1 − h(x1))(Re f (x1)) ≤ |f (x1)| ≤ max
x∈K

|f (x)| = r(f ),

which contradicts the previous inequality. Therefore g ∈ Ar and hence f ∈ W r
T . �
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EXAMPLE 4.2. In Example 4.1, let K be any 2-point space, L a 1-point subset of
K and θ the inclusion map. Identifying A = C(K) with �2 and B = C(L) with � in
the usual way, with T : �2 → � becoming the homomorphism T(z1, z2) = z1, there
exists a ∈ W r

T such that a − r(a)1 /∈ WT . Also, neither of the inclusions Ar ⊆ T−1(Br)
or T−1(Br) ⊆ Ar hold.

Proof. By Example 4.1(3), the element a = (1,−1) is in A = W r
T , but since

a − r(a)1 = (0,−2) ∈ N(T), it follows that a − r(a)1 /∈ WT . In addition, for the
element a = (1,−2) we have that a ∈ (�2)r, but Ta = 1 /∈ �r, and if a = (−1, 1), then
Ta = −1 ∈ �r, while a /∈ (�2)r. �

For an elementary homomorphism from the algebra of upper triangular 2 × 2
matrices onto � we have the following proposition.

PROPOSITION 4.3. Let A = Mu
2(�) and T : A → � the homomorphism Ta = a1,

where a =
(

a1 a2
0 a4

)
. Then

(1) BT = WT = A\N(T) = {( a1 a2
0 a4

)
: a1, a2, a4 ∈ � and a1 �= 0

}
.

(2) a − r(a)1 ∈ BT if and only if r(a) �= a1, if and only if a ∈ F r
T .

(3) W r
T = A.

(4) Br
T = A\ {( x z

0 x ) : x ≥ 0 and z �= 0}.
Proof.

(1) The final equality is obvious, since

N(T) =
{(

0 a2
0 a4

)
: a2, a4 ∈ �

}
.

Suppose that a = b + c, where b ∈ A−1 and c ∈ N(T). Then Ta = Tb ∈ B−1, so
that a /∈ N(T). Now, let a ∈ A\N(T). Then a1 �= 0. Therefore b = a11 = (

a1 0
0 a1

) ∈
A−1 and if c = a − b, then c ∈ N(T) and b commutes with c, so that a ∈ BT . We
have proven that WT ⊆ A\N(T) ⊆ BT , and since BT ⊆ WT , the result follows.

(2) It follows from (1) that a − r(a)1 = (
a1−r(a) a2

0 a4−r(a)

) ∈ BT if and only if a1 �= r(a). In
addition, a1 �= r(a) if and only if r(a) /∈ {a1} = σ (Ta), if and only if a ∈ F r

T .
(3) Let a ∈ A. If b = (

a1 0
0 −|a1 |−1

)
and c = (

0 a2
0 a4+|a1 |+1

)
, then c ∈ N(T) and r(b) = |a1| + 1 /∈

σ (b), so that b ∈ Ar. Hence a = b + c ∈ W r
T .

(4) Let a = ( a1 a2
0 a4

)
. Then a �= ( x z

0 x ), where x ≥ 0 and z �= 0, if and only if
(i) a1 /∈ [0,∞), or

(ii) a4 �= a1 ≥ 0, or
(iii) a2 = 0 and a1 = a4 ≥ 0.
In case (i), let b = a11 = (

a1 0
0 a1

)
and c = (

0 a2
0 a4−a1

)
. Then r(b) = |a1| /∈ {a1} = σ (b), so

that b ∈ Ar. Clearly, c ∈ N(T) and b commutes with c, so that a = b + c ∈ Br
T .

In case (ii), let b = (
a1 b2
0 −a1−1

)
and c = (

0 a2−b2
0 a4+a1+1

)
, where b2 ∈ � will be determined

below. Then c ∈ N(T) and r(b) = a1 + 1 /∈ σ (b), so that b ∈ Ar. Using a4 �= a1 and
comparing the entries of bc and cb in the upper right-hand corners, it can be seen
that b commutes with c if (and only if) b2 = (2a1+1)a2

a1−a4
. Hence, choosing this value

for b2, we obtain that a = b + c ∈ Br
T .

