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ON THE COMMUTATIVITY OF A RING 
WITH IDENTITY 

BY 

JINGCHENG TONG 

ABSTRACT. Let R be a ring with identity. R satisfies one of 
the following properties for all x, y e R : 

(I) xynxmy = jcm + 1yn + 1 and mnml nlx^O except JC = 0 ; 
(II) xynxm = x m + 1 y n + 1 and mm\ n\ x^O except x = 0; 

(III) jtmyn = ynxm and m! n\x+Q except x = 0; 
(IV) (xpyQ)n = xpnyQn for n = k, fc + 1 and N(p,q,k)x£0 except 

x = 0, where N(p, q, k) is a definite positive integer. 
Then R is commutative. 

1. Let x, y be elements of a ring JR. If the following equality 

(1) (xy)n = jcnyn 

holds for a certain positive integer n, then R need not be a commutative ring. 
Quite a few papers [1-9] gave additional conditions to make R commutative. 
[1, 4] discussed (m, 2)-rings, i.e. rings in which (1) holds for two consecutive 
positive integers n — fc, k + 1. In this paper, we consider the following equality 

(2) (xpyq)n = xpnyqn 

where p, q are positive integers. Obviously (2) is a generalization of (1). We 
obtain a result on the commutativity of a ring with identity, which satisfies (2) 
for n = k, k + 1. The method of our proof originates from the following 
generalization of the commutative law: 

(3) xynjcmy = xm + 1yn + 1 . 

2. We need an important lemma. 

LEMMA 1. Let F0(x) = xr. If fc>l, let rk(x) = rk-1(l + x)-Ir
k-1(x). Then 

i;_!(x) = i ( r - l ) r ! + r! x; rr(x) = r\, and I}(x) = 0 for / > r. 

Proof. We first prove that for k < r + 1 

(4) rk
+\x) = kii^n + x)+*rk(x). 

Obviously JJ+1(x) = xI^(x). 
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If fc = 1, then 

r1
+\x) = r0

+1(i+x)-r0
+1(x) 

= (l + x)r0(l + x)-xF0(x) 

= r0(i+x)+x(r0(i+x)-r0(x)) 
= r0(i+x)+xir

1(x). 

If for fc = m, we have 

rn:
1(x) = mrrn^(i+x)+xrm(x). 

Then 
r+î1(x) = r+\i+x)-r+\x) 

= mrm_1(i+(i+x))+(i+x)rji+x) 
-mlr

m-1(l + x)-xrm(x) 

= mdi^a+(i+x)) - rm^a+x)) 
+rma+x)+x(rma+x)-rm(x)) 

= mrma+x)+rm(i+x)+xrm+1(x) 
= (m + i)rma+x)+xrm+1(x). 

Hence (4) holds. 
Now we prove that 

(5) i;_1(oc) = K r - l ) r ! + r ! x ; I'Xx) = rl 

Let r = 2. Then 
I?(x) = lB(l + x)-ig(x) 

= (l + x ) 2 - x 2 

= l + 2x, 

and 
I2(x) = / 2 ( l + x ) - / 2 (x ) = 2. 

If for r = m, we have 

/™_i(x) = è C n - l ) m ! + m ! x ; I™(x)=m!, 

Then by (4), 

i : + 1 (x ) = m/^_ 1( l + x) + xZ^(x) 

= m(|(m — l)m! +m! (l + x)) + xm! 

= |m(m + l)! + (m + l)!x, 

and 

I™tl(x) = lT1a + x)-lT\x) = (m + l)L 

Hence (5) holds. It is trivial that /[(a) = 0 for j>r. 
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THEOREM 1. Let Rbe a ring with identity. If R satisfies (3) and mnm! n\ x ^ 0 
except x = 0, then R is commutative. 

Proof. Let [x, y] = xy - yx and J,-(x) = I™(x) for j = 0 ,1 ,2 , 
Since xynxmy = xm + 1yn + 1 , we have 

x[yn ,xm]y = 0, 

x[yn,Io(x)]y = 0. 