Finally, in case (iii), let b = (
a1 0
0 −a1−1

)
and c = (

0 0
0 2a1+1

)
. As before, b ∈ Ar and c ∈

N(T), and bc = cb because they are diagonal. Hence a = b + c ∈ Br
T .

We conclude by proving that if a = ( x z
0 x ) with x ≥ 0 and z �= 0, then a /∈ Br

T . Indeed,
assuming that a ∈ Br

T , we must have a = b+ c with b = (
x b2
0 b4

) ∈ Ar, i.e., b4 �= |b4| > x,
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c = (
0 z−b2
0 x−b4

) ∈ N(T) and bc = cb. However, the commutativity of b and c forces the
equation z(x − b4) = 0. Since z �= 0, we obtain the contradiction x = b4, and so
a /∈ Br

T . �
We note that (3) and (4) of Proposition 4.3 illustrate that, in general, the inclusion

Br
T ⊆ W r

T is proper.

5. Spectral radius preserving homomorphisms. We recall that if T : A → B is a
homomorphism, then the inclusion TA−1 ⊆ B−1 holds. However, the inclusion TAr ⊆
Br is not in general true (see Example 4.2). We have the following result.

LEMMA 5.1. Let T : A → B be a homomorphism. If a ∈ Ar is such that r(a) = r(Ta),
then Ta ∈ Br. Hence, if T is spectral radius preserving, then TAr ⊆ Br.

Proof. Suppose that a ∈ Ar satisfies r(a) = r(Ta). Then r(Ta) /∈ σ (a), and hence
r(Ta) /∈ σ (Ta) follows from the fact that σ (Ta) ⊆ σ (a). This gives Ta ∈ Br. �

Recall that the inclusion WT ⊆ FT holds. An r-Weyl element is, however, not in
general r-Fredholm—see Example 6.5. Our next result gives conditions under which
r-Weyl elements are r-Fredholm.

PROPOSITION 5.2. Let T : A → B be a homomorphism and suppose that a ∈ W r
T ,

say a = b + c, where b ∈ Ar and c ∈ N(T). If r(b) ≤ r(a), then a ∈ F r
T . In particular, if

T is spectral radius preserving, then W r
T ⊆ F r

T .

Proof. Suppose that r(b) ≤ r(a). Since b ∈ Ar, we have that r(b) /∈ σ (b), and hence
r(a) /∈ σ (b), so that r(a) /∈ σ (Tb) = σ (Ta). This gives a ∈ F r

T .

Suppose now that T is spectral radius preserving. Then r(a) = r(Ta) = r(Tb) =
r(b), and hence the result follows from our previous reasoning. �

It follows from Propositions 3.2 and 5.2 that if T is spectral radius preserving,
then

Ar ⊆ Br
T ⊆ W r

T ⊆ F r
T .

In fact, in this case all these sets coincide—see Corollary 5.4. To prove this, we need
the following result of Mathieu and Schick.

THEOREM 5.3 ([16], Proposition 4.7). Let A and B be Banach algebras, and let
T : A → B be a unital, linear map which preserves the spectral radius. Then T preserves
the peripheral spectrum, i.e.,

σper(a) = σper(Ta), (5.1)

for all a ∈ A.

We remark that Mathieu and Schick stated the above result under the additional
assumption that T is bijective. This assumption is, however, superfluous. Indeed, the
proof of ([16], Proposition 4.7) establishes the inclusion ⊆ in (5.1). Conversely, taking
λ ∈ σper(Ta), we can argue as in the first display on p. 198 of [16] to see that r(a + λ) =
2r(a), so that there is α ∈ σ (a) such that |α + λ| = 2|λ|. Now, the rest of the argument
carries over verbatim to show that λ = α ∈ σper(a). We are grateful to Martin Mathieu
for outlining this argument to us.
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COROLLARY 5.4. Let T : A → B be a spectral radius preserving homomorphism.
Then F r

T = Ar. Hence

Ar = Br
T = W r

T = F r
T .

Proof. We have that r(a) ∈ σ (a) if and only if r(a) ∈ σper(a) if and only if r(a) ∈
σper(Ta) (using Theorem 5.3) if and only if r(a) ∈ σ (Ta). �

By Lemma 3.3, we have for any homomorphism T that a ∈ F r
T if and only if

a − r(a)1 ∈ FT (and similarly for Ar and ADr
). In addition, it now follows from

Corollary 5.4, together with Lemma 3.3(1) and the remark following Theorem 2.5,
that if T is spectral radius preserving, then a ∈ W r

T if and only if a − r(a)1 ∈ WT (and
similarly for Br

T and BT ).
Recall that T−1(B−1) = FT by definition. However, in general, T−1(Br) �= F r

T (see
Example 4.2, where F r

T �⊆ T−1(Br), since Ar �⊆ T−1(Br)). The following result gives a
sufficient condition for equality to hold. It follows from Corollary 5.4 and Lemma 5.1,
together with Proposition 3.2.

COROLLARY 5.5. Let T : A → B be a spectral radius preserving homomorphism.
Then T−1(Br) = F r

T .

6. Special sets of r-Weyl and r-Browder elements. Motivated by the first part of
Proposition 5.2, we make the following definitions.

DEFINITION 6.1. Let T : A → B be a homomorphism. An element a ∈ A is called
� contractive r-Weyl (or (r, 1)-Weyl for short) if there exist elements b ∈ Ar and c ∈

N(T) satisfying r(b) ≤ r(a) and a = b + c,
� contractive r-Browder (or (r, 1)-Browder for short) if there exist commuting elements

b ∈ Ar and c ∈ N(T) satisfying r(b) ≤ r(a) and a = b + c.

Denote by W r,1
T and Br,1

T the sets of all (r, 1)-Weyl elements and all (r, 1)-Browder
elements, respectively, of A relative to T .

Recalling (3) and (4) of Lemma 3.3 and Example 4.2, we now observe the following.

PROPOSITION 6.2. Let T : A → B be a homomorphism and let a ∈ A. If a ∈ W r,1
T ,

then a − r(a)1 ∈ WT and if a ∈ Br,1
T , then a − r(a)1 ∈ BT .

Proof. Suppose there exist (commuting) elements b ∈ Ar and c ∈ N(T) such that
a = b + c and r(b) ≤ r(a). If r(b) = r(a), then b − r(a)1 ∈ A−1 since b ∈ Ar. If r(b) <

r(a), then r(a) /∈ σ (b), so that, again, b − r(a)1 ∈ A−1. Thus, the result follows since we
may write a − r(a)1 = (b − r(a)1) + c. �

From the respective definitions and Propositions 3.2 and 5.2, we have the following
inclusions.

PROPOSITION 6.3. Let T : A → B be a homomorphism. Then

Ar ⊆ Br,1
T ⊆ W r,1

T ⊆ F r
T

⊆ ⊆
Br

T ⊆ W r
T .
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We note that, althoughW r
T andBr

T are not generally contained inF r
T (see Example

6.5), W r,1
T and Br,1

T are always subsets of F r
T .

EXAMPLE 6.4. Let T : A → B be the homomorphism Tf = f ◦ θ , where K and L
are compact Hausdorff spaces, A := C(K), B := C(L) and θ : L → K is a continuous
map, as in Example 2.4. Then W r,1

T = F r
T .

Proof. By Proposition 6.3 the inclusion W r,1
T ⊆ F r

T holds in general, so to prove
the opposite inclusion, let f ∈ F r

T , i.e., r(f ) /∈ f (θ (L)) by Example 4.1(2). If r(f ) /∈ f (K),
then f ∈ Ar, so that the result follows. Otherwise, we have r(f ) ∈ f (K)\f (θ (L)), so that

K0 := θ (L) ∪ f −1({−r(f )}) and K1 := f −1({r(f )})
are non-empty, closed sets. Since f ∈ F r

T and 0 /∈ F r
T , it also follows that K0 ∩ K1 = ∅.

By applying Urysohn’s Lemma, we obtain h ∈ A such that h(K0) = {0}, h(K1) = {1}
and 0 ≤ h ≤ 1.