Let x = 1 + x in the above expression. Then we have 

[y", I^x) + I0(x)]y + x[yn, Ix(x) + I0(x)]y = 0, 

[y", I^xWy + [y \ I0(x)]y + x[yn, AWJy = 0. 

Let x = 1 + x in the above expression. Then we have 

2[yn, I2(x)]y + 2[yn, I^xWy + x[yn, I2(x)]y = 0. 

Let x = 1 + x in the above expression. Then we have 

3[yn, I3(x)]y + 3[y", I2(x)]y + x[yn, I3(x)]y = 0. 

Thus letting x = 1 + x and iterating m - 1 times we have 

m[yn, Im-i(x)]y = m[yn, Km - l)m ! + m ! x]y = 0, 

mm\ [yn, x]y = 0. 

Now let y = 1 + y, iterate the above equality n — 1 times, we have 

mnml n\ [y, x] = 0. 

By the assumption of the theorem, [y, x] = 0, R is commutative. 

THEOREM 2. Let Rbe a ring with identity. If R satisfies the following equality 

(6) xynxm = xm + 1yn , 

and mm\ n\ x ^ 0 except x = 0, then R is commutative. 

Proof. Since 
xynxm = xm + 1yn , 

we have 
x[y n ,xm ] = 0. 

Letting x — 1 + x and iterating m — 1 times we have 

mm\ [yn, x] = 0. 

Let y = 1 + y in the above expression. Then we have 

mm![I1(y) + Io(y),x] = 0, 

mm\ [Ii(y), x] = 0. 
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Letting y = 1 + y, iterate n -1 times, we have 

mm\ n\ [y, x] = 0. 

By the assumption of the theorem, [y, JC] = 0, R is commutative. 

THEOREM 3. Let Rbe a ring with identity. If R satisfies the following equality 

(7) xmyn = ynxm, 

and m! n\ x^O except x = 0, then R is commutative. 

Proof. Trivial. 

3. Consider the following equality 

(8) X*Si[*mi,yni]yfi=o, 

where si9 mh nt, tt are positive integers for each i in a finite set I. 

THEOREM 4. Let R be a ring with identity. If R satisfies (8), and N(sb mt, nt, 
tt; l)x^0 except x = 0 for a definite positive integer N(st, mh nt, tt; I), then R is 
commutative. 

Proof. By Lemma 1, Fs<*) = 0 (s>st)] I£<x) = 0 (m>mi); IJ(y) = 0 
(n>nt); l}(y) = 0 (t>tt). It is easily seen that [x, l + y] = [ l + x, y] = [x, y]. 
Therefore, letting x = 1 + x in (8) and iterating sufficiently large number of 
times, we have 

ZMfemOfcy^y^O. 
iel 

Let y = 1 + y, iterate sufficiently large number of times, we have 

X Miist, m^Liirii, tt)[x, y] = 0. 
iel 

Let N(st, mh ni;I)=
JZieiMi(si, m^Lint, tt). Then we finish the proof. 

Theorem 4 can be generalized. 

THEOREM 5. Let R be a ring with identity, 14, vt (ie I) be reduced words in x, y 
with positive exponents. If R satisfies the following equality 

(9) X tklx^y^Vi^O 
iel 

for a finite set I, and N(wi? mi,ni,vi; l)x^0 except x = 0 for a definite positive 
integer N(ut, mi? nt, ^ ; I), then R is commutative. 

COROLLARY 1. Let R be a ring with identity. If R satisfies the following 
equality 

( 1 0 ) xsynxmyt = xs+myn+t9 
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and N(s, m, n, t)x ̂  0 except x = 0 for a definite positive integer N(s, m, n, t), then 
R is commutative. 

Proof. (10) is equivalent to xs[yn, xm]y' = 0. 

COROLLARY 2. Let Rbe a ring with identity. If R satisfies (2) for n = k, k + 1, 
and N(p, q,k)x^0 except x = 0 for a definite positive integer N(p, q, k), then R is 
commutative. 

Proof. Since 
xp(k + i y ( k + l) = (XPy^)(XPy^)k = X P y ^ X P k y ^ ? 

wehavex p [x p k ,y q ]y q k = 0. 
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