Let g = (1 − 2h)f . Then g ∈ A, g|K0 = f|K0 and g|K1 = −f|K1 . Also, since
−1 ≤ 1 − 2h ≤ 1, we have

|g(x)| ≤ |f (x)| (6.1)

for all x ∈ K , so that r(g) ≤ r(f ). In fact, r(g) = r(f ), because if x ∈ K1, then g(x) =
−f (x) = −r(f ). Since θ (L) ⊆ K0, it is also clear that g|θ(L) = f|θ(L), so that f − g ∈ N(T).

It remains to prove that g ∈ Ar, since then f = g + (f − g) ∈ W r,1
T . To this end, we

prove that r(f ) /∈ g(K), so suppose to the contrary that r(f ) = g(x0) for some x0 ∈ K .
Then f (x0) ∈ �, and it follows from (6.1) that r(f ) = |f (x0)|, so that f (x0) = ±r(f ).
However, if f (x0) = r(f ), then x0 ∈ K1 so that g(x0) = −r(f ), which contradicts r(f ) =
g(x0) since f �= 0. Similarly, if f (x0) = −r(f ), then x0 ∈ K0 so that g(x0) = −r(f ), giving
the same contradiction. Since r(f ) = r(g), it follows that r(g) /∈ g(K), i.e., g ∈ Ar by
Example 4.1(1). �

It follows from Proposition 6.3, Examples 6.4 and 4.1(3) that if θ (L) �= K , then

C(K)r ⊆ W r,1
T = F r

T ⊆ W r
T = C(K).

Our next example illustrates that the remaining inclusions are strict.

EXAMPLE 6.5. If θ (L) �= K in Example 6.4, then

C(K)r
� W r,1

T = F r
T � W r

T = C(K).

Proof. If x0 ∈ K\θ (L), then Urysohn’s Lemma provides a continuous function
f : K → [0, 1] such that f (θ (L)) = {0} and f (x0) = 1. Then r(f ) = 1 ∈ f (K), so that
f /∈ C(K)r, but r(f ) /∈ {0} = f (θ (L)), so that f ∈ F r

T by Example 4.1(2). This shows that
C(K)r � W r,1

T .
To prove that F r

T � W r
T , we simply note that for the constant function 1 ∈ C(K) =

W r
T we have that r(1) = 1 ∈ 1(θ (L)), so that 1 /∈ F r

T . �
Our final example illustrates that, in general, the inclusion W r,1

T ⊆ F r
T is also strict.

EXAMPLE 6.6. Consider the disc algebras A(�) and A
( 1

2 �
)

and let T : A(�) →
A

( 1
2 �

)
be defined by Tf = f| 1

2 �. Then W r,1
T � F r

T .
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Proof. Consider the function f ∈ A(�) defined by f (z) = z for all z ∈ �. Then
σ (f ) = � and σ (Tf ) = 1

2 �. Since r(f ) = 1 ∈ σ (f )\σ (Tf ), we have that f is r-Fredholm
but not r-invertible. By ([7], Theorem 3.7, p. 78), N(T) = {0} and therefore f /∈ W r

T , so
that f /∈ W r,1

T . �

7. Main results. In [10] and [19], Proposition 2.6 was used to show that every
almost invertible Fredholm element is Browder. Here, we establish an analogue of this
result for almost r-invertible r-Fredholm elements and use it to show that every almost
r-invertible r-Fredholm element is r-Browder (see Theorem 7.2).

LEMMA 7.1. Let T : A → B be a homomorphism. If a ∈ ADr ∩ F r
T , then p(a, r(a)) ∈

N(T).

Proof. Let a ∈ ADr ∩ F r
T . If r(a) /∈ σ (a), then Tp(a, r(a)) = T0 = 0. Hence, suppose

that r(a) ∈ iso σ (a). By Proposition 2.1, we have that

Tp(a, r(a)) = T
(

1
2π i

∫
�

(λ1 − a)−1dλ

)
= 1

2π i

∫
�

(λ1 − Ta)−1dλ,

where � is chosen to be a positively oriented circle centred at r(a) and separating r(a)
from σ (a)\{r(a)}, and hence from σ (Ta)\{r(a)}. Using the fact that a ∈ F r

T , that is,
r(a) /∈ σ (Ta), it follows from Cauchy’s theorem that Tp(a, r(a)) = 0. �

We are now ready for our first main result.

THEOREM 7.2. Let T : A → B be a homomorphism. If a ∈ ADr ∩ F r
T , then there exist

commuting elements b ∈ Ar and c ∈ N(T) such that r(a) = r(b) and a = b + c. Therefore
ADr ∩ F r

T ⊆ Br,1
T .

Proof. Let a ∈ ADr ∩ F r
T . We may assume without loss of generality that r(a) = 1.

If 1 /∈ σ (a), then a ∈ Ar so that the result follows with b = a and c = 0. Hence, suppose
that 1 = r(a) ∈ iso σ (a) and let p denote the spectral idempotent p(a, 1) of a relative to
1. Let b = a(1 − p) − p and c = (a + 1)p. Then a = b + c, bc = cb and it follows from
Lemma 7.1 that c ∈ N(T).

Choose U1 and U0 to be disjoint open sets such that U1 contains 1 and U0 contains
σ (a)\{1}. If f, g : U0 ∪ U1 → � are defined by

f (λ) =
{

0 if λ ∈ U0

1 if λ ∈ U1
and g(λ) = λ(1 − f (λ)) − f (λ),

then, by the holomorphic functional calculus ([3], Theorem 3.3.4), p = f (a) and b =
g(a). Using the spectral mapping theorem, we have that

σ (b) = σ (g(a)) = g(σ (a))

= {λ(1 − f (λ)) − f (λ) : λ ∈ σ (a)}
= {−1} ∪ σ (a)\{1}.

Therefore r(b) = 1 = r(a) /∈ σ (b). This shows that b ∈ Ar and finishes our proof. �
It follows from the proof of Theorem 7.2 that if a ∈ A is such that r(a) ∈

(iso σ (a))\σ (Ta) (with r(a) now not necessarily equal to 1) and p = p(a, r(a)), then
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a = b + c, where b = a(1 − p) − r(a)p ∈ Ar and c = (a + r(a)1)p ∈ N(T) commute, and
r(a) = r(b).

If T is a homomorphism satisfying the Riesz property, then Harte showed that
every Browder element relative to T is almost invertible Fredholm relative to T (see
Theorem 2.5). This is, however, not the case for r-Browder and almost r-invertible
r-Fredholm elements. We verify this in the next example.

EXAMPLE 7.3. Let A = Mu
2(�) and T : A → � the homomorphism

T
(

a1 a2

0 a4

)
= a1,

which satisfies the Riesz property. Then ( 1 0
0 −1 ) ∈ Br

T\(ADr ∩ F r
T ).

Proof. By Proposition 4.3(4), a =
(

1 0
0 −1

)
is r-Browder and since r(a) = 1 = a1, it

follows from Proposition 4.3(2) that a is not r-Fredholm. �
In general, by Theorem 7.2 the inclusion ADr ∩ F r

T ⊆ Br,1
T holds. In our second

main result, we show that these two sets coincide whenever T satisfies the Riesz
property.

THEOREM 7.4. Let T : A → B be a homomorphism which satisfies the Riesz property.
Then ADr ∩ F r

T = Br,1
T = {a ∈ A : a − r(a)1 ∈ BT }.

Proof. Even if T does not have the Riesz property, we have from Theorem 7.2 that
ADr ∩ F r

T ⊆ Br,1
T , and from Proposition 6.2 that Br,1

T ⊆ {a ∈ A : a − r(a)1 ∈ BT }. Now,
if T has the Riesz property and a − r(a)1 ∈ BT , then it follows from Theorem 2.5 that
a − r(a)1 ∈ AD ∩ FT . Hence a ∈ ADr ∩ F r

T by Lemma 3.3(5). �
We note that if T has the Riesz property, then we even have that a is (r, 1)-Browder

if and only if r(b) = r(a) holds for the r-invertible component b in a decomposition of
a. This follows from the first equality in Theorem 7.4 and the first part of Theorem 7.2.

It was shown in Lemma 3.3(5) that, for any homomorphism T , a ∈ F r
T if and

only if a − r(a)1 ∈ FT . The second equality in Theorem 7.4 shows that if T has the
Riesz property, then there is a similar relationship between (r, 1)-Browder and Browder
elements. In particular, since Br,1

T ⊆ Br
T , the converse implication in Lemma 3.3(3)

holds with r(b) replaced by r(a). For operators (see Example 2.3(3)), this means the
following.

COROLLARY 7.5. Let X be an infinite-dimensional Banach space. If U ∈ L(X) has the
property that there exists W ∈ L(X)−1 commuting with U such that U − r(U)I − W is a
compact operator, then there exists V ∈ L(X) commuting with U such that V − r(V )I ∈
L(X)−1 and U − V is a compact operator.

The following characterisation of the set Br,1
T in the matrix case follows from the

second equality in Theorem 7.4 and Proposition 4.3(2).

EXAMPLE 7.6. Let A = Mu
2(�) and T : A → � the homomorphism Ta = a1, where

a =
(

a1 a2
0 a4

)
. Then

Br,1
T = F r

T =
{

a =
(

a1 a2
0 a4

)
: r(a) �= a1

}
.
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Our next example shows that, for the first equality in Theorem 7.4, the assumption
‘T satisfies the Riesz property’ cannot in general be dropped.

EXAMPLE 7.7. Consider the Banach algebra A := C(K), where K = [0, 1], and let
T : A → A be the homomorphism induced by composition with the zero function on
K. If f ∈ A is defined by f (z) = z, then f ∈ Br,1

T \(ADr ∩ F r
T ).

Proof. Since r(f ) = 1 /∈ {0} = f (θ (K)), it follows from Example 4.1(2) that f ∈
F r

T . Therefore Example 6.4 implies that f ∈ Br,1
T . We have, however, that r(f ) = 1 ∈

acc [0, 1] = acc σ (f ), and so f /∈ ADr
. �

Finally, we show that the second equality in Theorem 7.4 may also fail to hold if
T does not have the Riesz property.

EXAMPLE 7.8. Let A = A(�), define f ∈ A by f (z) = z for all z ∈ � and let T :
A → A/I be the canonical homomorphism where I is the closed ideal generated by f 2.
Then

(1) h(0) = h′(0) = 0 for all h ∈ I .
(2) f − r(f )1 ∈ BT but f /∈ Br,1

T .

Proof.

(1) If h = f 2g for some g ∈ A, then clearly h(0) = 0, and since h′ = 2fg + f 2g′, it follows
that h′(0) = 0 as well. Now, let h ∈ I , i.e., there exists a sequence (gn) in A such
that the sequence (hn), where hn = f 2gn, converges uniformly to h on �. Then
clearly h(0) = 0, and by ([7], Theorem VII.2.1, p. 151) the sequence (h′

n) converges
uniformly to h′ on each compact subset of �, so that h′(0) = 0 as well.

(2) We first note that I = N(T) and that r(f ) = 1 ∈ � = f (�) = σ (f ). Let h = 1
4 f 2

and let u = f − r(f )1 − h. Then f − r(f )1 = u + h with h ∈ N(T). Since
u(z) = z − 1 − 1

4 z2, we have that u(z) = 0 if and only if z = 2, and since 2 /∈ �,
it follows that 0 /∈ u(�) = σ (u), so that u ∈ A−1. Since A is commutative, we have
that f − r(f )1 is Browder.
In order to show that f is not (r, 1)-Browder, suppose that f = v + h for some
v ∈ A with r(v) ≤ r(f ) and h ∈ I . Then |v(z)| ≤ ||v|| = r(v) ≤ 1 for all z ∈ � and, by
(1), v(0) = f (0) − h(0) = 0 and v′(0) = f ′(0) − h′(0) = 1. It follows from Schwarz’s
Lemma ([7], Theorem VI.2.1, p. 130) that v(z) = kz for some constant k with
|k| = 1. We see that k = 1 because v′(0) = 1. Hence v = f , but then r(v) ∈ σ (v), so
that v is not r-invertible. We have shown that f is not (r, 1)-Browder. �

We note that the homomorphism T in Example 7.8 does not have the Riesz
property since the ideal I is not inessential.
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